-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNN hardcore.py
30 lines (26 loc) · 989 Bytes
/
KNN hardcore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
from math import sqrt
import matplotlib.pyplot as plt
import warnings
from matplotlib import style
from collections import Counter
style.use('fivethirtyeight')
dataset = {'k':[[1,2],[2,3],[3,1]],'r':[[6,5],[7,7],[8,6]]}
new_features =[5,7]
def k_nearest_neighbors(data,predict,k=3):
if len(data) >= k:
warnings.warn('K is set to value less ')
distances = []
for group in data:
for features in data[group]:
euclidean_distance =np.linalg.norm(np.array(features)-np.array(predict))#check it out
distances.append([euclidean_distance , group])
votes = [i[1] for i in sorted(distances)[:k]]
print(Counter(votes).most_common(1))
vote_result = Counter(votes).most_common(1)[0][0]
return vote_result
result = k_nearest_neighbors(dataset,new_features,k=3)
print(result)
[ [plt.scatter(ii[0],ii[1],s=100,color=i) for ii in dataset[i]] for i in dataset]
plt.scatter(new_features[0],new_features[1])
plt.show()