forked from dlang/dlang.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatement.dd
1761 lines (1430 loc) · 40.8 KB
/
statement.dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Ddoc
$(SPEC_S Statements,
C and C++ programmers will find the D statements very familiar, with a few
interesting additions.
$(GRAMMAR
$(GNAME Statement):
$(B ;)
$(GLINK NonEmptyStatement)
$(GLINK ScopeBlockStatement)
$(GNAME NoScopeNonEmptyStatement):
$(GLINK NonEmptyStatement)
$(GLINK BlockStatement)
$(GNAME NoScopeStatement):
$(B ;)
$(GLINK NonEmptyStatement)
$(GLINK BlockStatement)
$(GNAME NonEmptyOrScopeBlockStatement):
$(GLINK NonEmptyStatement)
$(GLINK ScopeBlockStatement)
$(GNAME NonEmptyStatement):
$(GLINK NonEmptyStatementNoCaseNoDefault)
$(GLINK CaseStatement)
$(V2 $(GLINK CaseRangeStatement)
) $(GLINK DefaultStatement)
$(GNAME NonEmptyStatementNoCaseNoDefault):
$(GLINK LabeledStatement)
$(GLINK ExpressionStatement)
$(GLINK DeclarationStatement)
$(GLINK IfStatement)
$(GLINK WhileStatement)
$(GLINK DoStatement)
$(GLINK ForStatement)
$(GLINK ForeachStatement)
$(GLINK SwitchStatement)
$(V2 $(GLINK FinalSwitchStatement)
) $(GLINK ContinueStatement)
$(GLINK BreakStatement)
$(GLINK ReturnStatement)
$(GLINK GotoStatement)
$(GLINK WithStatement)
$(GLINK SynchronizedStatement)
$(GLINK TryStatement)
$(GLINK ScopeGuardStatement)
$(GLINK ThrowStatement)
$(V1 $(GLINK VolatileStatement)
) $(GLINK AsmStatement)
$(GLINK PragmaStatement)
$(GLINK MixinStatement)
$(V2 $(GLINK ForeachRangeStatement))
$(LINK2 version.html#ConditionalStatement, $(I ConditionalStatement))
$(LINK2 version.html#StaticAssert, $(I StaticAssert))
$(LINK2 template-mixin.html#TemplateMixin, $(I TemplateMixin))
)
$(P Any ambiguities in the grammar between $(I Statement)s and
$(GLINK2 declaration, Declaration)s are
resolved by the declarations taking precedence.
If a $(I Statement) is desired instead, wrapping it in parentheses will
disambiguate it in favor of being a $(I Statement).
)
<h2>$(LNAME2 ScopeStatement, Scope Statements)</h2>
$(GRAMMAR
$(I ScopeStatement):
$(GLINK NonEmptyStatement)
$(GLINK BlockStatement)
)
$(P A new scope for local symbols
is introduced for the $(I NonEmptyStatement)
or $(GLINK BlockStatement).
)
$(P Even though a new scope is introduced,
local symbol declarations cannot shadow (hide) other
local symbol declarations in the same function.
)
--------------
void func1(int x)
{ int x; // illegal, x shadows parameter x
int y;
{ int y; } // illegal, y shadows enclosing scope's y
void delegate() dg;
dg = { int y; }; // ok, this y is not in the same function
struct S
{
int y; // ok, this y is a member, not a local
}
{ int z; }
{ int z; } // ok, this z is not shadowing the other z
{ int t; }
{ t++; } // illegal, t is undefined
}
--------------
$(P
The idea is to avoid bugs in complex functions caused by
scoped declarations inadvertently hiding previous ones.
Local names should all be unique within a function.
)
<h2>$(LNAME2 ScopeBlockStatement, Scope Block Statements)</h2>
$(GRAMMAR
$(I ScopeBlockStatement):
$(GLINK BlockStatement)
)
$(P A scope block statement introduces a new scope for the
$(GLINK BlockStatement).
)
<h2>$(LNAME2 LabeledStatement, Labeled Statements)</h2>
$(P Statements can be labeled. A label is an identifier that
precedes a statement.
)
$(GRAMMAR
$(I LabeledStatement):
$(I Identifier) : $(PSSEMI)
)
$(P
Any statement can be labeled, including empty statements,
and so can serve as the target
of a goto statement. Labeled statements can also serve as the
target of a break or continue statement.
