-
Notifications
You must be signed in to change notification settings - Fork 128
/
pmoe_ppo.py
335 lines (285 loc) · 13.2 KB
/
pmoe_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
'''
Probabilistic Mixture-of-Experts
paper: https://arxiv.org/abs/2104.09122
Core features:
It replaces the diagonal Gaussian distribution with (differentiable) Gaussian mixture model for policy function approximation, which is more expressive.
This version is based on on-policy PPO algorithm.
'''
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
# from torch.distributions import Normal
from torch.distributions.normal import Normal
import numpy as np
import wandb
from collections import deque
from torch.utils.tensorboard import SummaryWriter
import argparse
import random
#Hyperparameters
learning_rate = 3e-4
gamma = 0.99
lmbda = 0.95
eps_clip = 0.2
batch_size = 2048
mini_batch = int(batch_size//32)
K_epoch = 10
T_horizon = 10000
n_epis = 10000
vf_coef = 0.5
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--run", type=str, default='test',
help="the name of this experiment")
parser.add_argument('--wandb_activate', type=bool, default=False, help='whether wandb')
parser.add_argument("--wandb_entity", type=str, default=None,
help="the entity (team) of wandb's project")
args = parser.parse_args()
print(args)
return args
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Actor(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, mix_num):
super().__init__()
self.mix_num = mix_num
self.mean = nn.Sequential(
layer_init(nn.Linear(num_inputs, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, num_actions * mix_num), std=0.01),
)
self.logstd = nn.Parameter(torch.zeros(1, num_actions * mix_num))
self.mix_coef_linear = nn.Sequential(nn.Linear(num_inputs, mix_num), nn.Softmax(-1))
def forward(self, x):
action_mean = self.mean(x)
action_logstd = self.logstd.expand_as(action_mean)
mix_coef = self.mix_coef_linear(x)
return action_mean.reshape(action_mean.shape[0], self.mix_num, -1).squeeze(), \
action_logstd.reshape(action_logstd.shape[0], self.mix_num, -1).squeeze(), \
mix_coef.squeeze()
class Critic(nn.Module):
def __init__(self, num_inputs, hidden_dim):
super().__init__()
self.model = nn.Sequential(
layer_init(nn.Linear(num_inputs, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, hidden_dim)),
nn.Tanh(),
layer_init(nn.Linear(hidden_dim, 1), std=1.0),
)
def forward(self, x):
return self.model(x)
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim, init_w=3e-3):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, hidden_dim)
self.linear4 = nn.Linear(hidden_dim, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action, match_shape=False):
if match_shape:
state = state.unsqueeze(1).repeat(1, action.shape[1], 1)
x = torch.cat([state, action], -1) # the dim 0 is number of samples
x = x.reshape(-1, x.shape[-1])
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
if match_shape:
return x.reshape(-1, action.shape[1])
else:
return x
class PMOE_PPO():
def __init__(self, num_inputs, num_actions, hidden_dim, mix_num=5):
self.data = deque(maxlen=batch_size) # a ring buffer
self.max_grad_norm = 0.5
self.v_loss_clip = True
self.mix_num = mix_num
self.critic = Critic(num_inputs, hidden_dim).to(device)
self.actor = Actor(num_inputs, num_actions, hidden_dim, mix_num).to(device)
self.q_net = QNetwork(num_inputs, num_actions, hidden_dim).to(device)
self.parameters = list(self.critic.parameters()) + list(self.actor.parameters()) + list(self.q_net.parameters())
self.optimizer = optim.Adam(self.parameters, lr=learning_rate, eps=1e-5)
def pi(self, x):
return self.actor(x)
def v(self, x):
return self.critic(x)
def get_action_and_value(self, x, action=None, select_from_mixture=True, track_grad=False):
mean, log_std, mix_coef = self.pi(x)
std = torch.exp(log_std)
normal = Normal(mean, std)
full_action = normal.sample()
if select_from_mixture:
mix_dist = Categorical(mix_coef)
index = mix_dist.sample()
a = full_action[index]
else:
a = full_action
if action is None:
a_for_prob = a.unsqueeze(-2) # to (1, action_dim), matching with mean and std (K, action_dim)
log_prob = (mix_coef @ normal.log_prob(a_for_prob).sum(-1).exp()).log()
else: # work for batch
a_for_prob = action.unsqueeze(-2) # use given action for calculating probability
log_prob = torch.einsum('ij,ij->i', mix_coef, normal.log_prob(a_for_prob).sum(-1).exp()).log() # prob of action from the whole GMM, including the mixing
a_for_prob = a_for_prob
value = self.v(x)
if track_grad:
return a, log_prob, value, mix_coef
else:
return a.cpu().numpy(), log_prob, value, mix_coef
def put_data(self, transition):
self.data.append(transition)
def make_batch(self,):
s, a, r, s_prime, logprob_a, v, done_mask = zip(*self.data)
s,a,r,s_prime,logprob_a,v,done_mask = torch.tensor(np.array(s), dtype=torch.float), torch.tensor(np.array(a)), \
torch.tensor(np.array(r), dtype=torch.float).unsqueeze(-1), torch.tensor(np.array(s_prime), dtype=torch.float), \
