forked from rstudio/sparktf
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
110 lines (86 loc) · 3.01 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# sparktf
<!-- badges: start -->
[![Travis build status](https://travis-ci.org/rstudio/sparktf.svg?branch=master)](https://travis-ci.org/rstudio/sparktf)
<!-- badges: end -->
## Overview
**sparktf** is a [sparklyr](https://spark.rstudio.com/) extension that allows writing of Spark `DataFrame`s to `TFRecord`, the recommended format for persisting data to be used in training with TensorFlow.
## Installation
You can install the development version of sparktf from GitHub with:
``` r
devtools::install_github("rstudio/sparktf")
```
## Example
We first attach the required packages and establish a Spark connection.
```{r}
library(sparktf)
library(sparklyr)
library(keras)
use_implementation("tensorflow")
library(tensorflow)
tfe_enable_eager_execution()
library(tfdatasets)
sc <- spark_connect(master = "local")
```
Copied a sample dataset to Spark then write it to disk via `spark_write_tfrecord()`.
```{r}
data_path <- file.path(tempdir(), "iris")
iris_tbl <- sdf_copy_to(sc, iris)
iris_tbl %>%
ft_string_indexer_model(
"Species", "label",
labels = c("setosa", "versicolor", "virginica")
) %>%
spark_write_tfrecord(
path = data_path,
write_locality = "local"
)
```
We now read the saved `TFRecord` file and parse the contents to create a dataset object. For details, refer to the [package website for tfdatasets](https://tensorflow.rstudio.com/tools/tfdatasets/articles/introduction.html).
```{r, message = FALSE}
dataset <- tfrecord_dataset(list.files(data_path, full.names = TRUE)) %>%
dataset_map(function(example_proto) {
features <- list(
label = tf$FixedLenFeature(shape(), tf$float32),
Sepal_Length = tf$FixedLenFeature(shape(), tf$float32),
Sepal_Width = tf$FixedLenFeature(shape(), tf$float32),
Petal_Length = tf$FixedLenFeature(shape(), tf$float32),
Petal_Width = tf$FixedLenFeature(shape(), tf$float32)
)
features <- tf$parse_single_example(example_proto, features)
x <- list(
features$Sepal_Length, features$Sepal_Width,
features$Petal_Length, features$Petal_Width
)
y <- tf$one_hot(tf$cast(features$label, tf$int32), 3L)
list(x, y)
}) %>%
dataset_shuffle(150) %>%
dataset_batch(16)
```
Now, we can define a Keras model using the [keras package](https://keras.rstudio.com/) and fit it by feeding the `dataset` object defined above.
```{r}
model <- keras_model_sequential() %>%
layer_dense(32, activation = "relu", input_shape = 4) %>%
layer_dense(3, activation = "softmax")
model %>%
compile(loss = "categorical_crossentropy", optimizer = tf$train$AdamOptimizer())
history <- model %>%
fit(dataset, epochs = 100, verbose = 0)
```
Finally, we can use the trained model to make some predictions.
```{r}
new_data <- tf$constant(c(4.9, 3.2, 1.4, 0.2), shape = c(1, 4))
model(new_data)
```