)
$(P
Labels are in a name space independent of declarations, variables,
types, etc.
Even so, labels cannot have the same name as local declarations.
The label name space is the body of the function
they appear in. Label name spaces do not nest, i.e. a label
inside a block statement is accessible from outside that block.
)
<h2>$(LNAME2 BlockStatement, Block Statement)</h2>
$(GRAMMAR
$(I BlockStatement):
$(B { })
$(B {) $(I StatementList) $(B })
$(GNAME StatementList):
$(PSSEMI_PSCURLYSCOPE)
$(PSSEMI_PSCURLYSCOPE) $(I StatementList)
)
$(P
A block statement is a sequence of statements enclosed
by { }. The statements are executed in lexical order.
)
<h2>$(LNAME2 ExpressionStatement, Expression Statement)</h2>
$(GRAMMAR
$(I ExpressionStatement):
$(EXPRESSION) $(B ;)
)
The expression is evaluated.
<p>
Expressions that have no effect, like $(TT (x + x)),
are illegal
in expression statements.
If such an expression is needed, casting it to $(D_KEYWORD void) will
make it legal.
----
int x;
x++; // ok
x; // illegal
1+1; // illegal
cast(void)(x + x); // ok
----
<h2>$(LNAME2 DeclarationStatement, Declaration Statement)</h2>
Declaration statements declare variables and types.
$(GRAMMAR
$(I DeclarationStatement):
$(I Declaration)
)
$(P Some declaration statements:)
----
int a; // declare a as type int and initialize it to 0
struct S { } // declare struct s
alias int myint;
----
<h2>$(LNAME2 IfStatement, If Statement)</h2>
If statements provide simple conditional execution of statements.
$(GRAMMAR
$(I IfStatement):
$(B if $(LPAREN)) $(I IfCondition) $(B $(RPAREN)) $(I ThenStatement)
$(B if $(LPAREN)) $(I IfCondition) $(B $(RPAREN)) $(I ThenStatement) $(B else) $(I ElseStatement)
$(GNAME IfCondition):
$(EXPRESSION)
$(B auto) $(I Identifier) $(B =) $(EXPRESSION)
$(GLINK2 declaration, BasicType) $(GLINK2 declaration, Declarator) $(B =) $(EXPRESSION)
$(GNAME ThenStatement):
$(PSSCOPE)
$(GNAME ElseStatement):
$(PSSCOPE)
)
$(EXPRESSION) is evaluated and must have a type that
can be converted to a boolean. If it's true the
$(I ThenStatement) is transferred to, else the $(I ElseStatement)
is transferred to.
<p>
The 'dangling else' parsing problem is solved by associating the
else with the nearest if statement.
<p>
If an $(B auto) $(I Identifier) is provided, it is declared and
initialized
to the value
and type of the $(EXPRESSION). Its scope extends from when it is
initialized to the end of the $(I ThenStatement).
<p>
If a $(I Declarator) is provided, it is declared and
initialized
to the value
of the $(EXPRESSION). Its scope extends from when it is
initialized to the end of the $(I ThenStatement).
---
import std.regexp;
...
if (auto m = std.regexp.search("abcdef", "b(c)d"))
{
writefln("[%s]", m.pre); // prints [a]
writefln("[%s]", m.post); // prints [ef]
writefln("[%s]", m.match(0)); // prints [bcd]
writefln("[%s]", m.match(1)); // prints [c]
writefln("[%s]", m.match(2)); // prints []
}
else
{
writefln(m.post); // error, m undefined
}
writefln(m.pre); // error, m undefined
---
<h2>$(LNAME2 WhileStatement, While Statement)</h2>
$(GRAMMAR
$(I WhileStatement):
$(B while $(LPAREN)) $(EXPRESSION) $(B $(RPAREN)) $(PSSCOPE)
)
While statements implement simple loops.
$(EXPRESSION) is evaluated and must have a type that
can be converted to a boolean. If it's true the
$(PSSCOPE) is executed. After the $(PSSCOPE) is executed,
the $(EXPRESSION) is evaluated again, and if true the
$(PSSCOPE) is executed again. This continues until the
$(EXPRESSION) evaluates to false.
---
int i = 0;
while (i < 10)
{
foo(i);
i++;
}
---
A $(GLINK BreakStatement) will exit the loop.
