forked from cyuan-sjtu/hybrid-learning-feature-fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelMB.py
91 lines (67 loc) · 4.65 KB
/
modelMB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
import tensorflow as tf
from keras import initializers
from keras import regularizers
def mb(pretrained_weights=None, input_size=(256, 256, 3)):
inputs = Input(input_size)
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]) # only pads dim 2 and 3 (h and w)
[ inputtemp, inputspet,inputsct] = Lambda(tf.split, arguments={'axis': 3, 'num_or_size_splits': 3})(inputs)
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputsct)
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1ct)
pool1ct = MaxPooling2D(pool_size=(2, 2))(conv1ct)
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1ct)
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2ct)
pool2ct = MaxPooling2D(pool_size=(2, 2))(conv2ct)
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2ct)
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3ct)
pool3ct = MaxPooling2D(pool_size=(2, 2))(conv3ct)
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3ct)
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4ct)
drop4ct = Dropout(0.5)(conv4ct)
pool4ct = MaxPooling2D(pool_size=(2, 2))(conv4ct)
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputspet)
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1pet)
pool1pet = MaxPooling2D(pool_size=(2, 2))(conv1pet)
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1pet)
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2pet)
pool2pet = MaxPooling2D(pool_size=(2, 2))(conv2pet)
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2pet)
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3pet)
pool3pet = MaxPooling2D(pool_size=(2, 2))(conv3pet)
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3pet)
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4pet)
drop4pet = Dropout(0.5)(conv4pet)
pool4pet = MaxPooling2D(pool_size=(2, 2))(conv4pet)
conj4 = concatenate([pool4ct, pool4pet], axis=3)
up5 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conj4))
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up5)
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
up6 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv5))
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6)
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv6))
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv7))
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv9 = Conv2D(4, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
if (pretrained_weights):
model.load_weights(pretrained_weights)
return model