-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder_untied.py
159 lines (130 loc) · 5.43 KB
/
autoencoder_untied.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import tensorflow as tf
import numpy as np
import math
import matplotlib.pyplot as plt
import tensorflow.examples.tutorials.mnist.input_data as input_data
# load MNIST data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
mean_img = np.mean(mnist.train.images, axis=0)
# Define a session to use across multiple computational graphs
sess = tf.Session()
# Fetch a subset of the data in order to counter the limitation of compute resources
def get_train_data(size):
train_data = mnist.train.images[:size,:]
print("train data description: " + str(train_data.shape))
train_labels = mnist.train.labels[:size,:]
print("train labels description: " + str(train_labels.shape))
return train_data, train_labels
def get_test_data(size):
test_data = mnist.test.images[:size,:]
print("test data description: " + str(test_data.shape))
test_labels = mnist.test.labels[:size,:]
print("test labels description: " + str(test_data.shape))
return test_data, test_labels
def get_next_batch(size):
# imitating the method described in mnist object to load a random data in batch
# count the number of rows in the training data
# train_data encapsulates both data [0] and labels [1]
index = np.arange(0, train_data[0].shape[0])
np.random.shuffle(index)
index = index[:size]
data_shuffled = np.asmatrix([train_data[0][i] for i in index])
labels_shuffled = np.asmatrix([train_data[1][i] for i in index])
return data_shuffled, labels_shuffled
def get_noisy_data(x, noise_factor):
'''
Add a Gaussian noise to the data
Input:
x : input original data
noise_factor : self explanatory
Returns:
x + (noise(x)*noise_factor)
'''
full_noise = tf.random_uniform(shape=tf.shape(x), dtype=tf.float32)
factored_noise = tf.multiply(full_noise, tf.cast(noise_factor, tf.float32))
return tf.add(x, factored_noise)
def denoising_ae():
'''
Input:
A list whose:
First element denotes the number of nodes in the input layer
Second and subsequent elements denote number of nodes in the hidden layers
Output:
x : placeholder for input data
y : latent representation at the highest abstraction
z : recontruction of pure input from the corrupted one
loss : list of losses across multiple epoches
'''
# Input to the autoencoder
dim_of_layer=[784, 392, 196]
x = tf.placeholder(tf.float32, shape=[None, dim_of_layer[0]])
noise_factor = tf.placeholder(tf.float32, [1])
noisy_input = get_noisy_data(x, noise_factor)
# Encoder part: Iterate through all the output layers (except the first layer which is input)
for layer_index, layer_dim in enumerate(dim_of_layer[1:]):
input_dim = int(noisy_input.get_shape()[1])
output_dim = layer_dim
W = tf.Variable(tf.random_uniform([input_dim, output_dim],-1.0 / math.sqrt(input_dim),1.0 / math.sqrt(input_dim)))
#W = tf.Variable(tf.random_uniform([input_dim, output_dim]))
b = tf.Variable(tf.zeros([output_dim]))
activation = tf.nn.tanh(tf.matmul(noisy_input, W) + b)
noisy_input = activation
# Latent representation at the highest abstraction
y = noisy_input
# Decoder part: Iterate through all the output layers in REVERSE (except the first layer which is input)
for layer_index, layer_dim in enumerate(dim_of_layer[::-1][1:]):
input_dim = int(noisy_input.get_shape()[1])
output_dim = layer_dim
W = tf.Variable(tf.random_uniform([input_dim, output_dim],-1.0 / math.sqrt(input_dim),1.0 / math.sqrt(input_dim)))
b = tf.Variable(tf.zeros([output_dim]))
activation = tf.nn.tanh(tf.matmul(noisy_input, W) + b)
noisy_input = activation
z = noisy_input
# RMS loss function
loss = tf.sqrt(tf.reduce_mean(tf.square(z - x)))
# Optimizer parameters
learning_rate = 0.001
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# Initialize all the variables
sess.run(tf.global_variables_initializer())
# Fit all training data
batch_size = 20
n_epochs = 2000
loss_per_epoch = []
for epoch_i in range(n_epochs):
for batch_i in range(train_data[0].shape[0] // batch_size):
batch_input, _ = get_next_batch(batch_size)
# introduces extra '1' dimension. Hence squeezing it to maintain dim consistency
train = np.squeeze(np.array([img - mean_img for img in batch_input]))
sess.run(optimizer, feed_dict={x:train, noise_factor:[1.0]})
loss_per_epoch.append(sess.run(loss, feed_dict={x:train, noise_factor:[1.0]}))
print(epoch_i, sess.run(loss, feed_dict={x:train, noise_factor:[1.0]}))
#return(input, most abstracted latent representation, reconstructed input, noise_factor, loss)
return {'x': x, 'y': y, 'z': z, 'noise_factor': noise_factor, 'loss': loss_per_epoch}
def reconstruct_mnist():
# Plot reconstructed input for MNIST samples
mnist_samples = 10
testdata, _ = mnist.test.next_batch(mnist_samples)
testdata_norm = np.array([img - mean_img for img in testdata])
recon = sess.run(ae['z'], feed_dict={ae['x']:testdata_norm, ae['noise_factor']:[0.0]})
fig, axis = plt.subplots(2, mnist_samples, figsize=(10, 4))
for example_i in range(mnist_samples):
axis[0][example_i].imshow(np.reshape(testdata[example_i, :], (28, 28)))
axis[1][example_i].imshow(np.reshape([recon[example_i, :] + mean_img], (28, 28)))
fig.show()
plt.draw()
plt.waitforbuttonpress()
if __name__ == '__main__':
global train_data;
global test_data;
train_data = get_train_data(size=5000)
test_data = get_test_data(size=5000)
ae = denoising_ae()
# Get loss curve
print("printing loss curve:")
plt.plot(ae['loss'])
plt.xlabel("number of iterations")
plt.ylabel("loss")
plt.show()
# Get sample recontructions
reconstruct_mnist()