forked from zijin-gu/scfc-coupling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
101 lines (76 loc) · 3.3 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import scipy.io as sio
import numpy as np
import os
from scipy.io import savemat, loadmat
import scipy.stats as stats
cwd = os.getcwd()
# make your own data dir if not exist
if not os.path.exists(cwd + '/data/'):
os.makedirs(cwd + '/data/')
data_dir = cwd + '/data/'
def generate_SC(unrelated_subj_num, region_num):
sc = np.random.randn(unrelated_subj_num, region_num, region_num)
mdic = {'C': sc}
savemat(data_dir + 'SC_unrelated' + str(unrelated_subj_num) + '.mat', mdic)
def generate_FC(unrelated_subj_num, region_num, fc_type):
# fc_type has to be either "corr" or "prec"
if fc_type == 'corr':
fc_corr = np.random.randn(unrelated_subj_num, region_num, region_num)
mdic = {'C': fc_corr}
savemat(data_dir + 'FC_' + fc_type + '_unrelated' + str(unrelated_subj_num) + '.mat', mdic)
elif fc_type == 'prec':
fc_corr = np.random.randn(unrelated_subj_num, region_num, region_num)
min_rmse = 1e5
opt_gamma = 0
for gamma in np.linspace(0,1,100):
inverse = []
reg_inv = []
for i in range(unrelated_subj_num):
np.fill_diagonal(fc_corr[i],1)
inverse.append(np.linalg.inv(fc_corr[i]))
reg_inv.append(np.linalg.inv(fc_corr[i] + gamma*np.eye(region_num)))
group_prec = np.mean(inverse, axis=0)
diff = []
for i in range(unrelated_subj_num):
diff.append(np.linalg.norm(reg_inv[i][np.triu_indices(region_num,1)] - group_prec[np.triu_indices(region_num,1)]))
rmse = np.mean(diff)
if rmse < min_rmse:
min_rmse = rmse
opt_gamma = gamma
fc_prec = np.zeros([unrelated_subj_num,region_num,region_num])
for i in range(unrelated_subj_num):
fc_prec[i] = -np.linalg.inv(fc_corr[i] + opt_gamma*np.eye(region_num))
mdic = {"C": fc_prec, "gamma": opt_gamma}
savemat(data_dir + 'FC_' + fc_type + '_unrelated' + str(unrelated_subj_num) + '.mat', mdic)
else:
raise ValueError('Please specify fc_type as corr or prec!')
def generate_coupling(unrelated_subj_num, fc_type):
SC = loadmat(data_dir + 'SC_unrelated' + str(unrelated_subj_num) + '.mat')
sc = SC['C']
FC = sio.loadmat(data_dir + 'FC_' + fc_type + '_unrelated' + str(unrelated_subj_num) + '.mat')
fc = FC['C']
if sc.shape[0] != fc.shape[0]:
raise ValueError('The number of subjects in SC doesn\'t match the number of subjects in FC!' )
elif sc.shape[1] != fc.shape[1]:
raise ValueError('The number of regions in SC and FC are not the same!')
elif sc.shape[2] != fc.shape[2]:
raise ValueError('The number of regions in SC and FC are not the same!')
elif sc.shape[1] != sc.shape[2]:
raise ValueError('SC matrices are wrong!')
elif fc.shape[1] != fc.shape[2]:
raise ValueError('SC matrices are wrong!')
else:
region_num = sc.shape[1]
regionalcp = np.zeros([unrelated_subj_num, region_num])
for k in range(unrelated_subj_num):
for i in range(region_num):
del_sc = np.delete(sc[k][i], i)
del_fc = np.delete(fc[k][i], i)
if (np.count_nonzero(del_fc) == 0) | (np.count_nonzero(del_sc) == 0):
regionalcp[k][i] = 0
else:
regionalcp[k][i], p = stats.pearsonr(del_sc, del_fc)
mdic = {'scfc_coupling': regionalcp}
savemat(data_dir + 'regionalcp_' + fc_type + '_unrelated' + str(unrelated_subj_num) + '.mat', mdic)
mean_regionalcp = np.mean(regionalcp, axis=0)
np.savetxt(data_dir + 'mean_regionalcp_' + fc_type + '_unrelated' + str(unrelated_subj_num) + '.txt', mean_regionalcp, delimiter=',')