forked from tdegeus/GooseFFT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyper-elasticity.py
96 lines (80 loc) · 4.48 KB
/
hyper-elasticity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import scipy.sparse.linalg as sp
import itertools
# ----------------------------------- GRID ------------------------------------
ndim = 3 # number of dimensions
N = 31 # number of voxels (assumed equal for all directions)
# ---------------------- PROJECTION, TENSORS, OPERATIONS ----------------------
# tensor operations/products: np.einsum enables index notation, avoiding loops
# e.g. ddot42 performs $C_ij = A_ijkl B_lk$ for the entire grid
trans2 = lambda A2 : np.einsum('ijxyz ->jixyz ',A2 )
ddot42 = lambda A4,B2: np.einsum('ijklxyz,lkxyz ->ijxyz ',A4,B2)
ddot44 = lambda A4,B4: np.einsum('ijklxyz,lkmnxyz->ijmnxyz',A4,B4)
dot22 = lambda A2,B2: np.einsum('ijxyz ,jkxyz ->ikxyz ',A2,B2)
dot24 = lambda A2,B4: np.einsum('ijxyz ,jkmnxyz->ikmnxyz',A2,B4)
dot42 = lambda A4,B2: np.einsum('ijklxyz,lmxyz ->ijkmxyz',A4,B2)
dyad22 = lambda A2,B2: np.einsum('ijxyz ,klxyz ->ijklxyz',A2,B2)
# identity tensor [single tensor]
i = np.eye(ndim)
# identity tensors [grid of tensors]
I = np.einsum('ij,xyz' , i ,np.ones([N,N,N]))
I4 = np.einsum('ijkl,xyz->ijklxyz',np.einsum('il,jk',i,i),np.ones([N,N,N]))
I4rt = np.einsum('ijkl,xyz->ijklxyz',np.einsum('ik,jl',i,i),np.ones([N,N,N]))
I4s = (I4+I4rt)/2.
II = dyad22(I,I)
# projection operator [grid of tensors]
# NB can be vectorized (faster, less readable), see: "elasto-plasticity.py"
# - support function / look-up list / zero initialize
delta = lambda i,j: np.float(i==j) # Dirac delta function
freq = np.arange(-(N-1)/2.,+(N+1)/2.) # coordinate axis -> freq. axis
Ghat4 = np.zeros([ndim,ndim,ndim,ndim,N,N,N]) # zero initialize
# - compute
for i,j,l,m in itertools.product(range(ndim),repeat=4):
for x,y,z in itertools.product(range(N), repeat=3):
q = np.array([freq[x], freq[y], freq[z]]) # frequency vector
if not q.dot(q) == 0: # zero freq. -> mean
Ghat4[i,j,l,m,x,y,z] = delta(i,m)*q[j]*q[l]/(q.dot(q))
# (inverse) Fourier transform (for each tensor component in each direction)
fft = lambda x : np.fft.fftshift(np.fft.fftn (np.fft.ifftshift(x),[N,N,N]))
ifft = lambda x : np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(x),[N,N,N]))
# functions for the projection 'G', and the product 'G : K^LT : (delta F)^T'
G = lambda A2 : np.real( ifft( ddot42(Ghat4,fft(A2)) ) ).reshape(-1)
K_dF = lambda dFm: trans2(ddot42(K4,trans2(dFm.reshape(ndim,ndim,N,N,N))))
G_K_dF = lambda dFm: G(K_dF(dFm))
# ------------------- PROBLEM DEFINITION / CONSTITIVE MODEL -------------------
# phase indicator: cubical inclusion of volume fraction (9**3)/(31**3)
phase = np.zeros([N,N,N]); phase[-9:,:9,-9:] = 1.
# material parameters + function to convert to grid of scalars
param = lambda M0,M1: M0*np.ones([N,N,N])*(1.-phase)+M1*np.ones([N,N,N])*phase
K = param(0.833,8.33) # bulk modulus [grid of scalars]
mu = param(0.386,3.86) # shear modulus [grid of scalars]
# constitutive model: grid of "F" -> grid of "P", "K4" [grid of tensors]
def constitutive(F):
C4 = K*II+2.*mu*(I4s-1./3.*II)
S = ddot42(C4,.5*(dot22(trans2(F),F)-I))
P = dot22(F,S)
K4 = dot24(S,I4)+ddot44(ddot44(I4rt,dot42(dot24(F,C4),trans2(F))),I4rt)
return P,K4
# ----------------------------- NEWTON ITERATIONS -----------------------------
# initialize deformation gradient, and stress/stiffness [grid of tensors]
F = np.array(I,copy=True)
P,K4 = constitutive(F)
# set macroscopic loading
DbarF = np.zeros([ndim,ndim,N,N,N]); DbarF[0,1] += 1.0
# initial residual: distribute "barF" over grid using "K4"
b = -G_K_dF(DbarF)
F += DbarF
Fn = np.linalg.norm(F)
iiter = 0
# iterate as long as the iterative update does not vanish
while True:
dFm,_ = sp.cg(tol=1.e-8,
A = sp.LinearOperator(shape=(F.size,F.size),matvec=G_K_dF,dtype='float'),
b = b,
) # solve linear system using CG
F += dFm.reshape(ndim,ndim,N,N,N) # update DOFs (array -> tens.grid)
P,K4 = constitutive(F) # new residual stress and tangent
b = -G(P) # convert res.stress to residual
print('%10.2e'%(np.linalg.norm(dFm)/Fn)) # print residual to the screen
if np.linalg.norm(dFm)/Fn<1.e-5 and iiter>0: break # check convergence
iiter += 1