-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtoplevel.v
608 lines (520 loc) · 16.8 KB
/
toplevel.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// OpenNX4 - Open source firmware for Barco NX4 tiles
// Company: Bohemian Bits
// Engineer: Richard Aplin (Twitter: @DrTune)
// Copyright (C) 2017 Richard Aplin
// Released under the Attribution-NonCommercial 2.0 Generic (CC BY-NC 2.0)
// You may not use this code or a derived work for commercial purposes unless you have a commercial license, contact [email protected]
//////////////////////////////////////////////////////////////////////////////////
//
// Create Date: 13:03:18 10/25/2017
// Design Name:
// Module Name: toplevel
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
//useful https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
`include "nx4_header_file.vh"
/*
Back of envelope timing budget for NX4
CLK_40 40mhz (25ns) - obviously can be PLL'd if required
Each row driver is 3x 16 channel TI drivers (R,G,B) @ 12 bits per channel = 576 bits per row
IF the dot correction data is loaded also, + 3x16x9 bits = 432 bits per row
There are 12 row driver outputs
*/
module toplevel(
input clock,
//pixeldriver pins
output led_sclk,
output [6:1] led_l_sin,
output [6:1] led_r_sin,
output led_cal_sin,
input led_xerr,
output led_mode,
output led_blank,
output led_xlat,
output led_gsclk,
//input reset,
inout i2c_sda,
output i2c_scl,
output led_red,
output led_yellow,
output led_orange,
output lt1933_enable,
//flash+sram
inout mem_s7_15_f7,
inout mem_s6_14_f6,
inout mem_s5_13_f5,
inout mem_s4_12_f4,
inout mem_s3_11_f3,
inout mem_s2_10_f2,
inout mem_s1_9_f1,
inout mem_s0_8_f0,
output mem_fa19,
output mem_fa18,
output mem_fa17,
output mem_sa17_fa16,
output mem_sa16_fa15,
output mem_sa15_fa14,
output mem_sa14_fa13,
output mem_sa13_fa12,
output mem_sa12_fa11,
output mem_sa11_fa10,
output mem_sa10_fa9,
output mem_sa9_fa8,
output mem_sa8_fa7,
output mem_sa7_fa6,
output mem_sa6_fa5,
output mem_sa5_fa4,
output mem_sa4_fa3,
output mem_sa3_fa2,
output mem_sa2_fa1,
output mem_sa1_fa0,
output mem_sa0_f15,
output reg mem_we,
output sram_ce,
output sram_oe,
output sram_bhe,
output sram_ble,
output flash_ce,
output flash_oe,
input flash_ry_by,
output reg flash_reset,
input fan_tachometer,
//unknown interface to CPLD on the LED driver board
inout cpld_p2,
inout cpld_p3,
input cpld_p5,
input cpld_p6,
inout cpld_p8,
inout cpld_p41,
inout cpld_p42,
inout cpld_p43,
inout cpld_p44,
// Input connector from controller or previous NX4 in daisychain
input in_conn_p2,
input in_conn_p3,
input in_conn_p4,
output in_conn_p5,
input in_conn_p7,
input in_conn_p8, //must be input
// Output connecto to next NX4 in daisychain
input out_conn_p5,
input out_conn_p8,
input out_conn_p7,
input out_conn_p4,
input out_conn_p3,
input out_conn_p6
);
reg pclock,gclock;
reg pixel_reset=1;
wire [15:0] frame_count;
wire `NX4_REGISTERS_FLAT;
integer unpk_idx;
reg `NX4_REGISTERS_SQUARE;
always @(*) begin
`NX4_REGISTERS_FLAT_TO_SQUARE
end
wire [7:0] reg_read_bus;
wire reg_read_strobe;
//todo
assign lt1933_enable=0;
