-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrleander_student_loans_with_deep_learning.py
208 lines (139 loc) · 6.37 KB
/
rleander_student_loans_with_deep_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
"""rleander_student_loans_with_deep_learning.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1xDHQu4-e61GV3hIH4gtoWSvUk3Vxay9L
# Student Loan Risk with Deep Learning
"""
# Imports
import pandas as pd
from pathlib import Path
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
"""---
## Prepare the data to be used on a neural network model
### Step 1: Read the `student_loans.csv` file into a Pandas DataFrame. Review the DataFrame, looking for columns that could eventually define your features and target variables.
"""
# Read the csv into a Pandas DataFrame
file_path = "https://static.bc-edx.com/mbc/ai/m6/datasets/student_loans.csv"
df = pd.read_csv(file_path)
# Review the DataFrame
# Display the first few rows of the DataFrame
print("First few rows of the DataFrame:")
print(df.head())
# Display information about the DataFrame
print("\nDataFrame Information:")
print(df.info())
# Display statistical summaries of the DataFrame
print("\nDataFrame Statistical Summary:")
print(df.describe())
# Review the data types associated with the columns
print(df.dtypes)
"""### Step 2: Using the preprocessed data, create the features (`X`) and target (`y`) datasets. The target dataset should be defined by the preprocessed DataFrame column “credit_ranking”. The remaining columns should define the features dataset."""
# Define the target set y using the credit_ranking column
y = df['credit_ranking'].values
# Display a sample of y
print(y[:5]) # Display the first 5 entries
# Define features set X by selecting all columns but credit_ranking
X = df.drop(columns=['credit_ranking'])
# Review the features DataFrame
print(X.head()) # Display the first few rows
"""### Step 3: Split the features and target sets into training and testing datasets.
"""
# Split the preprocessed data into a training and testing dataset
# Assign the function a random_state equal to 1
from sklearn.model_selection import train_test_split
# Split the preprocessed data into a training and testing dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
# Optionally, you can review the shapes of the datasets
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)
print("y_train shape:", y_train.shape)
print("y_test shape:", y_test.shape)
"""### Step 4: Use scikit-learn's `StandardScaler` to scale the features data."""
from sklearn.preprocessing import StandardScaler
# Create a StandardScaler instance
scaler = StandardScaler()
# Fit the scaler to the features training dataset
scaler.fit(X_train)
# Fit the scaler to the features training dataset
# Assumed this ^ was a typo and ignored it
# Scale the features training dataset
X_train_scaled = scaler.transform(X_train)
# Scale the features testing dataset
X_test_scaled = scaler.transform(X_test)
# Review the scaled data
print("Scaled X_train sample:\n", X_train_scaled[:5])
print("Scaled X_test sample:\n", X_test_scaled[:5])
"""---
## Compile and Evaluate a Model Using a Neural Network
### Step 1: Create a deep neural network by assigning the number of input features, the number of layers, and the number of neurons on each layer using Tensorflow’s Keras.
> **Hint** You can start with a two-layer deep neural network model that uses the `relu` activation function for both layers.
"""
# Define the number of inputs (features) to the model
number_input_features = X_train_scaled.shape[1]
# Review the number of features
print(number_input_features)
# Define the number of neurons in the output layer
number_output_neurons = 1
# Define the number of hidden nodes for the first hidden layer
hidden_nodes_layer1 = (number_input_features + number_output_neurons) // 2
# Review the number hidden nodes in the first layer
print(hidden_nodes_layer1)
# Define the number of hidden nodes for the second hidden layer
hidden_nodes_layer2 = hidden_nodes_layer1 // 2
# Review the number hidden nodes in the second layer
print(hidden_nodes_layer2)
# Create the Sequential model instance
model = Sequential()
# Add the first hidden layer
model.add(Dense(units=hidden_nodes_layer1, input_dim=number_input_features, activation='relu'))
# Add the second hidden layer
model.add(Dense(units=hidden_nodes_layer2, activation='relu'))
# Add the output layer to the model specifying the number of output neurons and activation function
model.add(Dense(units=1, activation='linear'))
# Display the Sequential model summary
model.summary()
"""### Step 2: Compile and fit the model using the `mse` loss function, the `adam` optimizer, and the `mse` evaluation metric.
"""
# Compile the Sequential model
model.compile(loss="mse", optimizer="adam", metrics=["mse"])
# Fit the model using 50 epochs and the training data
model.fit(X_train_scaled, y_train, epochs=50)
"""### Step 3: Evaluate the model using the test data to determine the model’s loss and accuracy.
"""
# Evaluate the model loss and accuracy metrics using the evaluate method and the test data
model_loss, model_accuracy = model.evaluate(X_test_scaled, y_test, verbose=2)
# Display the model loss and accuracy results
print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
"""### Step 4: Save and export your model to an HDF5 file, and name the file `student_loans.h5`.
"""
# Set the model's file path
file_path = "student_loans.h5"
# Export your model to a HDF5 file
model.save(file_path)
"""---
## Predict Loan Repayment Success by Using your Neural Network Model
### Step 1: Reload your saved model.
"""
# Import the load_model function from the tensorflow.keras.models module
from tensorflow.keras.models import load_model
# Set the model's file path
file_path = "student_loans.h5"
# Load the model to a new object
nn_imported = load_model(file_path)
"""### Step 2: Make predictions on the testing data."""
# Make predictions on the testing data
predictions = nn_imported.predict(X_test_scaled)
"""### Step 3: Create a DataFrame to compare the predictions with the actual values."""
# Create a DataFrame to compare the predictions with the actual values
results_df = pd.DataFrame({
"Actual": y_test,
"Predicted": predictions.ravel()
})
"""### Step 4: Display a sample of the DataFrame you created in step 3."""
# Display sample data
results_df.head()