-
Notifications
You must be signed in to change notification settings - Fork 128
/
td3.py
447 lines (350 loc) · 17.4 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
'''
Twin Delayed DDPG (TD3), if no twin no delayed then it's DDPG.
using target Q instead of V net: 2 Q net, 2 target Q net, 1 policy net, 1 target policy net
original paper: https://arxiv.org/pdf/1802.09477.pdf
'''
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
from reacher import Reacher
import argparse
import time
torch.manual_seed(1234) #Reproducibility
GPU = True
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class ValueNetwork(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, 1)
# weights initialization
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1) # the dim 0 is number of samples
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, action_range=1., init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
mean = F.tanh(self.mean_linear(x))
# mean = F.leaky_relu(self.mean_linear(x))
# mean = torch.clamp(mean, -30, 30)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) # clip the log_std into reasonable range
return mean, log_std
def evaluate(self, state, deterministic, eval_noise_scale, epsilon=1e-6):
'''
generate action with state as input wrt the policy network, for calculating gradients
'''
mean, log_std = self.forward(state)
std = log_std.exp() # no clip in evaluation, clip affects gradients flow
normal = Normal(0, 1)
z = normal.sample()
action_0 = torch.tanh(mean + std*z.to(device)) # TanhNormal distribution as actions; reparameterization trick
action = self.action_range*mean if deterministic else self.action_range*action_0
log_prob = Normal(mean, std).log_prob(mean+ std*z.to(device)) - torch.log(1. - action_0.pow(2) + epsilon) - np.log(self.action_range)
# both dims of normal.log_prob and -log(1-a**2) are (N,dim_of_action);
# the Normal.log_prob outputs the same dim of input features instead of 1 dim probability,
# needs sum up across the features dim to get 1 dim prob; or else use Multivariate Normal.
log_prob = log_prob.sum(dim=1, keepdim=True)
''' add noise '''
eval_noise_clip = 2*eval_noise_scale
noise = normal.sample(action.shape) * eval_noise_scale
noise = torch.clamp(
noise,
-eval_noise_clip,
eval_noise_clip)
action = action + noise.to(device)
return action, log_prob, z, mean, log_std
def get_action(self, state, deterministic, explore_noise_scale):
'''
generate action for interaction with env
'''
state = torch.FloatTensor(state).unsqueeze(0).to(device)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample().to(device)
action = mean.detach().cpu().numpy()[0] if deterministic else torch.tanh(mean + std*z).detach().cpu().numpy()[0]
''' add noise '''
noise = normal.sample(action.shape) * explore_noise_scale
action = self.action_range*action + noise.numpy()
return action
def sample_action(self,):
a=torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range*a.numpy()
class TD3_Trainer():
def __init__(self, replay_buffer, hidden_dim, action_range, policy_target_update_interval=1):
self.replay_buffer = replay_buffer
self.q_net1 = QNetwork(state_dim, action_dim, hidden_dim).to(device)
self.q_net2 = QNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net1 = QNetwork(state_dim, action_dim, hidden_dim).to(device)
self.target_q_net2 = QNetwork(state_dim, action_dim, hidden_dim).to(device)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range).to(device)
self.target_policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range).to(device)
print('Q Network (1,2): ', self.q_net1)
print('Policy Network: ', self.policy_net)
self.target_q_net1 = self.target_ini(self.q_net1, self.target_q_net1)
self.target_q_net2 = self.target_ini(self.q_net2, self.target_q_net2)
self.target_policy_net = self.target_ini(self.policy_net, self.target_policy_net)
q_lr = 3e-4
policy_lr = 3e-4
self.update_cnt = 0
self.policy_target_update_interval = policy_target_update_interval
self.q_optimizer1 = optim.Adam(self.q_net1.parameters(), lr=q_lr)
self.q_optimizer2 = optim.Adam(self.q_net2.parameters(), lr=q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
def target_ini(self, net, target_net):
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_(param.data)
return target_net
def target_soft_update(self, net, target_net, soft_tau):
# Soft update the target net
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return target_net
def update(self, batch_size, deterministic, eval_noise_scale, reward_scale=10., gamma=0.9,soft_tau=1e-2):
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print('sample:', state, action, reward, done)
state = torch.FloatTensor(state).to(device)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(device)
predicted_q_value1 = self.q_net1(state, action)
predicted_q_value2 = self.q_net2(state, action)
new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state, deterministic, eval_noise_scale=0.0) # no noise, deterministic policy gradients
new_next_action, _, _, _, _ = self.target_policy_net.evaluate(next_state, deterministic, eval_noise_scale=eval_noise_scale) # clipped normal noise
reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Training Q Function
target_q_min = torch.min(self.target_q_net1(next_state, new_next_action),self.target_q_net2(next_state, new_next_action))
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = ((predicted_q_value1 - target_q_value.detach())**2).mean() # detach: no gradients for the variable
q_value_loss2 = ((predicted_q_value2 - target_q_value.detach())**2).mean()
self.q_optimizer1.zero_grad()
q_value_loss1.backward()
self.q_optimizer1.step()
self.q_optimizer2.zero_grad()
q_value_loss2.backward()
self.q_optimizer2.step()
if self.update_cnt%self.policy_target_update_interval==0:
