|
| 1 | +--- |
| 2 | +jupyter: |
| 3 | + jupytext: |
| 4 | + text_representation: |
| 5 | + extension: .md |
| 6 | + format_name: markdown |
| 7 | + format_version: '1.3' |
| 8 | + jupytext_version: 1.13.8 |
| 9 | + kernelspec: |
| 10 | + display_name: Python 3 (ipykernel) |
| 11 | + language: python |
| 12 | + name: python3 |
| 13 | +--- |
| 14 | + |
| 15 | +# QuTiPv5 Paper Example: The Quantum Optimal Control Package |
| 16 | + |
| 17 | +Authors: Maximilian Meyer-Mölleringhof ( [email protected]), Boxi Li ( [email protected]), Neill Lambert ( [email protected]) |
| 18 | + |
| 19 | +Quantum systems are naturally sensitive to their environment and external perturbations. |
| 20 | +This is great, as it allows for very precise measurements. |
| 21 | +However, it also makes handling errors and imprecisions a big challenge. |
| 22 | +In the case for quantum computing, finding the optimal parameters to achieve a desired operation is this thus an important problem. |
| 23 | +Optimization parameters may include amplitude, frequency, duration, bandwidth, etc. and are generally directly dependent on the considered hardware. |
| 24 | + |
| 25 | +To find these optimal control parameters, several methods have been developed. |
| 26 | +Here, we look at three algorithms: *gradient ascent pulse engineering* (GRAPE) [\[3\]](#References), *chopped random basis* (CRAB) [\[4\]](#References) and *gradient optimization af analytic controls* (GOAT) [\[5\]](#References). |
| 27 | +Whereas the former two have been part of the `QuTiP-QTRL` package of QuTiPv4, the latter is a new addition in version 5. |
| 28 | +Althogether, these algorithms are now included in the new `QuTiP-QOC` package that also adds `QuTiP-JAX` [\[6\]](#References) integration via the JAX optimization technique (JOPT). |
| 29 | + |
| 30 | +```python |
| 31 | +import matplotlib.pyplot as plt |
| 32 | +import numpy as np |
| 33 | +from jax import jit, numpy |
| 34 | +from qutip import (about, gates, liouvillian, qeye, sigmam, sigmax, sigmay, |
| 35 | + sigmaz) |
| 36 | +from qutip_qoc import Objective, optimize_pulses |
| 37 | + |
| 38 | +%matplotlib inline |
| 39 | +``` |
| 40 | + |
| 41 | +## Introduction |
| 42 | + |
| 43 | +In this example we want to implement a Hadamard gate on a single qubit. |
| 44 | +In general, a qubit might be subject to decoherence which can be captured using the Lindblad formalism with the jump operator $\sigma_{-}$. |
| 45 | + |
| 46 | +For simplicity, we consider a control Hamiltonian parametrized by $\sigma_x$, $\sigma_y$ and $\sigma_z$: |
| 47 | + |
| 48 | +$H_c(t) = c_x(t) \sigma_x + c_y(t) \sigma_y + c_z(t) \sigma_z$ |
| 49 | + |
| 50 | +with $c_x(t)$, $c_y(t)$ and $c_z(t)$ as independent control parameters. |
| 51 | +Additionally, we model a constant drift Hamiltonian |
| 52 | + |
| 53 | +$H_d = \dfrac{1}{2} (\omega \sigma_z + \delta \sigma_x)$, |
| 54 | + |
| 55 | +with associated energy splitting $\omega$ and tunneling rate $\delta$. |
| 56 | +The amplitude damping rate for the collapse operator $C = \sqrt{\gamma} \sigma_-$ is denoted as $\gamma$. |
| 57 | + |
| 58 | +```python |
| 59 | +# energy splitting, tunneling, amplitude damping |
| 60 | +omega = 0.1 # energy splitting |
| 61 | +delta = 1.0 # tunneling |
| 62 | +gamma = 0.1 # amplitude damping |
| 63 | +sx, sy, sz = sigmax(), sigmay(), sigmaz() |
| 64 | + |
| 65 | +Hc = [sx, sy, sz] # control operator |
| 66 | +Hc = [liouvillian(H) for H in Hc] |
| 67 | + |