A $(GLINK ContinueStatement)
will transfer directly to evaluating $(EXPRESSION) again.
<h2>$(LNAME2 DoStatement, Do Statement)</h2>
$(GRAMMAR
$(I DoStatement):
$(B do) $(PSSCOPE) $(B while $(LPAREN)) $(EXPRESSION) $(B $(RPAREN))
)
Do while statements implement simple loops.
$(PSSCOPE) is executed. Then
$(EXPRESSION) is evaluated and must have a type that
can be converted to a boolean. If it's true the
loop is iterated again.
This continues until the
$(EXPRESSION) evaluates to false.
---
int i = 0;
do
{
foo(i);
} while (++i < 10);
---
A $(GLINK BreakStatement) will exit the loop.
A $(GLINK ContinueStatement)
will transfer directly to evaluating $(EXPRESSION) again.
<h2>$(LNAME2 ForStatement, For Statement)</h2>
For statements implement loops with initialization,
test, and increment clauses.
$(GRAMMAR
$(I ForStatement):
$(B for $(LPAREN))$(I Initialize) $(I Test)$(OPT) $(B ;) $(I Increment)$(OPT)$(B $(RPAREN)) $(PSSCOPE)
$(GNAME Initialize):
$(B ;)
$(PS0)
$(GNAME Test):
$(EXPRESSION)
$(GNAME Increment):
$(EXPRESSION)
)
$(P $(I Initialize) is executed.
$(I Test) is evaluated and must have a type that
can be converted to a boolean. If it's true the
statement is executed. After the statement is executed,
the $(I Increment) is executed.
Then $(I Test) is evaluated again, and if true the
statement is executed again. This continues until the
$(I Test) evaluates to false.
)
$(P A $(GLINK BreakStatement) will exit the loop.
A $(GLINK ContinueStatement)
will transfer directly to the $(I Increment).
)
$(P A $(I ForStatement) creates a new scope.
If $(I Initialize) declares a variable, that variable's scope
extends through the end of the for statement. For example:
)
--------------
for (int i = 0; i < 10; i++)
foo(i);
--------------
is equivalent to:
--------------
{ int i;
for (i = 0; i < 10; i++)
foo(i);
}
--------------
Function bodies cannot be empty:
--------------
for (int i = 0; i < 10; i++)
; // illegal
--------------
Use instead:
--------------
for (int i = 0; i < 10; i++)
{
}
--------------
The $(I Initialize) may be omitted. $(I Test) may also be
omitted, and if so, it is treated as if it evaluated to true.
<h2>$(LNAME2 ForeachStatement, Foreach Statement)</h2>
A foreach statement loops over the contents of an aggregate.
$(GRAMMAR
$(I ForeachStatement):
$(I Foreach) $(B $(LPAREN))$(I ForeachTypeList) $(B ;) $(I Aggregate)$(B $(RPAREN)) $(PS0)
$(GNAME Foreach):
$(B foreach)
$(B foreach_reverse)
$(GNAME ForeachTypeList):
$(I ForeachType)
$(I ForeachType) , $(I ForeachTypeList)
$(GNAME ForeachType):
$(B ref)$(OPT) $(GLINK2 declaration, BasicType) $(GLINK2 declaration, Declarator)
$(B ref)$(OPT) $(I Identifier)
$(GNAME Aggregate):
$(EXPRESSION)
)
$(P
$(I Aggregate) is evaluated. It must evaluate to an expression
of type static array, dynamic array, associative array,
struct, class, delegate, or tuple.
The $(PS0) is executed, once for each element of the
aggregate.
At the start of each iteration, the variables declared by
the $(I ForeachTypeList)
are set to be a copy of the elements of the aggregate.
If the variable is $(B ref), it is a reference to the
contents of that aggregate.
)
$(P
The aggregate must be loop invariant, meaning that
elements to the aggregate cannot be added or removed from it
in the $(PS0).
)
<h3>Foreach over Arrays</h3>
$(P
If the aggregate is a static or dynamic array, there
can be one or two variables declared. If one, then the variable
is said to be the $(I value) set to the elements of the array,
one by one. The type of the
variable must match the type of the array contents, except for the
special cases outlined below.
If there are
two variables declared, the first is said to be the $(I index)
and the second is said to be the $(I value). The $(I index)
must be of $(B int), $(B uint) or $(B size_t) type,
it cannot be $(I ref),
and it is set to be the index of the array element.
