-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictionEngine.py
executable file
·80 lines (72 loc) · 2.59 KB
/
predictionEngine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from arima import arima
import producer
import threading
import json
from threading import Timer
import time
import sys
from keras.backend import rnn
from rnn import online_rnn
import consumer
def predict(df,memory_host):
print(df)
print("**********************ARIMA MODEL*************************")
arima_result= arima.arima_model(df,memory_host)
print("************************RNN*******************************")
print(memory_host)
rnn_result,rnn_rmse=online_rnn.rnn(df,memory_host)
arima_data=json.loads(arima_result)
rnn_data=json.loads(rnn_result)
rnn_status=rnn_data["scale"]
arima_data=json.loads(arima_result)
arima_status=arima_data['scale']
if arima_status=="no" and rnn_status=="up":
autoScaleData ={
'peak_value': rnn_data['peak_value'],
'average_value': rnn_data['average_value'],
'nodes': rnn_data['nodes'],
'scale': rnn_data['scale']
}
elif arima_status=="up" and rnn_status=="no":
autoScaleData ={
'peak_value': rnn_data['peak_value'],
'average_value': rnn_data['average_value'],
'nodes': rnn_data['nodes'],
'scale': rnn_data['scale']
}
elif arima_status=="no" and rnn_status=="down":
autoScaleData = {
'peak_value': arima_data['peak_value'],
'average_value': arima_data['average_value'],
'nodes': arima_data['nodes'],
'scale': arima_data['scale']
}
elif arima_status=="down" and rnn_status=="no":
autoScaleData ={
'peak_value': rnn_data['peak_value'],
'average_value': rnn_data['average_value'],
'nodes': rnn_data['nodes'],
'scale': rnn_data['scale']
}
else:
autoScaleData ={
'peak_value': rnn_data['peak_value'],
'average_value': rnn_data['average_value'],
'nodes': rnn_data['nodes'],
'scale': rnn_data['scale']
}
print("********************************************")
print("The autoscale message sent to Scaling engine:")
print(json.dumps(autoScaleData))
return send_data_producer(autoScaleData)
def send_data_producer(result):
return producer.producer(result)
while True:
df,memory_host=consumer.consume()
predict(df,memory_host)
for remaining in range(420, 0, -1):
sys.stdout.write("\r")
sys.stdout.write("{:2d} seconds remaining.".format(remaining))
sys.stdout.flush()
time.sleep(1)
sys.stdout.write("\rStarting Prediction Engine ......... \n")