torch.tensor(logprob_a).unsqueeze(-1), torch.tensor(v).unsqueeze(-1), torch.tensor(np.array(done_mask), dtype=torch.float).unsqueeze(-1)
return s.to(device), a.to(device), r.to(device), s_prime.to(device), done_mask.to(device), logprob_a.to(device), v.to(device)
def train_net(self):
s, a, r, s_prime, done_mask, logprob_a, v = self.make_batch()
loss_list = []
with torch.no_grad():
advantage = torch.zeros_like(r).to(device)
lastgaelam = 0
for t in reversed(range(s.shape[0])):
if done_mask[t] or t == s.shape[0]-1:
nextvalues = self.v(s_prime[t])
else:
nextvalues = v[t+1]
delta = r[t] + gamma * nextvalues * (1.0-done_mask[t]) - v[t]
advantage[t] = lastgaelam = delta + gamma * lmbda * lastgaelam * (1.0-done_mask[t])
assert advantage.shape == v.shape
td_target = advantage + v
# minibatch SGD over the entire buffer (K epochs)
b_inds = np.arange(batch_size)
for epoch in range(K_epoch):
np.random.shuffle(b_inds)
for start in range(0, batch_size, mini_batch):
end = start + mini_batch
minibatch_idx = b_inds[start:end]
bs, ba, blogprob_a, bv = s[minibatch_idx], a[minibatch_idx], logprob_a[minibatch_idx].reshape(-1), v[minibatch_idx].reshape(-1)
badvantage, btd_target = advantage[minibatch_idx].reshape(-1), td_target[minibatch_idx].reshape(-1)
if not torch.isnan(badvantage.std()):
badvantage = (badvantage - badvantage.mean()) / (badvantage.std() + 1e-8)
# get mixing coefficients loss
new_a, newlogprob_a, new_vs, new_mix_coef = self.get_action_and_value(bs, ba, select_from_mixture=False, track_grad=True)
new_q = self.q_net(bs, new_a, match_shape=True)
_, best_index = new_q.max(-1)
coef_loss = F.mse_loss(new_mix_coef, F.one_hot(best_index, self.mix_num).float()).mean()
# Q-net loss
pred_q = self.q_net(bs, ba).squeeze()
q_loss = F.mse_loss(pred_q, btd_target).mean()
new_vs = new_vs.reshape(-1)
ratio = torch.exp(newlogprob_a - blogprob_a) # a/b == exp(log(a)-log(b))
surr1 = -ratio * badvantage
surr2 = -torch.clamp(ratio, 1-eps_clip, 1+eps_clip) * badvantage
policy_loss = torch.max(surr1, surr2).mean()
# import pdb; pdb.set_trace()
if self.v_loss_clip: # clipped value loss
v_clipped = bv + torch.clamp(new_vs - bv, -eps_clip, eps_clip)
value_loss_clipped = (v_clipped - btd_target) ** 2
value_loss_unclipped = (new_vs - btd_target) ** 2
value_loss_max = torch.max(value_loss_unclipped, value_loss_clipped)
value_loss = 0.5 * value_loss_max.mean()
else:
value_loss = F.smooth_l1_loss(new_vs, btd_target)
loss = coef_loss + policy_loss + vf_coef * value_loss + q_loss
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.parameters, self.max_grad_norm)
self.optimizer.step()
loss_list = [coef_loss.item(), q_loss.item(), policy_loss.item(), value_loss.item()]
return loss_list
def main():
args = parse_args()
env_id = 2
seed = 1
env_name = ['HalfCheetah-v2', 'Ant-v2', 'Hopper-v2'][env_id]
env = gym.make(env_name)
env = gym.wrappers.RecordEpisodeStatistics(env) # bypass the reward normalization to record episodic return
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
env = gym.wrappers.NormalizeReward(env) # this improves learning significantly
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
print(env.observation_space, env.action_space)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
hidden_dim = 64
mix_num = 5 # number of experts
model = PMOE_PPO(state_dim, action_dim, hidden_dim, mix_num)
score = 0.0
print_interval = 1
step = 0
update = 1
loss_list = []
if args.wandb_activate:
wandb.init(
project=args.run,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=args.run+f'_{env_name}',
monitor_gym=True,
save_code=True,
)
writer = SummaryWriter(f"runs/pmoe-ppo_{args.run}_{env_name}")
for n_epi in range(n_epis):
s = env.reset()
done = False
epi_r = 0.
## learning rate schedule
# frac = 1.0 - (n_epi - 1.0) / n_epis
# lrnow = frac * learning_rate
# model.optimizer.param_groups[0]["lr"] = lrnow
# while not done:
for t in range(T_horizon):
step += 1
with torch.no_grad():
a, logprob, v, _ = model.get_action_and_value(torch.from_numpy(s).float().unsqueeze(0).to(device))
s_prime, r, done, info = env.step(a)
# env.render()
model.put_data((s, a, r, s_prime, logprob, v.squeeze(-1), done))
s = s_prime
score += r
if step % batch_size == 0 and step > 0:
loss_list = model.train_net()
update += 1
eff_update = update
if 'episode' in info.keys():
epi_r = info['episode']['r']
print(f"Global steps: {step}, score: {epi_r}")
if done:
break
if n_epi%print_interval==0 and n_epi!=0:
# print("Global steps: {}, # of episode :{}, avg score : {:.1f}".format(step, n_epi, score/print_interval)) # this is normalized reward
writer.add_scalar("charts/episodic_return", epi_r, n_epi)
writer.add_scalar("charts/episodic_length", t, n_epi)
writer.add_scalar("charts/update", update, n_epi)
writer.add_scalar("charts/", update, n_epi)
if len(loss_list) > 0:
writer.add_scalar("charts/coeff_loss", loss_list[0], n_epi)
writer.add_scalar("charts/Q_loss", loss_list[1], n_epi)
writer.add_scalar("charts/policy_loss", loss_list[2], n_epi)
writer.add_scalar("charts/value_loss", loss_list[3], n_epi)
score = 0.0
env.close()
if __name__ == '__main__':
main()