)
--------------
char[] a;
...
foreach (int i, char c; a)
{
writefln("a[%d] = '%c'", i, c);
}
--------------
$(P For $(B foreach), the
elements for the array are iterated over starting at index 0
and continuing to the maximum of the array.
For $(B foreach_reverse), the array elements are visited in the reverse
order.
)
<h3>Foreach over Arrays of Characters</h3>
$(P If the aggregate expression is a static or dynamic array of
$(B char)s, $(B wchar)s, or $(B dchar)s, then the $(I Type) of
the $(I value)
can be any of $(B char), $(B wchar), or $(B dchar).
In this manner any UTF array
can be decoded into any UTF type:
)
--------------
char[] a = "\xE2\x89\xA0"; // \u2260 encoded as 3 UTF-8 bytes
foreach (dchar c; a)
{
writefln("a[] = %x", c); // prints 'a[] = 2260'
}
dchar[] b = "\u2260";
foreach (char c; b)
{
writef("%x, ", c); // prints 'e2, 89, a0, '
}
--------------
$(P Aggregates can be string literals, which can be accessed
as char, wchar, or dchar arrays:
)
--------------
void test()
{
foreach (char c; "ab")
{
writefln("'%s'", c);
}
foreach (wchar w; "xy")
{
writefln("'%s'", w);
}
}
--------------
$(P which would print:
)
$(CONSOLE
'a'
'b'
'x'
'y'
)
<h3>Foreach over Associative Arrays</h3>
$(P If the aggregate expression is an associative array, there
can be one or two variables declared. If one, then the variable
is said to be the $(I value) set to the elements of the array,
one by one. The type of the
variable must match the type of the array contents. If there are
two variables declared, the first is said to be the $(I index)
and the second is said to be the $(I value). The $(I index)
must be of the same type as the indexing type of the associative
array. It cannot be $(I ref),
and it is set to be the index of the array element.
The order in which the elements of the array is unspecified
for $(B foreach). $(B foreach_reverse) for associative arrays
is illegal.
)
--------------
double[char[]] a; // $(I index) type is char[], $(I value) type is double
...
foreach (char[] s, double d; a)
{
writefln("a['%s'] = %g", s, d);
}
--------------
$(V2
<h3>$(LNAME2 foreach_with_ranges, Foreach over Structs and Classes with Ranges)</h3>
$(P Iteration over struct and class objects can be done with
ranges, which means the following properties must be defined:
)
$(TABLE2 Foreach Range Properties,
$(TR $(TH Property) $(TH Purpose ))
$(TR $(TD $(TT .empty)) $(TD returns true if no more elements))
$(TR $(TD $(TT .popFront)) $(TD move the left edge of the range right one))
$(TR $(TD $(TT .popBack)) $(TD move the right edge of the range left one))
$(TR $(TD $(TT .front)) $(TD return the leftmost element of the range))
$(TR $(TD $(TT .back)) $(TD return the rightmost element of the range))
)
$(P Meaning:)
---
foreach (e; range) { ... }
---
$(P translates to:)
---
for (auto __r = range; !__r.empty; __r.next)
{ auto e = __r.head;
...
}
---
$(P Similarly:)
---
foreach_reverse (e; range) { ... }
---
$(P translates to:)
---
for (auto __r = range; !__r.empty; __r.retreat)
{ auto e = __r.toe;
...
}
---
$(P If the foreach range properties do not exist, the $(TT opApply)
method will be used instead.
)
)
<h3>Foreach over Structs and Classes with opApply</h3>
$(P
If it is a struct or class object, the $(B foreach) is defined by
the special $(LNAME2 #opApply, $(I opApply)) member function.
The $(B foreach_reverse) behavior is defined by the special
$(LNAME2 opApplyReverse, $(I opApplyReverse)) member function.
These special functions must be defined by the type in order
to use the corresponding foreach statement.
The functions have the type:
)
--------------
int $(B opApply)(int delegate(ref $(I Type) [, ...]) $(I dg));
int $(B opApplyReverse)(int delegate(ref $(I Type) [, ...]) $(I dg));
--------------
$(P where $(I Type) matches the $(I Type) used in the $(I ForeachType)
declaration of $(I Identifier). Multiple $(I ForeachType)s
correspond with multiple $(I Type)'s in the delegate type
passed to $(B opApply) or $(B opApplyReverse).
