-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
95 lines (72 loc) · 3.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import cv2
# the last char is used as a replacement for all the other chars not in the list
char_dict = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-"
params = {'SEQ_LENGTH': 47,
'INPUT_SIZE': [200, 32],
'NUM_CLASSES': len(char_dict)}
def decode_to_text(char_dict, decoded_out):
return ''.join([char_dict[i] for i in decoded_out])
def sparse_tuple_from(sequences):
"""Create a sparse representention of x.
Args:
sequences: a list of lists of type dtype where each element is a sequence
Returns:
A tuple with (indices, values, shape)
"""
indices = []
values = []
for n, seq in enumerate(sequences):
indices.extend(zip([n] * len(seq), range(len(seq))))
values.extend(seq)
indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=np.int32)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1] + 1], dtype=np.int64)
return indices, values, shape
def preprocess_input_image(image, height=params['INPUT_SIZE'][1], width=params['INPUT_SIZE'][0]):
# fix height
scale_rate = height / image.shape[0]
new_width = int(scale_rate * image.shape[1])
new_width = width if new_width > width else new_width
image = cv2.resize(image, (new_width, height), interpolation=cv2.INTER_LINEAR)
# fix width
r, c = np.shape(image)
if c > width:
ratio = float(width) / c
image = cv2.resize(image, (width, int(32 * ratio)))
else:
width_pad = width - image.shape[1]
image = np.pad(image, pad_width=[(0, 0), (0, width_pad)], mode='constant', constant_values=0)
# add dims
image = image[:, :, np.newaxis]
return image
def data_generator(batches=1,
batch_size=2,
epochs=1,
char_dict=char_dict,
data_path='D:/data/mnt/ramdisk/max/90kDICT32px/',
dataset='train' # training, testing or validation dataset
):
x_batch = []
y_batch = []
for _ in range(epochs):
with open(data_path + 'annotation_{}.txt'.format(dataset)) as fp:
for _ in range(batches * batch_size):
image_path = fp.readline().replace('\n', '').split(' ')[0]
# get x
image = cv2.imread(data_path + image_path.replace('./', ''), 0)
if image is None:
continue
x = preprocess_input_image(image)
# get y
y = image_path.split('_')[1]
y = [char_dict.index(i) if i in char_dict else len(char_dict)-1 for i in y]
y = y # + [len(char_dict)-1]
x_batch.append(x)
y_batch.append(y)
if len(y_batch) == batch_size:
yield np.array(x_batch).astype(np.float32), np.array(y_batch)
x_batch = []
y_batch = []
# for x, y in data_generator(batches=2, batch_size=2, epochs=1):
# print(x.shape, y)