-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathget_nasa_data.py
executable file
·371 lines (294 loc) · 12.9 KB
/
get_nasa_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/env python3
import json
import re
from math import acos, asin, cos, pi, radians, sin
from urllib.request import urlopen
from spyce.physics import au
from spyce.coordinates import CelestialCoordinates
def tt_to_j2000(year, month=1, day=1, hour=0, minute=0, second=0):
is_leap = (year % 4 == 0 and year % 100 != 0) or year % 400 == 0
y = year - 2000
leap_years = y // 4 - y // 100 + y // 400 + (0 if is_leap else 1)
days = [31, 29 if is_leap else 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
d = y * 365 + leap_years + sum(days[:month - 1]) + day - 1
return d * 86400 + (hour - 12) * 3600 + minute * 60 + second
assert tt_to_j2000(2000, 1, 1, 12) == 0
assert tt_to_j2000(2000, 3, 3, 12) == 5356800
assert tt_to_j2000(2001, 3, 3, 12) == 36892800
assert tt_to_j2000(3919, 3, 3, 12) == 60563030400
assert tt_to_j2000(3920, 3, 3, 12) == 60594652800
assert tt_to_j2000(3925, 11, 14, 12) == 60774537600
assert tt_to_j2000(1961, 7, 14, 14, 30, 28.5) == -1213910971.5
assert tt_to_j2000(2010, 6, 2) == tt_to_j2000(2010, 1, 153)
assert tt_to_j2000(2004, 4, 4.25) == tt_to_j2000(2004, 4, 4, 6)
def get_sun_physics(bodies):
"""Get physical information of the Sun"""
bodies['Sun'] = {
'gravitational_parameter': 1.3271244018e20,
'radius': 6.96e8,
'rotational_period': 2192832.0,
}
def get_planets_physics(bodies):
"""Get physical information of planets of the Solar System"""
# retrieve page for physical characteristics
url_physics = 'http://ssd.jpl.nasa.gov/?planet_phys_par'
html = urlopen(url_physics).read().decode()
# extract data from table
pattern = r"""
<td align="left">(.*)<br> </td>
([\s\S]*?)
</tr>
"""
matches = re.findall(pattern, html)
# this page use a value of 6.67428e-11 kg^-1 m^3 s^-2
# from CODATA 2006 for the gravitational constant
# to derive the mass from the gravitational parameter
G = 6.67428e-11
for name, data in matches:
pattern = r'<td align="right" nowrap>(.*)<br>'
matches = re.findall(pattern, data)
_, radius, mass, _, rotational_period, _, _, _, _, _ = matches
bodies[name] = {
'gravitational_parameter': G * float(mass) * 1e24,
'radius': float(radius) * 1e3,
'rotational_period': float(rotational_period) * 86400,
}
def get_more_physics(bodies, body):
"""Get more physical information on a body of the Solar System"""
# retrieve page for physical characteristics
url = 'http://nssdc.gsfc.nasa.gov/planetary/factsheet/{}fact.html'.format(body.lower())
html = urlopen(url).read().decode()
# in case it drives you crazy, uncomment this
# html = html.replace('\r', '\r\n')
# orientation of north pole (axial tilt)
# extract right ascension
matches = re.search(r'Right Ascension *: *([\-0-9\.]+)', html)
if matches is None:
return
right_ascension = radians(float(matches.group(1)))
# extract declination
matches = re.search(r'Declination *: *([\-0-9\.]+)', html)
if matches is None:
return
declination = radians(float(matches.group(1)))
bodies[body]['north_pole'] = {
'right_ascension': right_ascension,
'declination': declination,
}
def get_planets_orbits(bodies):
"""Get orbital information of planets of the Solar System"""
# retrieve page for orbital elements
url_orbits = 'http://ssd.jpl.nasa.gov/txt/p_elem_t1.txt'
html = urlopen(url_orbits).read().decode()
# extract data from table
lines = html.split('\n')
lines = [re.split(r'\s{2,}', line) for line in lines[16:]]
epoch = tt_to_j2000(2000, 1, 1, 12)
for i in range(0, len(lines) - 1, 2):
name = lines[i][0]
elements = lines[i][1:]
changes = lines[i + 1][1:]
