-
Notifications
You must be signed in to change notification settings - Fork 0
/
ds101
171 lines (158 loc) · 4.29 KB
/
ds101
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
<!----- Conversion time: 1.937 seconds.
Using this HTML file:
1. Cut and paste this output into your source file.
2. See the notes and action items below regarding this conversion run.
3. Check the rendered output (headings, lists, code blocks, tables) for proper
formatting and use a linkchecker before you publish this page.
Conversion notes:
* gd2md-html version 1.0β10
* Thu Mar 08 2018 01:46:32 GMT-0800 (PST)
* Source doc: https://docs.google.com/open?id=16MPW3dZX005qsP1j1z1v1hSr0MHnxTZlnOn3QQOEigA
----->
<p>
<strong>DS101: Building Blocks of Data-Science (Spring' 2018)</strong>
</p>
<p>
<strong>Instructor:</strong> <a href="http://stillhungry.in/">Mohit Saini</a>
</p>
<p>
<strong>About:</strong> Title of course not to be confused with <em>"Application of data-science"</em> or <em>"ML & AI"</em> or <em>"Application of ML" </em>or<em> "Data-Analytics" </em>or<em> "Data-Science in Business"</em>.
</p>
<p>
<strong>Course Description:</strong> One of the fundamental building block of data-science is algorithm designing. This course will contain significant content in art of algorithm designing. Then course will move toward combining those algorithms and mathematics to solve proposed problems. We will slowly move toward the direction of learning. You will be offered opportunity to design your own ML algorithms using modern tools. Assignments would be around competing among yourself ( students ) on the matrix of precision and recall. <br>
As a bonus to this course, last lecture will be around "briefing with modern tools and modern progress in ML". Exposure to techniques like Linear Regression, Logistic regression, Clustering, Deep Learning ( mainly in NLP and Image Processing), and lots of other ML techniques used nowadays. Same lecture will also cover quick explanation on "how these techniques can help in real world problems". + You will be given lots of content to read on it.
</p>
<p>
<strong>Prereq</strong>: Basic knowledge of Mathematics, Commitment for self-study and assignments.
</p>
<p>
<strong>Course Requirements:</strong>
</p><ol>
<li>1 hour weekly lecture
<li>Roughly 5-10 hour per weekend for homework/assignments.</li></ol>
<p>
<strong>Lectures Schedule: </strong>
</p>
<table>
<tr>
<td><strong>Lecture</strong>
</td>
<td><strong>When</strong>
</td>
<td><strong>Where</strong>
</td>
<td><strong>What</strong>
</td>
</tr>
<tr>
<td>Lecture-1
</td>
<td><strong>4 PM, March 8<br>
</strong>(expected)
</td>
<td>Conference Room (expected)
</td>
<td><a href="https://drive.google.com/open?id=1gllhF6XSTR14Td8SzQBVtMTbBxgfti_J">Intro to Probability Theory</a>
</td>
</tr>
<tr>
<td>Lecture-2
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-3
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-4
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-5
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-6
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-7
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-8
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-9
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
<tr>
<td>Lecture-10
</td>
<td>TBD
</td>
<td>Conference Room (expected)
</td>
<td>
</td>
</tr>
</table>
<p>
<strong>Reference Book: "<em>Foundation of Data Science"</em></strong> by "<em>Kannan and Hopcroft</em>". ( Downloadable version publically available <a href="https://www.cs.cornell.edu/jeh/NOSOLUTIONS90413.pdf">here</a> )
</p>
<p>
<strong>Communication</strong>: Please join the slack channel "<em>ds-building-blocks</em>".
</p>
<p>
<strong>Guidelines</strong>
</p><ol>
<li>One should attend all the lectures. If a lecture is missed due to some reason, please cover it up before next lecture. Because you won't be able to understand new lectures unless previous lectures are well understood.</li></ol>