forked from GoogleCloudPlatform/ml-on-gcp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
67 lines (52 loc) · 1.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START app]
import json
import logging
import os
import pickle
from flask import Flask, request
from google.cloud import storage
MODEL_BUCKET = os.environ['MODEL_BUCKET']
MODEL_FILENAME = os.environ['MODEL_FILENAME']
MODEL = None
app = Flask(__name__)
@app.before_first_request
def _load_model():
global MODEL
client = storage.Client()
bucket = client.get_bucket(MODEL_BUCKET)
blob = bucket.get_blob(MODEL_FILENAME)
s = blob.download_as_string()
# Note: Change the save/load mechanism according to the framework
# used to build the model.
MODEL = pickle.loads(s)
@app.route('/', methods=['GET'])
def index():
return str(MODEL), 200
@app.route('/predict', methods=['POST'])
def predict():
X = request.get_json()['X']
y = MODEL.predict(X).tolist()
return json.dumps({'y': y}), 200
@app.errorhandler(500)
def server_error(e):
logging.exception('An error occurred during a request.')
return """
An internal error occurred: <pre>{}</pre>
See logs for full stacktrace.
""".format(e), 500
if __name__ == '__main__':
app.run(host='127.0.0.1', port=8080, debug=True)
# [END app]