# This is the **Delayed** update of policy and all targets (for Q and policy).
# Training Policy Function
''' implementation 1 '''
# predicted_new_q_value = torch.min(self.q_net1(state, new_action),self.q_net2(state, new_action))
''' implementation 2 '''
predicted_new_q_value = self.q_net1(state, new_action)
policy_loss = - predicted_new_q_value.mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# Soft update the target nets
self.target_q_net1=self.target_soft_update(self.q_net1, self.target_q_net1, soft_tau)
self.target_q_net2=self.target_soft_update(self.q_net2, self.target_q_net2, soft_tau)
self.target_policy_net=self.target_soft_update(self.policy_net, self.target_policy_net, soft_tau)
self.update_cnt+=1
return predicted_q_value1.mean()
def save_model(self, path):
torch.save(self.q_net1.state_dict(), path+'_q1')
torch.save(self.q_net2.state_dict(), path+'_q2')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.q_net1.load_state_dict(torch.load(path+'_q1'))
self.q_net2.load_state_dict(torch.load(path+'_q2'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.q_net1.eval()
self.q_net2.eval()
self.policy_net.eval()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('td3.png')
# plt.show()
# choose env
ENV = ['Reacher', 'Pendulum-v0', 'HalfCheetah-v2'][1]
if ENV == 'Reacher':
NUM_JOINTS=2
LINK_LENGTH=[200, 140]
INI_JOING_ANGLES=[0.1, 0.1]
SCREEN_SIZE=1000
SPARSE_REWARD=False
SCREEN_SHOT=False
action_range = 10.0
env=Reacher(screen_size=SCREEN_SIZE, num_joints=NUM_JOINTS, link_lengths = LINK_LENGTH, \
ini_joint_angles=INI_JOING_ANGLES, target_pos = [369,430], render=True, change_goal=False)
action_dim = env.num_actions
state_dim = env.num_observations
else:
env = NormalizedActions(gym.make(ENV))
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_range=1.
replay_buffer_size = 5e5
replay_buffer = ReplayBuffer(replay_buffer_size)
# hyper-parameters for RL training
max_episodes = 1000
max_steps = 20 if ENV == 'Reacher' else 150 # Pendulum needs 150 steps per episode to learn well, cannot handle 20
frame_idx = 0
batch_size = 300
explore_steps = 0 # for random action sampling in the beginning of training
update_itr = 1
hidden_dim = 512
policy_target_update_interval = 3 # delayed update for the policy network and target networks
DETERMINISTIC=True # DDPG: deterministic policy gradient
explore_noise_scale = 0.5 # 0.5 noise is required for Pendulum-v0, 0.1 noise for HalfCheetah-v2
eval_noise_scale = 0.5
reward_scale = 1.
rewards = []
model_path = './model/td3'
td3_trainer=TD3_Trainer(replay_buffer, hidden_dim=hidden_dim, policy_target_update_interval=policy_target_update_interval, action_range=action_range )
if __name__ == '__main__':
if args.train:
# training loop
for eps in range(max_episodes):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
episode_reward = 0
for step in range(max_steps):
if frame_idx > explore_steps:
action = td3_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC, explore_noise_scale=explore_noise_scale)
else:
action = td3_trainer.policy_net.sample_action()
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
# env.render()
replay_buffer.push(state, action, reward, next_state, done)
state = next_state
episode_reward += reward
frame_idx += 1
if len(replay_buffer) > batch_size:
for i in range(update_itr):
_=td3_trainer.update(batch_size, deterministic=DETERMINISTIC, eval_noise_scale=eval_noise_scale, reward_scale=reward_scale)
if done:
break
if eps % 20 == 0 and eps>0:
plot(rewards)
np.save('rewards_td3', rewards)
td3_trainer.save_model(model_path)
print('Episode: ', eps, '| Episode Reward: ', episode_reward)
rewards.append(episode_reward)
td3_trainer.save_model(model_path)
if args.test:
td3_trainer.load_model(model_path)
for eps in range(10):
if ENV == 'Reacher':
state = env.reset(SCREEN_SHOT)
else:
state = env.reset()
env.render()
episode_reward = 0
for step in range(max_steps):
action = td3_trainer.policy_net.get_action(state, deterministic = DETERMINISTIC, explore_noise_scale=0.0)
if ENV == 'Reacher':
next_state, reward, done, _ = env.step(action, SPARSE_REWARD, SCREEN_SHOT)
else:
next_state, reward, done, _ = env.step(action)
env.render()
episode_reward += reward
state=next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)