`define EXT_DATA_BUS mem_s7_15_f7,mem_s6_14_f6,mem_s5_13_f5,mem_s4_12_f4,mem_s3_11_f3,mem_s2_10_f2,mem_s1_9_f1,mem_s0_8_f0
`define EXT_ADDRESS_BUS mem_fa19,mem_fa18,mem_fa17,mem_sa17_fa16,mem_sa16_fa15,mem_sa15_fa14,mem_sa14_fa13,mem_sa13_fa12,mem_sa12_fa11,mem_sa11_fa10,mem_sa10_fa9,mem_sa9_fa8,mem_sa8_fa7,mem_sa7_fa6,mem_sa6_fa5,mem_sa5_fa4,mem_sa4_fa3,mem_sa3_fa2,mem_sa2_fa1,mem_sa1_fa0,mem_sa0_f15
// external sram/flash controller
`ifndef ENABLE_BITBANG_MEMORY
reg sram_read_req=1;
reg flash_read_req=0;
reg sram_write_req=0;
reg flash_write_req=0;
reg [17:0] sram_read_address;
reg [17:0] sram_write_address;
reg [19:0] flash_read_address;
reg [19:0] flash_write_address;
reg [7:0] sram_write_data;
wire [7:0] sram_read_data;
wire [7:0] flash_read_data;
reg [7:0] flash_write_data;
external_memory_controller ext_mem (
.CLK_40(clock),
.ext_address_bus(ext_address_bus),
.ext_data_bus(ext_data_bus),
.mem_we(mem_we),
.sram_oe(sram_oe),
.sram_ce(sram_ce),
.sram_bhe(sram_bhe),
.sram_ble(sram_ble),
.flash_ce(flash_ce),
.flash_oe(flash_oe),
.flash_ry_by(flash_ry_by),
.sram_read_data(sram_read_data),
.sram_write_data(sram_write_data),
.sram_write_address(sram_write_address),
.sram_read_address(sram_read_address),
.sram_read_idle(sram_read_idle),
.sram_write_req(sram_write_req),
.sram_read_req(sram_read_req),
.sram_write_idle(sram_write_idle),
.flash_read_data(flash_read_data),
.flash_read_req(flash_read_req),
.flash_write_data(flash_write_data),
.flash_write_address(flash_write_address),
.flash_read_address(flash_read_address),
.flash_read_idle(flash_read_idle),
.flash_write_req(flash_write_req),
.flash_write_idle(flash_write_idle),
.reset(pixel_reset)
);
`endif
wire vsync;
//command processor interface to r/w flash and sram
wire cp_mem_sram_op_req_strobe;
wire cp_mem_flash_op_req_strobe;
wire [7:0] cp_mem_dout;
reg [7:0] cp_mem_din;
wire cp_mem_we;
wire [15:0] cp_command_addr;
wire [`OpenNX4_STATUS_WIDTH-1:0] nx4_status;
wire fb0_wea,fb1_wea;
wire [`FB_ADDR_WIDTH-1:0] fb_addrb; //both share same read address bus, are read in parallel
wire [`FB_ADDR_WIDTH-1:0] fb_addra; //both share same write address/data bus
wire [7:0] fb_dina;
wire [7:0] fb0_doutb;
wire [7:0] fb1_doutb;
//framebuffer (fb) block ram frame buffer 32x36x3 x 8bpp (upconverted to 12 bit when displayed)
framebuffer fb0 (
.wea(fb0_wea),
.addra(fb_addra),
.dina(fb_dina),
.addrb(fb_addrb),
.doutb(fb0_doutb),
.clka(clock),
.clkb(clock),
.reset(pixel_reset)
);
framebuffer fb1 (
.wea(fb1_wea),
.addra(fb_addra),
.dina(fb_dina),
.addrb(fb_addrb),
.doutb(fb1_doutb),
.clka(clock),
.clkb(clock),
.reset(pixel_reset)
);
//ram-based lookup table to convert from 8-bit pixels to 12 bit (due to eye response, 8 bit represents distinguisable tones fine)
wire il_wea;
wire [`INTERNAL_PIXEL_WIDTH_BITS-1:0] il_dina;
wire [7:0] il_addra;
wire [`INTERNAL_PIXEL_WIDTH_BITS-1:0] il0_doutb;
wire [7:0] il0_addrb;
wire [`INTERNAL_PIXEL_WIDTH_BITS-1:0] il1_doutb;
wire [7:0] il1_addrb;
wire il_enb=1;
//we use two lookups (in parallel, one fed by each fb so we can blend them) but written at same time - could use one and time-slice it between fb's but whatever.
