-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOmniGlot.py
139 lines (116 loc) · 5.03 KB
/
OmniGlot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import math
import time
import argparse
import random
import os
from PIL import Image
import numpy as np
import torch
import torchvision
from models import OmniGlotModel
from data_utils import KShotLoader, KShotData
from model_wrapper import MetaTrainWrapper
import tasks
from tasks import ClassifierTask
# from optim import SGD
NUM_TEST_POINTS = 600
VALIDATION_SPLIT = [1100, 100, -1]
class Normalize(object):
def __init__(self, mean, std):
self.mean = torch.FloatTensor(mean).unsqueeze(0).unsqueeze(2).unsqueeze(3).cuda()
self.std = torch.FloatTensor(std).unsqueeze(0).unsqueeze(2).unsqueeze(3).cuda()
def __call__(self, inputs):
return inputs.sub_(self.mean).div_(self.std)
def load_and_process_data(path, validation_split, n=5, k=1, metabatch_size=32):
data = OmniGlotData(path)
data.split(validation_split)
loader = KShotLoader(data, n, k, metabatch_size, transform=Normalize(mean=[0.92206, 0.92206, 0.92206], std=[0.08426, 0.08426, 0.08426]))
return loader
#TODO: Implement KShotData, OmniGlotData, MiniImageNetData, KShotLoader
class OmniGlotData(KShotData):
def __init__(self, path):
self.path = path
super(OmniGlotData, self).__init__(self.load_classes())
def get_char_folders(self):
folders = [os.path.join(self.path, family, character) \
for family in os.listdir(self.path) \
if os.path.isdir(os.path.join(self.path, family)) \
for character in os.listdir(os.path.join(self.path, family))]
return folders
def load_classes(self):
folders = self.get_char_folders()
classes = []
for folder in folders:
classes.append(self.folder_to_tensor(folder))
return classes
def folder_to_tensor(self, folder):
files = [os.path.join(folder, f) for f in os.listdir(folder)]
return torch.stack([self.img_from_path(f) for f in files]).cuda()
def img_from_path(self, f):
im = Image.open(f).convert('RGB').resize((28, 28), resample=Image.LANCZOS)
return torch.from_numpy(np.array(im).transpose(2, 0, 1)/255).float()
# return torch.from_numpy(1 - (np.array(im).transpose(2, 0, 1)/255.)).float()
def split(self, splits=[1100, 100, -1]):
random.seed(1)
self.train, self.val, self.test = super(OmniGlotData, self).split(splits)
del self.classes_data
del self.class_idx
def wrap_model(n=5, lr=1e-4, finetune=1, inner_lr=.01, distributed=False, second_order=False):
model = OmniGlotModel(n)
model.cuda()
task = ClassifierTask()
task_map = lambda x: task
master_optim = torch.optim.Adam(model.parameters(), lr=lr)
model = MetaTrainWrapper(model, task_map, finetune, inner_lr, master_optim, second_order=second_order, distributed=distributed)
return model
def main(data_path, lr=1e-4, n=5, k=1, finetune=1, inner_lr=.4, second_order=False, metabatch_size=32, niters=40000, print_interval=100, eval_interval=500):
validation_split = VALIDATION_SPLIT
loader = load_and_process_data(data_path, validation_split, n, k, metabatch_size)
module = wrap_model(n=n, lr=lr, finetune=finetune, inner_lr=inner_lr, second_order=second_order)
module.train()
train_loader = loader.train
for i in range(niters):
batch = next(train_loader)
loss, metrics = module(batch)
if (i+1) % print_interval == 0:
module.log_history_point(i+1)
if (i+1) % eval_interval == 0:
module.eval()
batch = next(loader.val)
val_loss, val_metrics = module(batch)
module.log_history_point(i+1)
module.train()
module.eval()
for t, batch in enumerate(loader.test):
module(batch)
if t == NUM_TEST_POINTS-1:
module.get_test_point()
break
module.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OmniGlot n-way k-shot Classifier')
parser.add_argument('--data-path', default='./data/omniglot',
help='path where data is located. (required)')
parser.add_argument('--niters', default=40000, type=int,
help='Number of epochs to train. Default: 20000')
parser.add_argument('--lr', default=1e-3, type=float,
help='Learning rate to use. (used for meta optimizer in MAML). Default: 1e-3')
parser.add_argument('--n', default=5, type=int,
help='n-way. Default: 5')
parser.add_argument('--k', default=1, type=int,
help='k-shot. Default: 1')
parser.add_argument('--ntasks', default=32, type=int,
help='number of tasks to sample for MAML(metabatch_size). Default: 8')
parser.add_argument('--nfinetune', default=1, type=int,
help='number of finetuning steps in MAML. Default: 1')
parser.add_argument('--inner-lr', default=.4, type=float,
help='Learning rate for fine tune optimizer in MAML. Default: 1e-2')
parser.add_argument('--second-order', action='store_true',
help='use second order estimation for supervised MAML (instead of first order)')
parser.add_argument('--print-interval', type=int, default=100,
help='number of iterations between printing progress')
parser.add_argument('--eval-interval', type=int, default=500,
help='number of iterations between printing progress')
args = parser.parse_args()
main(args.data_path, args.lr, args.n, args.k, args.nfinetune, args.inner_lr,
args.second_order, args.ntasks, args.niters, args.print_interval, args.eval_interval)