There can be multiple $(B opApply) and $(B opApplyReverse) functions,
one is selected
by matching the type of $(I dg) to the $(I ForeachType)s
of the $(I ForeachStatement).
The body of the apply
function iterates over the elements it aggregates, passing them
each to the $(I dg) function. If the $(I dg) returns 0, then
apply goes on to the next element.
If the $(I dg) returns a nonzero value, apply must cease
iterating and return that value. Otherwise, after done iterating
across all the elements, apply will return 0.
)
$(P For example, consider a class that is a container for two elements:
)
--------------
class Foo
{
uint array[2];
int $(B opApply)(int delegate(ref uint) $(I dg))
{ int result = 0;
for (int i = 0; i < array.length; i++)
{
result = $(I dg)(array[i]);
if (result)
break;
}
return result;
}
}
--------------
An example using this might be:
--------------
void test()
{
Foo a = new Foo();
a.array[0] = 73;
a.array[1] = 82;
foreach (uint u; a)
{
writefln("%d", u);
}
}
--------------
which would print:
$(CONSOLE
73
82
)
<h3>Foreach over Delegates</h3>
$(P If $(I Aggregate) is a delegate, the type signature of
the delegate is of the same as for $(B opApply). This enables
many different named looping strategies to coexist in the same
class or struct.)
<h3>Foreach over Tuples</h3>
$(P
If the aggregate expression is a tuple, there
can be one or two variables declared. If one, then the variable
is said to be the $(I value) set to the elements of the tuple,
one by one. If the type of the
variable is given, it must match the type of the tuple contents.
If it is not given, the type of the variable is set to the type
of the tuple element, which may change from iteration to iteration.
If there are
two variables declared, the first is said to be the $(I index)
and the second is said to be the $(I value). The $(I index)
must be of $(B int) or $(B uint) type, it cannot be $(I ref),
and it is set to be the index of the tuple element.
)
$(P
If the tuple is a list of types, then the foreach statement
is executed once for each type, and the value is aliased to that
type.
)
-----
import std.stdio;
import std.typetuple; // for TypeTuple
void main()
{
alias TypeTuple!(int, long, double) TL;
foreach (T; TL)
{
writefln(typeid(T));
}
}
-----
$(P Prints:)
$(CONSOLE
int
long
double
)
<h3>Foreach Ref Parameters</h3>
$(P $(B ref) can be used to update the original elements:
)
--------------
void test()
{
static uint[2] a = [7, 8];
foreach (ref uint u; a)
{
u++;
}
foreach (uint u; a)
{
writefln("%d", u);
}
}
--------------
which would print:
$(CONSOLE
8
9
)
$(P $(B ref) can not be applied to the index values.)
$(P If not specified, the $(I Type)s in the $(I ForeachType) can be
inferred from
the type of the $(I Aggregate).
)
<h3>Foreach Restrictions</h3>
$(P The aggregate itself must not be resized, reallocated, free'd,
reassigned or destructed
while the foreach is iterating over the elements.
)
--------------
int[] a;
int[] b;
foreach (int i; a)
{
a = null; // error
a.length = a.length + 10; // error
a = b; // error
}
a = null; // ok
--------------
<h3>Break and Continue out of Foreach</h3>
$(P A $(GLINK BreakStatement) in the body of the foreach will exit the
foreach, a $(GLINK ContinueStatement) will immediately start the
next iteration.
)
<h2>$(LNAME2 SwitchStatement, Switch Statement)</h2>
A switch statement goes to one of a collection of case
statements depending on the value of the switch
expression.
$(GRAMMAR
$(I SwitchStatement):
$(B switch $(LPAREN)) $(EXPRESSION) $(B $(RPAREN)) $(PSSCOPE)
$(GNAME CaseStatement):
$(B case) $(LINK2 expression.html#ArgumentList, $(I ArgumentList)) $(B :) $(PSSEMI_PSCURLYSCOPE_LIST)
$(V2 $(GNAME CaseRangeStatement):
$(B case) $(I FirstExp) $(B : .. case) $(I LastExp) $(B :) $(PSSEMI_PSCURLYSCOPE_LIST)
$(I FirstExp):
$(ASSIGNEXPRESSION)
$(I LastExp):
$(ASSIGNEXPRESSION)
)
$(GNAME DefaultStatement):
$(B default :) $(PSSEMI_PSCURLYSCOPE_LIST)
$(GNAME ScopeStatementList):
$(GLINK StatementListNoCaseNoDefault)
$(GNAME StatementListNoCaseNoDefault):
$(GLINK StatementNoCaseNoDefault)
$(GLINK StatementNoCaseNoDefault) $(I StatementListNoCaseNoDefault)
$(GNAME StatementNoCaseNoDefault):
$(B ;)
$(GLINK NonEmptyStatementNoCaseNoDefault)
$(GLINK ScopeBlockStatement)
)
$(P $(EXPRESSION) is evaluated. The result type T must be
of integral type or $(CODE char[]), $(CODE wchar[]) or $(CODE dchar[]).