intensity_lookup_8b_12b intensity_lookup0 (
.wea(il_wea),
.addra(il_addra),
.dina(il_dina),
.addrb(il0_addrb),
.doutb(il0_doutb),
.clka(clock),
.enb(il_enb),
.clkb(clock)
);
intensity_lookup_8b_12b intensity_lookup1 (
.wea(il_wea),
.addra(il_addra),
.dina(il_dina),
.addrb(il1_addrb),
.doutb(il1_doutb),
.clka(clock),
.enb(il_enb),
.clkb(clock)
);
//sends fb to drivers
led_array_driver driver (
.reset(pixel_reset),
.led_sclk(led_sclk),
.led_l_sin(led_l_sin),
.led_r_sin(led_r_sin),
.led_cal_sin(led_cal_sin),
.led_xerr(led_xerr),
.led_mode(led_mode),
.led_blank(led_blank),
.led_xlat(led_xlat),
.led_gsclk(led_gsclk),
.pixel_clock(pclock),
.grayscale_clock(gclock),
.cpld_p8(cpld_p8),
.cpld_p5(cpld_p5),
.cpld_p6(cpld_p6),
.cpld_p44(cpld_p44),
.cpld_p43(cpld_p43),
.cpld_p42(cpld_p42),
.cpld_p41(cpld_p41),
.frame_count(frame_count),
.vsync(vsync),
.nx4_registers_flat(nx4_registers_flat),
//frame buffers
.fb_addr(fb_addrb),
.fb0_dout(fb0_doutb),
.fb1_dout(fb1_doutb),
//8b->12b intensity conversion lookups
.il0_addr(il0_addrb),
.il0_dout(il0_doutb),
.il1_addr(il1_addrb),
.il1_dout(il1_doutb)
);
wire com_rx_strobe;
wire com_rx_start; //high for first CLK40 of a new command via whatever transport
wire com_rx_end_strobe; //in some transports like UART we don't really know when it's finished unless we implement timeouts but others like SPI and I2C you have transactions
wire [7:0] com_rx;
wire [7:0] com_tx;
wire com_tx_strobe;
wire com_tx_ready;
wire com_reset_cmd_state;
//receives data in various protocols & handles writes to the fb and internal state registers like intensity
nx4comms comms (
.serial_clk_in(in_conn_p8), //SPI SCK /I2S PCM_BCLK, I2C SCK (no clock stretching supported/reqd)
.serial_output(in_conn_p5), //UART host rx, SPI (MISO), I2S (PCMx_DIN). I2C SDA pulldown if active
.serial_input(in_conn_p4), //WS2812, UART host tx, SPI (MOSI) and I2S (PCMx_DOUT) all use this. I2C SDA if anyone wants to do it
.serial_input2(in_conn_p6), //for 2-bit parallel versions of SPI or I2S
.serial_select(in_conn_p7), //if you want SPI with CS, here's where you'd do it
/*
.dout_ch1_n(dout_ch1_n),
.dout_ch1_p(dout_ch1_p),
.dout_ch2_n(dout_ch2_n),
.dout_ch2_p(dout_ch2_p),
.dout_ch3_n(dout_ch3_n),
.dout_ch3_p(dout_ch3_p),
*/
.com_rx_strobe(com_rx_strobe), //high for one CLK40 cycle when new data is ready, get it while it's hot!
.com_rx_start(com_rx_start), //high for same cycle as above if this is the first byte of a new message (which we know for SPI and I2C for example, not UART)
.com_rx_end_strobe(com_rx_end_strobe), //high for one cycle (not same as RX_STROBE) when we 'know' the message is complete. In some cases we don't know (UART) unless we do a timeout or BREAK or something else
.com_reset_cmd_state(com_reset_cmd_state),
.com_rx_data(com_rx),
.com_tx_data(com_tx),
.com_tx_ready(com_tx_ready),
.com_tx_strobe(com_tx_strobe),
.nx4_registers_flat(nx4_registers_flat),
.comms_status_led(led_orange),
.reset(pixel_reset),
.CLK_40(clock)
);
//this takes data from the comms controller and does stuff with it;
//interprets command bytes
//writes to frame buffer
//set other parameters etc
command_processor command_processor (
.il_wea(il_wea), //intensity lookup (8b->12b)
.il_din(il_dina),
.il_addr(il_addra),
.fb_addr(fb_addra), //two framebuffers can write (same addr/data) to either or both
.fb_dout(fb_dina),
.fb0_we(fb0_wea),
.fb1_we(fb1_wea),
.vsync(vsync),
.frame_count(frame_count),
.status_led_red(led_red),
.com_rx_strobe(com_rx_strobe), //high for one CLK40 cycle when new data is ready, get it while it's hot!
