-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHOGNMS.cpp
250 lines (204 loc) · 6.47 KB
/
HOGNMS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#include "HOGNMS.h"
HOGNMS::HOGNMS()
{
center = 0.0f;
scale = 1.0f;
//imagino que estes sigmas sejam o que chama no artigo da XIN LI de window bandwidth, pesquisar mais...
nonmaxSigma[0] = 25.0f;
nonmaxSigma[1] = 25.0f;
nonmaxSigma[2] = 4.0f;
maxIterations = 100;
modeEpsilon = (float)1e-5;
epsFinalDist = 1.0f;
nsigma[0] = nonmaxSigma[0];
nsigma[1] = nonmaxSigma[1];
nsigma[2] = logf(nonmaxSigma[2]);
isAllocated = false;
}
HOGNMS::~HOGNMS()
{
if (isAllocated)
{
delete tomode;
delete wt;
delete ms;
delete at;
delete nmsResultsLocal;
delete nmsToMode;
}
}
void HOGNMS::nvalue(Point3f* ms, Point3f* at, float* wt, int length)
{
int i, j;
float dotxmr, w;
Point3f x, r, ns, numer, denum;
for (i=0; i<length; i++)
{
//inicializando numerador e denominador...
numer.x = 0; numer.y = 0; numer.z = 0;
denum.x = 0; denum.y = 0; denum.z = 0;
//para cada uma das regiões detectadas pelo classificador...
for (j=0; j<length; j++)
{
ns.x = nsigma[0] * expf(at[j].z);// exp(si)*sigmax
ns.y = nsigma[1] * expf(at[j].z);//exp(si)*sigmay
ns.z = nsigma[2]; //apenas o sigma s.
x.x = at[j].x / ns.x;
x.y = at[j].y / ns.y;
x.z = at[j].z / ns.z;
r.x = at[i].x / ns.x;
r.y = at[i].y / ns.y;
r.z = at[i].z / ns.z;
dotxmr = (x.x - r.x) * (x.x - r.x) + (x.y - r.y) * (x.y - r.y) + (x.z - r.z) * (x.z - r.z); // (x-xi)' * (x-xi) * inv(H) = D^2
w = wt[j] * expf(-dotxmr/2.0f)/sqrtf(ns.x * ns.y * ns.z); // w= wi* exp( - (D^2)/2)*diag(H)^(-1/2)
numer.x += w * x.x;
numer.y += w * x.y;
numer.z += w * x.z;
denum.x += w / ns.x;
denum.y += w / ns.y;
denum.z += w / ns.z;
}
ms[i].x = numer.x / denum.x;
ms[i].y = numer.y / denum.y;
ms[i].z = numer.z / denum.z;
}
}
void HOGNMS::nvalue(Point3f *ms, Point3f* msnext, Point3f* at, float* wt, int length)
{
int j;
float dotxmr, w;
Point3f x, r, ns, numer, denum, toReturn;
for (j=0; j<length; j++)
{
ns.x = nsigma[0] * expf(at[j].z);
ns.y = nsigma[1] * expf(at[j].z);
ns.z = nsigma[2];
x.x = at[j].x / ns.x;
x.y = at[j].y / ns.y;
x.z = at[j].z / ns.z;
//observa que nesta parte o segundo ponto passa a ser o ms que já havia sido calculado...
r.x = ms->x / ns.x;
r.y = ms->y / ns.y;
r.z = ms->z / ns.z;
dotxmr = (x.x - r.x) * (x.x - r.x) + (x.y - r.y) * (x.y - r.y) + (x.z - r.z) * (x.z - r.z);
w = wt[j] * expf(-dotxmr/2.0f)/sqrtf(ns.x * ns.y * ns.z);
numer.x += w * x.x; numer.y += w * x.y; numer.z += w * x.z;
denum.x += w / ns.x; denum.y += w / ns.y; denum.z += w / ns.z;
}
msnext->x = numer.x / denum.x; msnext->y = numer.y / denum.y; msnext->z = numer.z / denum.z;
}
void HOGNMS::fvalue(Point3f* modes, HOG_Result* results, int lengthModes, Point3f* at, float* wt, int length)
{
int i, j;
float no, dotxx;
Point3f x, ns;
for (i=0; i<lengthModes; i++)
{
no = 0;
for (j=0; j<length; j++)
{
ns.x = nsigma[0] * expf(at[j].z);
ns.y = nsigma[1] * expf(at[j].z);
ns.z = nsigma[2];
x.x = (at[j].x - modes[i].x) / ns.x;
x.y = (at[j].y - modes[i].y) / ns.y;
x.z = (at[j].z - modes[i].z) / ns.z;
dotxx = x.x * x.x + x.y * x.y + x.z * x.z;
no += wt[j] * expf(-dotxx/2)/sqrtf(ns.x * ns.y * ns.z);
}
results[i].score = no;
}
}
float HOGNMS::distqt(Point3f *p1, Point3f *p2)
{
Point3f ns, b;
ns.x = nsigma[0] * expf(p2->z);
ns.y = nsigma[1] * expf(p2->z);
ns.z = nsigma[2];
b.x = p2->x - p1->x;
b.y = p2->y - p1->y;
b.z = p2->z - p1->z;
b.x /= ns.x;
b.y /= ns.y;
b.z /= ns.z;
return b.x * b.x + b.y * b.y + b.z * b.z;
}
void HOGNMS::shiftToMode(Point3f* ms, Point3f* at, float* wt, Point3f *tomode, int length)
{
int i, count;
Point3f ii,II;
//para cada região detectada
for (i=0; i<length; i++)
{
II = ms[i];
count = 0;
do
{
ii = II;
nvalue(&ii, &II, at, wt, length);
++count;
} while ( count < maxIterations && distqt(&ii,&II) > modeEpsilon );
//nesta região é a parte em que é alterado o centro de massa em busca das regiões de maior densidade??