| 68 | +Hd = 1 / 2 * (omega * sz + delta * sx) # drift term |
| 69 | +Hd = liouvillian(H=Hd, c_ops=[np.sqrt(gamma) * sigmam()]) |
| 70 | + |
| 71 | +# combined operator list |
| 72 | +H = [Hd, Hc[0], Hc[1], Hc[2]] |
| 73 | +``` |
| 74 | + |
| 75 | +```python |
| 76 | +# objectives for optimization |
| 77 | +initial = qeye(2) |
| 78 | +target = gates.hadamard_transform() |
| 79 | +fid_err = 0.01 |
| 80 | +``` |
| 81 | + |
| 82 | +```python |
| 83 | +# pulse time interval |
| 84 | +times = np.linspace(0, np.pi / 2, 100) |
| 85 | +``` |
| 86 | + |
| 87 | +## Implementation |
| 88 | + |
| 89 | +### GRAPE Algorithm |
| 90 | + |
| 91 | +The GRAPE algorithm works by minimizing an infidelity loss function that measures how close the final state or unitary tranformation is to the desired target. |
| 92 | +Starting from the provided `guess` control pulse, it optimizes evenly spaced piecewise constant pulse amplitudes. |
| 93 | +In the end, it strives to achieve the desired target infidelity, sepcified by the `fid_err_targ` keyword. |
| 94 | + |
| 95 | +```python |
| 96 | +res_grape = optimize_pulses( |
| 97 | + objectives=Objective(initial, H, target), |
| 98 | + control_parameters={ |
| 99 | + "ctrl_x": {"guess": np.sin(times), "bounds": [-1, 1]}, |
| 100 | + "ctrl_y": {"guess": np.cos(times), "bounds": [-1, 1]}, |
| 101 | + "ctrl_z": {"guess": np.tanh(times), "bounds": [-1, 1]}, |
| 102 | + }, |
| 103 | + tlist=times, |
| 104 | + algorithm_kwargs={"alg": "GRAPE", "fid_err_targ": fid_err}, |
| 105 | +) |
| 106 | +``` |
| 107 | + |
| 108 | +### CRAB Algorithm |
| 109 | + |
| 110 | +This algorithm is based on the idea of expanding the control fields in a random basis and optimizing the expansion coefficients $\vec{\alpha}$. |
| 111 | +This has the advantage of using analytical control functions $c(\vec{\alpha}, t)$ on a continuous time interval, and is by default a Fourier expansion. |
| 112 | +This reduces the search space to the function parameters. |
| 113 | +Typically, these parameters can efficiently be calculated through direct search algorithms (like Nelder-Mead). |
| 114 | +The basis function is only expanded for some finite number of summands and the initial basis coefficients are usually picked at random. |
| 115 | + |
| 116 | +```python |
| 117 | +n_params = 3 # adjust in steps of 3 |
| 118 | +alg_args = {"alg": "CRAB", "fid_err_targ": fid_err, "fix_frequency": False} |
| 119 | +``` |
| 120 | + |
| 121 | +```python |
| 122 | +res_crab = optimize_pulses( |
| 123 | + objectives=Objective(initial, H, target), |
| 124 | + control_parameters={ |
| 125 | + "ctrl_x": { |
| 126 | + "guess": [1 for _ in range(n_params)], |
| 127 | + "bounds": [(-1, 1)] * n_params, |
| 128 | + }, |
| 129 | + "ctrl_y": { |
| 130 | + "guess": [1 for _ in range(n_params)], |
| 131 | + "bounds": [(-1, 1)] * n_params, |
| 132 | + }, |
| 133 | + "ctrl_z": { |
| 134 | + "guess": [1 for _ in range(n_params)], |
| 135 | + "bounds": [(-1, 1)] * n_params, |
| 136 | + }, |
| 137 | + }, |
| 138 | + tlist=times, |
| 139 | + algorithm_kwargs=alg_args, |
| 140 | +) |
| 141 | +``` |
| 142 | + |
| 143 | +### GOAT Algorithm |
| 144 | + |
| 145 | +Similar to CRAB, this method also works with analytical control functions. |
| 146 | +By constructing a coupled system of equations of motion, the derivative of the (time ordered) evolution operator with respect to the control parameters can be calculated after numerical forward integration. |
