-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
29 lines (24 loc) · 1000 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import numpy as np
data = keras.datasets.fashion_mnist
(train_images, train_labels),(test_images, test_labels) = data.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.imshow(test_images[0],cmap=plt.cm.binary)
train_images = train_images / 255.0
test_images = test_images / 255.0
print(train_images.shape)
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
model.fit(train_images,train_labels,epochs=5)
test_loss, test_acc= model.evaluate(test_images,test_labels)
predictions = model.predict(test_images)
print("Tested Acc. ", test_acc)
print(class_names[np.argmax(predictions[0])])
plt.show()