if name == 'EM Bary':
name = 'Earth'
# see aprx_pos_planets.md
t = epoch / 86400 / 36525
elements = [
float(x0) + float(dx) * t
for x0, dx in zip(elements, changes)
]
(semi_major_axis, eccentricity, inclination, mean_longitude,
longitude_of_periapsis, longitude_of_ascending_node) = elements
mean_anomaly = mean_longitude - longitude_of_periapsis
argument_of_periapsis = longitude_of_periapsis - longitude_of_ascending_node
body = bodies.setdefault(name, {})
body['orbit'] = {
'primary': 'Sun',
'semi_major_axis': semi_major_axis * au,
'eccentricity': eccentricity,
'inclination': radians(inclination % 360),
'longitude_of_ascending_node':
radians(longitude_of_ascending_node % 360),
'argument_of_periapsis': radians(argument_of_periapsis % 360),
'epoch': epoch,
'mean_anomaly_at_epoch': radians(mean_anomaly % 360),
}
def get_moons_physics(bodies):
"""Get physical information of moons of the Solar System"""
# retrieve page for physical characteristics
url_physics = 'http://ssd.jpl.nasa.gov/?sat_phys_par'
html = urlopen(url_physics).read().decode()
# find moons
pattern = r"""<TR ALIGN=right><TD ALIGN=left>(.*?)\s*</TD>
<TD.*>(.*?)(±.*)?</TD><TD>.*</TD>
<TD.*>(.*?)(±.*)?</TD><TD>.*</TD>"""
matches = re.findall(pattern, html)
# save data
for name, mu, _, radius, _ in matches:
bodies[name] = {
'gravitational_parameter': float(mu) * 1e9,
'radius': float(radius) * 1e3,
}
def get_moons_orbits(bodies):
"""Get orbital information of moons of the Solar System"""
# retrieve page for orbital elements
url_orbits = 'http://ssd.jpl.nasa.gov/?sat_elem'
html = urlopen(url_orbits).read().decode()
# find planetary systems
pattern = r"""<table cellpadding="5" cellspacing="0" border="0" width="100%">
<tr bgcolor="#CCCCCC">
<td align="left" nowrap><b>Satellites of (.*)</b></td>
([\s\S]*?)
</table>"""
matches = re.findall(pattern, html)
for primary, data in matches:
# find orbit sets
pattern = r"""(<td colspan="2">|<HR>)
<H3>([\s\S]*?)</H3>(
Epoch (.*) TD?T<BR>)?
([\s\S]*?)
</TABLE>"""
matches = re.findall(pattern, data)
for _, reference_plane, _, epoch, data in matches:
# missing epoch
if not epoch and primary == 'Pluto':
epoch = '2013 Jan. 1.00'
# convert epoch to J2000
pattern = r'^([0-9]{4})\s*([A-Z][a-z]{2})\.\s*([0-9]{1,2}\.[0-9]*)$'
m = re.match(pattern, epoch)
year, month, day = m.groups()
month = 1 + 'JanFebMarAprMayJunJulAugSepOctNovDec'.find(month) // 3
epoch = tt_to_j2000(int(year), month, float(day))
# find moons
pattern = r"""<TR ALIGN=right><TD ALIGN=left>(.*?)</TD>
?<TD>(.*?)</TD>
?<TD>(.*?)</TD>
?<TD>(.*?)</TD>
?<TD>(.*?)</TD>
?<TD>(.*?)</TD>
?<TD>(.*?)</TD>"""
matches = re.findall(pattern, data)
# save data
for (name, semi_major_axis, eccentricity, argument_of_periapsis,
mean_anomaly_at_epoch, inclination,
longitude_of_ascending_node) in matches:
# S/2003 J1 -> S/2003J1
if re.match(r'^S/[0-9]{4} [A-Z] [0-9]*$', name):
name = ''.join(name.rsplit(' ', 1))
# convert to standard units
semi_major_axis = float(semi_major_axis) * 1e3
eccentricity = float(eccentricity)
inclination = radians(float(inclination))
longitude_of_ascending_node = radians(float(longitude_of_ascending_node))
argument_of_periapsis = radians(float(argument_of_periapsis))
mean_anomaly_at_epoch = radians(float(mean_anomaly_at_epoch))
# when given equatorial elements, convert to ecliptic elements
# when given Laplacian elements, handle as equatorial elements
if 'ecliptic' not in reference_plane.lower():
# inclination is given relative to the equatorial plane of
# the primary; longitude of the ascending node is given
# relative to the northward equinox
# recover ecliptic coordinates of the primary's north pole
north_pole = bodies[primary]['north_pole']