| 147 | +In unconstrained settings, GOAT was found to outperform the previous described methods in terms of convergence and fidelity achievement. |
| 148 | +The QuTiP implementation allows for arbitrary control functions provided together with their respective derivatives in a common python manner. |
| 149 | + |
| 150 | +```python |
| 151 | +def sin(t, c): |
| 152 | + return c[0] * np.sin(c[1] * t) |
| 153 | + |
| 154 | + |
| 155 | +# derivatives |
| 156 | +def grad_sin(t, c, idx): |
| 157 | + if idx == 0: # w.r.t. c0 |
| 158 | + return np.sin(c[1] * t) |
| 159 | + if idx == 1: # w.r.t. c1 |
| 160 | + return c[0] * np.cos(c[1] * t) * t |
| 161 | + if idx == 2: # w.r.t. time |
| 162 | + return c[0] * np.cos(c[1] * t) * c[1] |
| 163 | +``` |
| 164 | + |
| 165 | +```python |
| 166 | +H = [Hd] + [[hc, sin, {"grad": grad_sin}] for hc in Hc] |
| 167 | + |
| 168 | +bnds = [(-1, 1), (0, 2 * np.pi)] |
| 169 | +ctrl_param = {id: {"guess": [1, 0], "bounds": bnds} for id in ["x", "y", "z"]} |
| 170 | +``` |
| 171 | + |
| 172 | +For even faster convergence QuTiP extends to original algorithm with the option to optimize controls with |
| 173 | +respect to the overall time evolution, which can be enabled by specifying the additional time keyword |
| 174 | +argument: |
| 175 | + |
| 176 | +```python |
| 177 | +# treats time as optimization variable |
| 178 | +ctrl_param["__time__"] = { |
| 179 | + "guess": times[len(times) // 2], |
| 180 | + "bounds": [times[0], times[-1]], |
| 181 | +} |
| 182 | +``` |
| 183 | + |
| 184 | +```python |
| 185 | +# run the optimization |
| 186 | +res_goat = optimize_pulses( |
| 187 | + objectives=Objective(initial, H, target), |
| 188 | + control_parameters=ctrl_param, |
| 189 | + tlist=times, |
| 190 | + algorithm_kwargs={ |
| 191 | + "alg": "GOAT", |
| 192 | + "fid_err_targ": fid_err, |
| 193 | + }, |
| 194 | +) |
| 195 | +``` |
| 196 | + |
| 197 | +### JOT Algorithm - JAX integration |
| 198 | + |
| 199 | +QuTiP's new JAX backend provides automatic differentiation capabilities that can be directly be used with the new control framework. |
| 200 | +As with QuTiP’s GOAT implementation, any analytically defined control function can be handed to the algorithm. |
| 201 | +However, in this method, JAX automatic differentiation abilities take care of calculating the derivative throughout the whole system evolution. |
| 202 | +Therefore we don't have to provide any derivatives manually. |
| 203 | +Compared to the previous example, this simply means to swap the control functions with their just-in-time compiled version. |
| 204 | + |
| 205 | +```python |
| 206 | +@jit |
| 207 | +def sin_y(t, d, **kwargs): |
| 208 | + return d[0] * numpy.sin(d[1] * t) |
| 209 | + |
| 210 | + |
| 211 | +@jit |
| 212 | +def sin_z(t, e, **kwargs): |
| 213 | + return e[0] * numpy.sin(e[1] * t) |
| 214 | + |
| 215 | + |
| 216 | +@jit |
| 217 | +def sin_x(t, c, **kwargs): |
| 218 | + return c[0] * numpy.sin(c[1] * t) |
| 219 | +``` |
| 220 | + |
| 221 | +```python |
| 222 | +H = [Hd] + [[Hc[0], sin_x], [Hc[1], sin_y], [Hc[2], sin_z]] |
| 223 | +``` |
| 224 | + |
| 225 | +```python |
| 226 | +res_jopt = optimize_pulses( |
| 227 | + objectives=Objective(initial, H, target), |
| 228 | + control_parameters=ctrl_param, |
| 229 | + tlist=times, |
| 230 | + algorithm_kwargs={ |
| 231 | + "alg": "JOPT", |
| 232 | + "fid_err_targ": fid_err, |
| 233 | + }, |
| 234 | +) |
| 235 | +``` |
| 236 | + |
| 237 | +## Comparison of Results |
| 238 | + |
