-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
30 lines (25 loc) · 809 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
from random import choice, shuffle
from src.neural_network import NeuralNetwork
import matplotlib.pyplot as plt
import pandas as pd
nn=NeuralNetwork(784,10,hidden_layers=[16,16],learning_rate=2.5)
def main():
data=pd.read_csv("data/train.csv")
data = np.array(data)
m, n = data.shape
np.random.shuffle(data) # shuffle before splitting into dev and
data_dev = data[0:1000].T#i use this because i have a lot of problems with my memory lol
Y_dev = data_dev[0]
X_dev = data_dev[1:n]
X_dev = X_dev / 255.
x= X_dev[:, 32, None]
y=Y_dev[32]
nn.copy_from("nn.json")
out=nn.prediction(x)
x=x.reshape(28,28)
plt.imshow(x,cmap='gray')
plt.title("{} vs {}".format(y,out[0]))
plt.show()
if __name__ == "__main__":
main()