.com_rx_start(com_rx_start), //high for same cycle as above if this is the first byte of a new message (which we know for SPI and I2C for example, not UART)
.com_rx_end_strobe(com_rx_end_strobe), //high for one cycle (not same as RX_STROBE) when we 'know' the message is complete. In some cases we don't know (UART) unless we do a timeout or BREAK or something else
.com_rx(com_rx),
.com_tx(com_tx),
.com_tx_ready(com_tx_ready),
.com_tx_strobe(com_tx_strobe),
.com_reset_cmd_state(com_reset_cmd_state),
.nx4_registers_flat(nx4_registers_flat),
//sram/flash interface
.cp_mem_sram_op_req_strobe(cp_mem_sram_op_req_strobe),
.cp_mem_flash_op_req_strobe(cp_mem_flash_op_req_strobe),
.cp_mem_dout(cp_mem_dout),
.cp_mem_din(cp_mem_din),
.cp_mem_we(cp_mem_we),
.cp_command_addr(cp_command_addr), //any more bits beyond this (for addressing flash etc) are wired into other registers (paged)
.reg_read_bus(reg_read_bus),
.reg_read_strobe(reg_read_strobe),
.nx4_status(nx4_status),
.CLK_40(clock),
.reset(pixel_reset)
);
/// -- wiring cmd processor to flash/ram in simple bitbang-style (i.e. no memory controller)
`ifdef ENABLE_BITBANG_MEMORY
reg [2:0] cp_mem_cycle_timer;
wire drive_data_bus=(cp_mem_cycle_timer!=0) & cp_mem_we;
reg sram_not_flash=0;
assign {{`EXT_DATA_BUS}} = drive_data_bus ? cp_mem_dout: 8'bz ;
//address bus is shifted down one as both sram and flash are 16 bit (operating in 8 bit mode)
assign {{`EXT_ADDRESS_BUS}} = !sram_not_flash ? ({nx4_registers[`OpenNX4_REG_MEM_UPPER_ADDR][4:0],cp_command_addr}):({nx4_registers[`OpenNX4_REG_MEM_UPPER_ADDR][4:0],cp_command_addr[15:1]});
assign flash_ce=~((cp_mem_cycle_timer!=0)&!sram_not_flash);
assign flash_oe=~(!sram_not_flash & !cp_mem_we);
//assign cp_mem_din={{`EXT_DATA_BUS}};
assign sram_ce=~((cp_mem_cycle_timer!=0)&sram_not_flash);
assign sram_oe=~(sram_not_flash & !cp_mem_we);
assign sram_bhe=~cp_command_addr[0]; //lsb of address
assign sram_ble=~sram_bhe;
parameter FLASH_CYCLE_TIME=7;
//asssign mem_we=~(cp_mem_we && (cp_mem_cycle_timer>=1 && cp_mem_cycle_timer<FLASH_CYCLE_TIME));
always @(posedge clock)
begin //not using sram/flash memory controller which would arbitrate so we just hook it straight up pretty much
if (cp_mem_flash_op_req_strobe)begin
sram_not_flash<=0;
cp_mem_cycle_timer<=FLASH_CYCLE_TIME; //stretch flash clock to 7 CLK_40's
end
else
begin
if (cp_mem_sram_op_req_strobe)begin
sram_not_flash<=1;
cp_mem_cycle_timer<=1;
mem_we<=~cp_mem_we;
end
end
if (cp_mem_cycle_timer)begin
if (cp_mem_cycle_timer==2)begin
mem_we<=~0; //if writing end write cycle (only applies to flash)
end
else
begin
if (cp_mem_cycle_timer==1)begin //sram starts at cycle 1
if (~cp_mem_we)begin
cp_mem_din<={`EXT_DATA_BUS}; //sample data
end
else
mem_we<=~0; //if writing end write cycle (applies to sram), flash ended on previous cycle
end
else begin