north_pole = CelestialCoordinates.from_equatorial(
north_pole['right_ascension'],
north_pole['declination'],
)
# from http://www.krysstal.com/sphertrig.html
# the blue great circle is the ecliptic
# A is the normal of the ecliptic
# B is the primary's north pole
# C is the normal of the satellite's orbital plane
# a is the equatorial orbital inclination of the satellite
# b is the ecliptic orbital inclination of the satellite
# c is the orbital inclination of the primary
# B' is orthogonal to the line of nodes of the primary
# C' is orthogonal to the line of nodes of the satellite
# compute ecliptic inclination
a = inclination
c = pi / 2 - north_pole.ecliptic_latitude
B = longitude_of_ascending_node + pi / 2
cb = cos(a) * cos(c) + sin(a) * sin(c) * cos(B)
b = acos(cb)
# compute ecliptic longitude of the orbital normal
sA = sin(B) * sin(a) / sin(b)
A = asin(sA)
A += north_pole.ecliptic_longitude
# ecliptic elements
inclination = b # relative to the ecliptic
longitude_of_ascending_node = A + pi / 2
# save orbit
body = bodies.setdefault(name, {})
body['orbit'] = {
'primary': primary,
'semi_major_axis': semi_major_axis,
'eccentricity': eccentricity,
'inclination': inclination,
'longitude_of_ascending_node': longitude_of_ascending_node,
'argument_of_periapsis': argument_of_periapsis,
'epoch': epoch,
'mean_anomaly_at_epoch': mean_anomaly_at_epoch,
}
def get_dwarf_planet_data(bodies, name):
"""Get physical and orbital information of dwarf planets"""
# retrieve relevant page
html = urlopen('http://ssd.jpl.nasa.gov/sbdb.cgi?sstr={}'.format(name)).read().decode()
body = bodies.setdefault(name, {})
# extract physical information
pattern = r"""<tr>
<td.*>(.*)</font></a></td>
.*
<td.*>(.*)</font></td>"""
matches = re.findall(pattern, html)
for name, value in matches:
if name == 'diameter':
body['radius'] = float(value) * 500
elif name == 'GM':
body['gravitational_parameter'] = float(value) * 1e9
elif name == 'rotation period':
body['rotational_period'] = float(value) * 3600
# extract epoch
pattern = r'<b>Orbital Elements at Epoch ([0-9]+(\.[0-9])?) '
epoch = re.search(pattern, html).group(1)
epoch = float(epoch) - 2451545.0 # shift from Julian Date to J2000
epoch *= 86400 # convert from Julian days to seconds
# extract orbital information
pattern = r'<tr.*>(.*)</a></font></td> <td.*?><font.*?>(.*?)</font></td>'
matches = re.findall(pattern, html)
elements = dict(matches)
body['orbit'] = {
'primary': 'Sun',
'semi_major_axis': float(elements['a']) * au,
'eccentricity': float(elements['e']),
'inclination': radians(float(elements['i'])),
'longitude_of_ascending_node': radians(float(elements['node'])),
'argument_of_periapsis': radians(float(elements['peri'])),
'epoch': epoch,
'mean_anomaly_at_epoch': radians(float(elements['M'])),
}
def main():
bodies = {}
print('Loading Sun physics')
get_sun_physics(bodies)
print('Loading planets physics')
get_planets_physics(bodies)
for planet in [
'Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus',
'Neptune', 'Pluto',
]:
get_more_physics(bodies, planet)
print('Loading planets orbits')
get_planets_orbits(bodies)
print('Loading moons physics')
get_moons_physics(bodies)
get_more_physics(bodies, 'Moon')
print('Loading moons orbits')
get_moons_orbits(bodies)
print('Loading dwarf planets data')
dwarf_planets = ['Ceres', 'Pluto', 'Sedna', 'Haumea', 'Makemake', 'Eris', 'Orcus', 'Quaoar', 'Gonggong']
for dwarf_planet in dwarf_planets:
get_dwarf_planet_data(bodies, dwarf_planet)
with open('solar.json', 'w') as f:
json.dump(bodies, f, sort_keys=True, indent=4, separators=(',', ': '))
f.write('\n')
if __name__ == '__main__':
main()