| 239 | +After running the global and local optimization, one can compare the results obtained by the various |
| 240 | +algorithms through a `qoc.Result` object, which provides common optimization metrics along with the `optimized_controls`. |
| 241 | + |
| 242 | +### Pulse Amplitudes |
| 243 | + |
| 244 | +```python |
| 245 | +fig, ax = plt.subplots(1, 3, figsize=(13, 5)) |
| 246 | + |
| 247 | +goat_range = times < res_goat.optimized_params[-1] |
| 248 | +jopt_range = times < res_jopt.optimized_params[-1] |
| 249 | + |
| 250 | +for i in range(3): |
| 251 | + ax[i].plot(times, res_grape.optimized_controls[i], ":", label="GRAPE") |
| 252 | + ax[i].plot(times, res_crab.optimized_controls[i], "-.", label="CRAB") |
| 253 | + ax[i].plot( |
| 254 | + times[goat_range], |
| 255 | + np.array(res_goat.optimized_controls[i])[goat_range], |
| 256 | + "-", |
| 257 | + label="GOAT", |
| 258 | + ) |
| 259 | + ax[i].plot( |
| 260 | + times[jopt_range], |
| 261 | + np.array(res_jopt.optimized_controls[i])[jopt_range], |
| 262 | + "--", |
| 263 | + label="JOPT", |
| 264 | + ) |
| 265 | + |
| 266 | + ax[i].set_xlabel(r"Time $t$") |
| 267 | + |
| 268 | +ax[0].legend(loc=0) |
| 269 | +ax[0].set_ylabel(r"Pulse amplitude $c_x(t)$", labelpad=-5) |
| 270 | +ax[1].set_ylabel(r"Pulse amplitude $c_y(t)$", labelpad=-5) |
| 271 | +ax[2].set_ylabel(r"Pulse amplitude $c_z(t)$", labelpad=-5) |
| 272 | + |
| 273 | +plt.show() |
| 274 | +``` |
| 275 | + |
| 276 | +### Infidelities and Processing Time |
| 277 | + |
| 278 | +```python |
| 279 | +print("GRAPE: ", res_grape.fid_err) |
| 280 | +print(res_grape.total_seconds, " seconds") |
| 281 | +print() |
| 282 | +print("CRAB : ", res_crab.fid_err) |
| 283 | +print(res_crab.total_seconds, " seconds") |
| 284 | +print() |
| 285 | +print("GOAT : ", res_goat.fid_err) |
| 286 | +print(res_goat.total_seconds, " seconds") |
| 287 | +print() |
| 288 | +print("JOPT : ", res_jopt.fid_err) |
| 289 | +print(res_jopt.total_seconds, " seconds") |
| 290 | +``` |
| 291 | + |
| 292 | +## References |
| 293 | + |
| 294 | +[1] [QuTiP 5: The Quantum Toolbox in Python](https://arxiv.org/abs/2412.04705) |
| 295 | + |
| 296 | +[2] [QuTiP-QOC Repository](https://github.com/qutip/qutip-qoc) |
| 297 | + |
| 298 | +[3] [Khaneja, et. al, Journal of Magnetic Resonance (2005)](https://www.sciencedirect.com/science/article/pii/S1090780704003696) |
| 299 | + |
| 300 | +[4] [Caneva, et. al, Phys. Rev. A (2011)](https://link.aps.org/doi/10.1103/PhysRevA.84.022326) |
| 301 | + |
| 302 | +[5] [Machnes, et. al, Phys. Rev. Lett. (2018)](https://link.aps.org/doi/10.1103/PhysRevLett.120.150401) |
| 303 | + |
| 304 | +[6] [QuTiP-JAX Repository](https://github.com/qutip/qutip-jax) |
| 305 | + |
| 306 | + |
| 307 | + |
| 308 | +## About |
| 309 | + |
| 310 | +```python |
| 311 | +about() |
| 312 | +``` |
| 313 | + |
| 314 | +## Testing |
| 315 | + |
| 316 | +```python |
| 317 | +assert ( |
| 318 | + res_grape.fid_err < fid_err |
| 319 | +), f"GRAPE did not reach the target infidelity of < {fid_err}." |
| 320 | +assert ( |
| 321 | + res_crab.fid_err < fid_err |
| 322 | +), f"CRAB did not reach the target infidelity of < {fid_err}." |
| 323 | +assert ( |
| 324 | + res_goat.fid_err < fid_err |
| 325 | +), f"GOAT did not reach the target infidelity of < {fid_err}." |
| 326 | +assert ( |
| 327 | + res_jopt.fid_err < fid_err |
| 328 | +), f"JOPT did not reach the target infidelity of < {fid_err}." |
| 329 | +``` |
0 commit comments