-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsph_util.py
123 lines (110 loc) · 3.29 KB
/
sph_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import torch
# from torch import nn, optim
# import torch.nn.functional as F
from demo_projSH_rotSH import Rotation
def illuminate_vec_old(n, env):
c1 = 0.429043
c2 = 0.511664
c3 = 0.743125
c4 = 0.886227
c5 = 0.247708
c = env.unsqueeze(1)
x, y, z = n[..., 0, None], n[..., 1, None], n[..., 2, None]
irradiance = (
c1 * c[8] * (x ** 2 - y ** 2) +
c3 * c[6] * (z ** 2) +
c4 * c[0] -
c5 * c[6] +
2 * c1 * c[4] * x * y +
2 * c1 * c[7] * x * z +
2 * c1 * c[5] * y * z +
2 * c2 * c[3] * x +
2 * c2 * c[1] * y +
2 * c2 * c[2] * z
)
return irradiance
def illuminate_vec(n, env):
c1 = 0.282095
c2 = 0.488603
c3 = 1.092548
c4 = 0.315392
c5 = 0.546274
c = env.unsqueeze(1)
x, y, z = n[..., 0, None], n[..., 1, None], n[..., 2, None]
irradiance = (
c[0] * c1 +
c[1] * c2*y +
c[2] * c2*z +
c[3] * c2*x +
c[4] * c3*x*y +
c[5] * c3*y*z +
c[6] * c4*(3*z*z-1) +
c[7] * c3*x*z +
c[8] * c5*(x*x-y*y)
)
return irradiance
def rotate_vec(v, a):
c = np.cos(a)
s = np.sin(a)
x = v[..., 0]*c-v[..., 2]*s
y = v[..., 1]
z = v[..., 0]*s+v[..., 2]*c
res = torch.stack((x, y, z), -1)
return res
def rotate_env(env, angle):
rotation = Rotation()
rot = np.float32(np.dot(rotation.rot_y(angle), np.dot(rotation.rot_x(0.), rotation.rot_z(0.))))
rot_sh = np.matmul(rot, env.clone().detach().cpu().numpy())
return torch.tensor(rot_sh).to(env.device)
# def rotate_env(env, angle):
# c1 = 0.429043
# c2 = 0.511664
# c3 = 0.743125
# c4 = 0.886227
# c5 = 0.247708
# cos = np.cos(angle)
# sin = np.sin(angle)
# env = torch.stack([
# env[0] + env[6]*c5*cos*cos/c4 - env[6]*c5/c4 - 2*env[7]*c1*c5*sin*cos/(c3*c4) + env[8]*c1*c5*sin*sin/(c3*c4),
# env[1],
# env[2]*cos - env[3]*sin,
# env[2]*sin + env[3]*cos,
# env[4]*cos + env[5]*sin,
# -env[4]*sin + env[5]*cos,
# env[6]*cos*cos - 2*env[7]*c1*sin*cos/c3 + env[8]*c1*sin*sin/c3,
# env[6]*c3*sin*cos/c1 - env[7]*sin*sin + env[7]*cos*cos - env[8]*sin*cos,
# env[6]*c3*sin*sin/c1 + 2*env[7]*sin*cos + env[8]*cos*cos], 0)
# return env
# def rotate_env(env, angle):
# n = env.new_empty((30, 3)).normal_()
# n = n / torch.norm(n, 2)
# nr = rotate_vec(n, -angle)
#
# newenv = nn.Parameter(env.clone())
# # newenv = nn.Parameter(torch.randn_like(env.new_empty(9, 3)))
#
# # opt = optim.Adam([newenv], lr=1)
# opt = optim.LBFGS([newenv])
#
# orill = illuminate_vec(n, env)
#
# for it in range(10):
# def closure():
# opt.zero_grad()
# newill = illuminate_vec(nr, newenv)
# loss = torch.mean((newill-orill)**2)
# loss.backward()
# return loss
# opt.step(closure)
# # print(closure())
# return newenv.detach()
if __name__ == '__main__':
env = torch.randn(9, 3)
angle = np.pi/2
print(env)
print(rotate_env(env, angle))
# import timeit
# # print(timeit.timeit(lambda: rotate_env(env, angle), number=100))
# t = timeit.Timer(lambda: rotate_env(env, angle))
# print((lambda c, t: t/c)(*t.autorange()))