The result is
compared against each of the case expressions. If there is
a match, the corresponding case statement is transferred to.
)
$(P The case expressions, $(LINK2 expression.html#ArgumentList, $(I ArgumentList)),
are a comma separated list of expressions.
)
$(V2
$(P A $(I CaseRangeStatement) is a shorthand for listing a series
of case statements from $(I FirstExp) to $(I LastExp).
)
)
$(P If none of the case expressions match, and there is a default
statement, the default statement is transferred to.
)
$(P If none of the case expressions match, and there is not a default
statement, a
$(LINK2 phobos/std_switcherr.html, $(CODE std.switcherr.SwitchError))
is thrown.
The reason for this is
to catch the common programming error of adding a new value to
an enum, but failing to account for the extra value in
switch statements. This behavior is unlike C or C++.
)
$(P
$(V1
The case expressions must all evaluate to a constant value
or array.
)
$(V2
The case expressions must all evaluate to a constant value
or array, or a runtime initialized const or immutable variable of
integral type.
)
They must be implicitly convertible to the type of the
switch $(EXPRESSION).
)
$(P Case expressions must all evaluate to distinct values.
$(V2
Const or immutable variables must all have different names.
If they share a value, the first case statement with that value
gets control.
)
There may not be two or more default statements.
)
$(P The $(GLINK ScopeStatementList) introduces a new scope.
)
$(P Case statements and default statements associated with the switch
can be nested within block statements; they do not have to be in
the outermost block. For example, this is allowed:
)
--------------
switch (i)
{
case 1:
{
case 2:
}
break;
}
--------------
$(P Case statements 'fall through' to subsequent
case values. A break statement will exit the switch $(I BlockStatement).
For example:
)
--------------
switch (i)
{
case 1:
x = 3;
case 2:
x = 4;
break;
case 3,4,5:
x = 5;
break;
}
--------------
$(P will set $(CODE x) to $(CODE 4) if $(CODE i) is $(CODE 1).
)
$(P $(LNAME2 string-switch, Strings can be used in switch expressions).
For example:
)
--------------
char[] name;
...
switch (name)
{
case "fred":
case "sally":
...
}
--------------
$(P For applications like command line switch processing, this
can lead to much more straightforward code, being clearer and
less error prone. char, wchar and dchar strings are allowed.
)
$(P $(B Implementation Note:) The compiler's code generator may
assume that the case
statements are sorted by frequency of use, with the most frequent
appearing first and the least frequent last. Although this is
irrelevant as far as program correctness is concerned, it is of
performance interest.
)
$(V2
<h2>$(LNAME2 FinalSwitchStatement, Final Switch Statement)</h2>
$(GRAMMAR
$(I FinalSwitchStatement):
$(B final switch $(LPAREN)) $(EXPRESSION) $(B $(RPAREN)) $(PSSCOPE)
)
$(P A final switch statement is just like a switch statement,
except that:)
$(UL
$(LI No $(GLINK DefaultStatement) is allowed.)
$(LI No $(GLINK CaseRangeStatement)s are allowed.)
$(LI If the switch $(EXPRESSION) is of enum type, all
the enum members must appear in the $(GLINK CaseStatement)s.)
$(LI The case expressions cannot evaluate to a run time
initialized value.)
)
)
<h2>$(LNAME2 ContinueStatement, Continue Statement)</h2>
$(GRAMMAR
$(I ContinueStatement):
$(B continue) $(I Identifier)$(OPT) $(B ;)
)
A continue aborts the current iteration of its enclosing loop
statement, and starts the next iteration.
continue executes the next iteration of its innermost enclosing