diff --git a/qualtran/bloqs/phase_estimation/qubitization_qpe_test.py b/qualtran/bloqs/phase_estimation/qubitization_qpe_test.py index 2d6ae4fef..1db8ff3a9 100644 --- a/qualtran/bloqs/phase_estimation/qubitization_qpe_test.py +++ b/qualtran/bloqs/phase_estimation/qubitization_qpe_test.py @@ -15,6 +15,7 @@ import numpy as np import pytest +from qualtran._infra.gate_with_registers import get_named_qubits from qualtran.bloqs.for_testing.qubitization_walk_test import get_uniform_pauli_qubitized_walk from qualtran.bloqs.phase_estimation.lp_resource_state import LPResourceState from qualtran.bloqs.phase_estimation.qpe_window_state import RectangularWindowState @@ -49,8 +50,9 @@ def test_qubitization_qpe_sparse_chem_bloq_autotester(bloq_autotester): bloq_autotester(_qubitization_qpe_sparse_chem) -@pytest.mark.slow -@pytest.mark.parametrize('num_terms', [2, 3, 4]) +@pytest.mark.parametrize( + 'num_terms', [pytest.param(n, marks=() if n <= 2 else pytest.mark.slow) for n in [2, 3, 4]] +) @pytest.mark.parametrize('use_resource_state', [True, False]) def test_qubitization_phase_estimation_of_walk(num_terms: int, use_resource_state: bool): precision, eps = 5, 0.05 @@ -70,21 +72,45 @@ def test_qubitization_phase_estimation_of_walk(num_terms: int, use_resource_stat state_prep = ( LPResourceState(precision) if use_resource_state else RectangularWindowState(precision) ) - gh = GateHelper(QubitizationQPE(walk, ctrl_state_prep=state_prep)) - qpe_reg, selection, target = (gh.quregs['qpe_reg'], gh.quregs['selection'], gh.quregs['target']) + qpe_bloq = QubitizationQPE(walk, state_prep) + + # TODO cirq simulation seems to fail for controlled `QubitizationWalkOperator`. + # the following code decomposes a few levels till it gets only simulable bloqs. + # https://github.com/quantumlib/Qualtran/issues/1495 + def should_decompose(binst): + from qualtran import Adjoint, Controlled + from qualtran.bloqs.basic_gates import Power + from qualtran.bloqs.qubitization import QubitizationWalkOperator + + bloqs_to_decompose = (QubitizationQPE, QubitizationWalkOperator, Power) + + if binst.bloq_is(bloqs_to_decompose): + return True + + if binst.bloq_is(Controlled) or binst.bloq_is(Adjoint): + return isinstance(binst.bloq.subbloq, bloqs_to_decompose) + + return False + + cbloq = qpe_bloq.as_composite_bloq().flatten(pred=should_decompose) + quregs = get_named_qubits(cbloq.signature.lefts()) + qpe_circuit, quregs = cbloq.to_cirq_circuit_and_quregs(None, **quregs) + for eig_idx, eig_val in enumerate(eigen_values): # Apply QPE to determine eigenvalue for walk operator W on initial state |L>|k> # 2. State preparation for initial eigenstate. L_K = np.kron(L_state, eigen_vectors[:, eig_idx].flatten()) L_K /= abs(np.linalg.norm(L_K)) - prep_L_K = cirq.Circuit(cirq.StatePreparationChannel(L_K).on(*selection, *target)) + prep_L_K = cirq.Circuit( + cirq.StatePreparationChannel(L_K).on(*quregs['selection'], *quregs['target']) + ) # 3. QPE circuit with state prep - qpe_with_init = prep_L_K + gh.circuit + qpe_with_init = prep_L_K + qpe_circuit assert len(qpe_with_init.all_qubits()) < 23 # 4. Estimate theta - theta = simulate_theta_estimate(qpe_with_init, qpe_reg) + theta = simulate_theta_estimate(qpe_with_init, quregs['qpe_reg']) assert 0 <= theta <= 1 # 5. Verify that the estimated phase is correct. diff --git a/qualtran/bloqs/phase_estimation/text_book_qpe_test.py b/qualtran/bloqs/phase_estimation/text_book_qpe_test.py index 9a7d4fb72..79159e76e 100644 --- a/qualtran/bloqs/phase_estimation/text_book_qpe_test.py +++ b/qualtran/bloqs/phase_estimation/text_book_qpe_test.py @@ -15,6 +15,8 @@ import numpy as np import pytest +from qualtran import Signature +from qualtran._infra.gate_with_registers import get_named_qubits from qualtran.bloqs.basic_gates import ZPowGate from qualtran.bloqs.for_testing.qubitization_walk_test import get_uniform_pauli_qubitized_walk from qualtran.bloqs.phase_estimation.lp_resource_state import LPResourceState @@ -43,8 +45,9 @@ def test_textbook_phase_estimation_zpow_theta(theta): assert abs(simulate_theta_estimate(circuit, precision_register) - theta) < error_bound -@pytest.mark.slow -@pytest.mark.parametrize('num_terms', [2, 3, 4]) +@pytest.mark.parametrize( + 'num_terms', [pytest.param(n, marks=() if n <= 2 else pytest.mark.slow) for n in [2, 3, 4]] +) @pytest.mark.parametrize('use_resource_state', [True, False]) def test_textbook_phase_estimation_qubitized_walk(num_terms: int, use_resource_state: bool): precision, eps = 5, 0.05 @@ -52,8 +55,8 @@ def test_textbook_phase_estimation_qubitized_walk(num_terms: int, use_resource_s ham_coeff = [abs(ps.coefficient.real) for ps in ham] qubitization_lambda = np.sum(ham_coeff) - g = GateHelper(walk) - L_state = np.zeros(2 ** len(g.quregs['selection'])) + n_select_bits = Signature(walk.selection_registers).n_qubits() + L_state = np.zeros(2**n_select_bits) L_state[: len(ham_coeff)] = np.sqrt(ham_coeff / qubitization_lambda) eigen_values, eigen_vectors = np.linalg.eigh(ham.matrix()) @@ -61,22 +64,46 @@ def test_textbook_phase_estimation_qubitized_walk(num_terms: int, use_resource_s state_prep = ( LPResourceState(precision) if use_resource_state else RectangularWindowState(precision) ) - gh = GateHelper(TextbookQPE(walk, ctrl_state_prep=state_prep)) + # 1. Construct QPE bloq - qpe_reg, selection, target = (gh.quregs['qpe_reg'], gh.quregs['selection'], gh.quregs['target']) + qpe_bloq = TextbookQPE(walk, ctrl_state_prep=state_prep) + + # TODO cirq simulation seems to fail for controlled `QubitizationWalkOperator`. + # the following code decomposes a few levels till it gets only simulable bloqs. + # https://github.com/quantumlib/Qualtran/issues/1495 + def should_decompose(binst): + from qualtran import Adjoint, Controlled + from qualtran.bloqs.basic_gates import Power + from qualtran.bloqs.qubitization import QubitizationWalkOperator + + bloqs_to_decompose = (TextbookQPE, QubitizationWalkOperator, Power) + + if binst.bloq_is(bloqs_to_decompose): + return True + + if binst.bloq_is(Controlled) or binst.bloq_is(Adjoint): + return isinstance(binst.bloq.subbloq, bloqs_to_decompose) + + return False + + cbloq = qpe_bloq.as_composite_bloq().flatten(pred=should_decompose) + quregs = get_named_qubits(cbloq.signature.lefts()) + qpe_circuit, quregs = cbloq.to_cirq_circuit_and_quregs(None, **quregs) for eig_idx, eig_val in enumerate(eigen_values): # Apply QPE to determine eigenvalue for walk operator W on initial state |L>|k> # 2. State preparation for initial eigenstate. L_K = np.kron(L_state, eigen_vectors[:, eig_idx].flatten()) L_K /= abs(np.linalg.norm(L_K)) - prep_L_K = cirq.Circuit(cirq.StatePreparationChannel(L_K).on(*selection, *target)) + prep_L_K = cirq.Circuit( + cirq.StatePreparationChannel(L_K).on(*quregs['selection'], *quregs['target']) + ) # 3. QPE circuit with state prep - qpe_with_init = prep_L_K + gh.circuit + qpe_with_init = prep_L_K + qpe_circuit assert len(qpe_with_init.all_qubits()) < 23 # 4. Estimate theta - theta = simulate_theta_estimate(qpe_with_init, qpe_reg) + theta = simulate_theta_estimate(qpe_with_init, quregs['qpe_reg']) assert 0 <= theta <= 1 # 5. Verify that the estimated phase is correct.