mem_we<=~cp_mem_we;
end
end
cp_mem_cycle_timer<=cp_mem_cycle_timer-1;
end
end
`endif
/// end wiring cmd processor to flash/ram
// Set up the various things you can read back that are returned as status info
assign nx4_status={
cpld_p44,
cpld_p43,
cpld_p42,
cpld_p41,
cpld_p8,
cpld_p6,
cpld_p5,
cpld_p3,
cpld_p2,
flash_ry_by,
led_xerr,
i2c_sda
};
//wire up internal i2c to bitbangable interface as open-drain
assign i2c_sda=nx4_registers[`OpenNX4_REG_IOCTL][`OpenNX4_REG_IOCTL_BIT_I2C_SDA] ? 1'bz : 0;
assign i2c_scl=nx4_registers[`OpenNX4_REG_IOCTL][`OpenNX4_REG_IOCTL_BIT_I2C_SCL] ? 1'bz : 0;
// blink status led
reg [32:0] blink_count=0;
assign led_yellow = frame_count[5];
//assign led_red = blink_count[23];
//reg i2c_sda_reg;
//assign sda=i2c_sda_reg;
always @(posedge clock) //board clock input is 40mhz xtal
begin
//top level "Main loop"...
//i2c_sda_reg<=nx4_registers[`OpenNX4_REG_IOCTL][`OpenNX4_REG_IOCTL_BIT_I2C_SDA] ? 1'bz : 0;
//i2c_scl<=nx4_registers[`OpenNX4_REG_IOCTL][`OpenNX4_REG_IOCTL_BIT_I2C_SCL] ? 1'bz : 0;
begin
blink_count <= blink_count+1;
if (blink_count[3] && pixel_reset == 1) // after 1<<3 clocks, deassert reset
pixel_reset <= 0;
flash_reset<=1;
end
//test sram
/*
if (sram_read_idle)
begin
if (blink_count[3])
begin
if (sram_read_req==0)
begin
//idle - start read
sram_read_req<=1;
end
else
begin
//data ready, do whatever
sram_read_address<=sram_read_address+1;
//sram_read_req<=0;
end
end
else
begin //sit this one out
sram_read_req<=0;
end
end
*/
//test sram write
/*
if (sram_write_idle)
begin
if (sram_write_req==0)
begin
//idle - start read
sram_write_data<=blink_count[7:0];
sram_write_req<=1;
end
else
begin
//write complete
sram_write_address<=sram_write_address+1;
sram_write_req<=0;
end
end
*/
/*
if (flash_write_idle)
begin
if (flash_write_req==0)
begin
//idle - start read
flash_write_data<=blink_count[7:0];
flash_write_req<=1;
end
else
begin
//write complete
flash_write_address<=flash_write_address+1;
flash_write_req<=0;
end
end
*/
/*
//test flash read
if (flash_read_idle)
begin
if (flash_read_req==0)
begin
//idle - start read
flash_read_req<=1;
end
else
begin
//data ready, do whatever
flash_read_address<=flash_read_address+1;
//flash_read_req<=0;
end
end
*/
//status_led2 <= blink_count[21];
pclock <= blink_count[ nx4_registers[`OpenNX4_REG_DRIVECTL][(`OpenNX4_REG_DRIVECTL_BIT_PCLK_DIV0+`OpenNX4_REG_DRIVECTL_BIT_PCLK_BITS-1) -:`OpenNX4_REG_DRIVECTL_BIT_PCLK_BITS ] ]; // pixel clock is /(1<<2) = 40mhz/2=20mhz
gclock <= blink_count[ nx4_registers[`OpenNX4_REG_DRIVECTL][(`OpenNX4_REG_DRIVECTL_BIT_BCLK_DIV0+`OpenNX4_REG_DRIVECTL_BIT_BCLK_BITS-1) -:`OpenNX4_REG_DRIVECTL_BIT_BCLK_BITS ]]; //greyscale clock is /(1<<0) = 20mhz; it's a 12-bit PWM so the pixel modulation rate is 20mhz/4096=4.8khz which looks good and smooth.. 5Mhz looks a bit dotty as you'd imagine
end
endmodule