-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear regression.py
59 lines (43 loc) · 1.48 KB
/
linear regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from statistics import mean
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as style
import random
xs = np.array([1,2,3,4,5,6],dtype=np.float64)
ys = np.array([5,4,6,5,6,7],dtype=np.float64)
def create_dataset(hm,variance,step=2,correlation=False):
val=1
ys=[]
for i in range(hm):
y = val+ random.randrange(-variance,variance)
ys.append(y)
if correlation and correlation == 'pos':
val+=step
elif correlation and correlation == 'neg':
val-=step
xs = [i for i in range(len(ys))]
return np.array(xs,dtype=np.float64),np.array(ys,dtype=np.float64)
"""plt.scatter(xs,ys)
plt.show()"""
def best_fit_slope_and_intercept(xs,ys):
m = (mean(xs)*mean(ys)- mean(xs*ys))/((mean(xs))**2-mean(xs**2))
b= mean(ys)-m*mean(xs)
return m,b
def squared_error(ys_orig,ys_line):
return sum((ys_line-ys_orig)**2)
def coeff_of_deter(ys_orig,ys_line):
y_mean_line=[mean(ys_orig) for y in ys_orig]
squared_error_regr= squared_error(ys_orig,ys_line)
squared_error_y_mean=squared_error(ys_orig,y_mean_line)
return 1-(squared_error_regr/squared_error_y_mean)
xs,ys=create_dataset(40,80,2,correlation='pos')
m,b = best_fit_slope_and_intercept(xs,ys)
regression_line = [(m*x)+b for x in xs]
predict_x=8
predict_y=(m*predict_x) + b
r_squared = coeff_of_deter(ys,regression_line)
print(r_squared)
plt.scatter(xs,ys)
plt.scatter(predict_x,predict_y,color='g')
plt.plot(xs,regression_line)
plt.show()