forked from daisukelab/ml-sound-classifier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
executable file
·108 lines (96 loc) · 4.01 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import cv2
import matplotlib.pyplot as plt
import numpy as np
import keras.backend as K
def normalize_2d(two_d):
img_temp = two_d - np.min(two_d)
return img_temp/np.max(img_temp)
def colormap_2d_flipud(norm_2d):
#return cv2.applyColorMap(np.uint8(255 * np.flipud(norm_2d)), cv2.COLORMAP_JET)
return np.flipud(norm_2d)
def visualize_cam_audio(conf, model, x, name, layer='Conv_1'):
"""Grad-CAM visualization for audio spectrogram."""
last_conv_layer = model.get_layer(layer) # MobileNetV2 last conv layer
if len(x.shape) == 3:
X = x[np.newaxis, ...]
else:
X = x
preds = model.predict(X)
targ_class = np.argmax(preds[0])
output = model.output[:, targ_class]
grads = K.gradients(output, last_conv_layer.output)[0]
pooled_grads = K.mean(grads, axis=(0, 1, 2))
iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
pooled_grads_value, conv_layer_output_value = iterate([X])
for i in range(int(last_conv_layer.output.shape[3])):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
img = normalize_2d(X[-1, :, :, -1])
heatmap = np.mean(conv_layer_output_value, axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
superimposed = (heatmap + img) / 2
# img, superimposed, heatmap - all 2d [n_mels, time hop]
fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_subplot(131)
ax.set_axis_off()
ax.set_title('predicted class activation map', fontsize=8)
ax.imshow(colormap_2d_flipud(heatmap))
ax = fig.add_subplot(132)
ax.set_axis_off()
ax.imshow(colormap_2d_flipud(superimposed))
ax.set_title('CAM {} - {}\n-- overlay --'.format(conf.labels[targ_class], name), fontsize=9)
ax = fig.add_subplot(133)
ax.set_axis_off()
ax.set_title(conf.what_is_sample, fontsize=8)
ax.imshow(colormap_2d_flipud(img))
fig.show()
"""
TBD
def _imshow_friendly(img):
img_temp = img - np.min(img)
img_temp = img_temp/np.max(img_temp)
friendly = np.uint8(255 * img_temp)
return friendly
def visualize_cam_image(conf, model, model_weight, test_file_index, datapath,
expected_preds, test_time_aug_param={}):
""Grad-CAM visualization for image.""
d.load_test_as_image(datapath)
d.create_test_generator(test_time_aug_param)
model.load_weights(model_weight)
last_conv_layer = model.get_layer('block5_conv3')
cur_X_test, cur_y_test = next(d.test_gen)
x = np.array([cur_X_test[test_file_index]])
preds = model.predict(x)
targ_class = np.argmax(preds[0])
result = calc_soft_acc(expected_preds[test_file_index], preds[0])
output = model.output[:, targ_class]
grads = K.gradients(output, last_conv_layer.output)[0]
pooled_grads = K.mean(grads, axis=(0, 1, 2))
iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
pooled_grads_value, conv_layer_output_value = iterate([x])
for i in range(int(last_conv_layer.output.shape[3])):
conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
heatmap = np.mean(conv_layer_output_value, axis=-1)
heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
img = next(d.test_gen)[0][test_file_index]
fig = plt.figure(figsize=(10, 5), dpi=100)
ax = fig.add_subplot(131)
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
ax.set_axis_off()
ax.set_title('predicted class activation map', fontsize=8)
ax.matshow(heatmap)
heatmap = np.uint8(255 * heatmap)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
superimposed = ((heatmap*0.5/np.max(heatmap) + img)) / 1.5
ax = fig.add_subplot(132)
ax.set_axis_off()
ax.imshow(_imshow_friendly(superimposed))
ax.set_title('%s? %s' % (d.labels[targ_class], 'yes' if result == 1 else 'no'), fontsize=9)
ax = fig.add_subplot(133)
ax.set_axis_off()
ax.set_title(conf.what_is_sample, fontsize=8)
ax.imshow(_imshow_friendly(img))
fig.show()
"""