tomode[i].x = II.x;
tomode[i].y = II.y;
tomode[i].z = II.z;
//mode é uma região de maior densidade, mas para cada região detectada ele tem um mode??
}
}
//recebe um vector de results.
vector<HOG_Result> HOGNMS::ComputeNMSResults(Size my_window,vector<HOG_Result> meus_results)
{
int formattedResultsCount = meus_results.size();//Quantas regiões foram detectadas até então...
int hWindowSizeX = my_window.width;
int hWindowSizeY = my_window.height;
vector<HOG_Result> result_final;
if (!isAllocated)
{
wt = new float[hWindowSizeX * hWindowSizeX];
at = new Point3f[hWindowSizeX * hWindowSizeX];//centro da região retangulo x+w/2 , y+h/2
ms = new Point3f[hWindowSizeX * hWindowSizeX];
tomode = new Point3f[hWindowSizeX * hWindowSizeX];
nmsToMode = new Point3f[hWindowSizeX * hWindowSizeX];
nmsResultsLocal = new HOG_Result[hWindowSizeX * hWindowSizeX];
isAllocated = true;
}
int i, j;
float cenx, ceny, nmsOK;
int nmsResultsCount = 0;
for (i=0; i<formattedResultsCount; i++)
{
wt[i] = this->sigmoid(meus_results.at(i).score);
cenx = meus_results.at(i).roi.x + meus_results.at(i).roi.width / 2.0f;
ceny = meus_results.at(i).roi.y + meus_results.at(i).roi.height / 2.0f;
at[i] = Point3f(cenx, ceny, logf(meus_results.at(i).scale));
}
nvalue(ms, at, wt, formattedResultsCount);
//ms passa a ter o resultado desejado...
shiftToMode(ms, at, wt, tomode, formattedResultsCount);
for (i=0; i<formattedResultsCount; i++)
{
nmsOK = true;
for (j=0; j<nmsResultsCount; j++)
{
if (distqt(&nmsToMode[j], &tomode[i]) < epsFinalDist)
{
nmsOK = false;
break;
}
}
if (nmsOK)
{
nmsResultsLocal[nmsResultsCount].scale = expf(tomode[i].z);
nmsResultsLocal[nmsResultsCount].roi.width = (int)floorf((float)hWindowSizeX / nmsResultsLocal[nmsResultsCount].scale);
nmsResultsLocal[nmsResultsCount].roi.height =(int)floorf((float)hWindowSizeY / nmsResultsLocal[nmsResultsCount].scale);
cout<<nmsResultsLocal[nmsResultsCount].roi.width<< " x "<<nmsResultsLocal[nmsResultsCount].roi.height <<endl;
nmsResultsLocal[nmsResultsCount].roi.x =(int)ceilf(tomode[i].x - (float) hWindowSizeX * nmsResultsLocal[nmsResultsCount].scale / 2);
nmsResultsLocal[nmsResultsCount].roi.y =(int)ceilf(tomode[i].y - (float) hWindowSizeY * nmsResultsLocal[nmsResultsCount].scale / 2);
nmsToMode[nmsResultsCount] = tomode[i];
result_final.push_back(nmsResultsLocal[nmsResultsCount]);
nmsResultsCount++;
}
}
fvalue(nmsToMode, nmsResultsLocal, nmsResultsCount, at, wt, formattedResultsCount);
return result_final;
}