-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathGmm.m
171 lines (153 loc) · 5.33 KB
/
Gmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
% SUMMARY: Gmm algorithm, using EM algorithm
% Kmeans complexity: O(mnkpi), m:restart_num,
% n:sample_num, k:center_num, p:dimension, i:iter_num
% Gmm complexity: O(nkpi), definition of nkpi is same as above
% OTHERS: It seems restart_num of kmeans is not important. I am not sure. Use 1 is OK.
% Because of local minimum, so try to run several times.
% AUTHOR: QIUQIANG KONG, Queen Mary University of London
% Created: 16-09-2015
% Modified: 18-09-2015 Add varargin parameters
% Add minimum of cov
% 19-09-2015 Add some remarks
% 23-09-2015 Add log likelihood
% 15-11-2015 Modify output format to mu: p*M, Sigma: p*p*M
% 17-11-2015 Modify restart number to 1
% 18-11-2015 add: if min(eig(Sigma)) < thresh, then + a*I
% 28-06-2016 use stat toolbox's kmeans instead of voicebox's
% kmeans
% -----------------------------------------------------------
% Remarks: need voicebox (kmeans.m), error_ellipse.m
% input:
% X size: N*p
% mix num of mix
% varargin input:
% restart_num the times of restart kmeans
% iter_num the maximum of EM iteration
% cov_type 'full' or 'diag'
% cov_thresh the minimum of cov
% output:
% pi size: M; dim 1: mix num
% mu size: p*M; dim 1: feature dim, dim 2: mix num
% Sigma size: p*p*M; dim 1,2: feature dim, dim 3: mix num
% loglik log likelihood of current model
% Ref: Chap 9 <Pattern Analysis and Machine Learning>
% voicebox toolbox
% ===========================================================
function [prior, mu, Sigma, loglik] = Gmm(X, mix_num, varargin)
for i1 = 1:2:length(varargin)
switch varargin{i1}
case 'cov_type'
cov_type = varargin{i1+1};
case 'cov_thresh'
cov_thresh = varargin{i1+1};
case 'restart_num'
restart_num = varargin{i1+1};
case 'iter_num'
iter_num = varargin{i1+1};
end
end
if (~exist('cov_type'))
cov_type = 'diag'; % 'full' or 'diag'
end
if (~exist('cov_thresh'))
cov_thresh = 1e-4; % the thresh of covariance
end
if (~exist('restart_num'))
restart_num = 1; % the times of restart kmeans
end
if (~exist('iter_num'))
iter_num = 100; % the maximum of EM iteration
end
% Init gmm by kmeans
[pi0, mu0, Sigma0] = Gmm_init_by_kmeans(X, mix_num, restart_num, cov_thresh);
% EM algorighm for Gmm
[prior, mu, Sigma, loglik] = Gmm_em(X, pi0, mu0, Sigma0, iter_num, cov_type, cov_thresh);
% % Debug
% for i1 = 1:mix
% error_ellipse(Sigma(:,:,i1), mu(:,i1), 'style', 'r'), hold on
% end
end
% --------- Init gmm by kmeans ---------
function [pi0, mu0, Sigma0] = Gmm_init_by_kmeans(X, mix_num, restart_num, cov_thresh)
% restart kmeans for several times
[N,p] = size(X);
err = inf;
for i1 = 1:restart_num
[indi_curr, mu0_curr, errs] = kmeans( X, mix_num );
err_curr = sum( errs );
mu0_curr = mu0_curr';
if err_curr < err
err = err_curr;
mu0 = mu0_curr;
indi = indi_curr;
end
end
% calculate pi0
pi0 = zeros(1,mix_num);
for i1 = 1:mix_num
pi0(i1) = sum(indi==i1);
end
pi0 = pi0 / length(indi);
% calculate Sigma0
for i1 = 1:mix_num
X_curr = X(indi==i1, :);
mu0_curr = mu0(:,i1);
Sigma0_curr = cov(bsxfun(@minus, X_curr, mu0_curr'));
if min(eig(Sigma0_curr)) < cov_thresh % prevent cov from being too small
Sigma0(:,:,i1) = Sigma0_curr + cov_thresh * eye(p);
else
Sigma0(:,:,i1) = Sigma0_curr; % dim 1, dim 2: feature dim, dim 3: mix num
end
end
end
% --------- EM algorighm for Gmm ---------
function [prior, mu, Sigma, loglik] = Gmm_em(X, prior, mu, Sigma, iter_num, cov_type, cov_thresh)
M = length(prior); % mix num
[N,p] = size(X);
pre_ll = -inf;
for k = 1:iter_num
% E step
p_xn_given_zn = zeros(N, M);
for i1 = 1:M
p_xn_given_zn(:, i1) = mvnpdf(X, mu(:,i1)', Sigma(:,:,i1));
end
numer = bsxfun(@times, p_xn_given_zn, prior); % dim 1: N, dim 2: mix num
denor = sum(numer, 2); % dim 1: N
gamma = bsxfun(@rdivide, numer, denor); % dim 1: N, dim 2: mix num
% M step
Nk = sum(gamma, 1); % dim 1: mix num
mu = bsxfun(@rdivide, (X' * gamma), Nk);
for i1 = 1:M
x_minus_mu = bsxfun(@minus, X, mu(:,i1)');
Sigma(:,:,i1) = bsxfun(@times, gamma(:,i1), x_minus_mu)' * x_minus_mu / Nk(i1);
if (cov_type=='diag')
Sigma(:,:,i1) = diag(diag(Sigma(:,:,i1)));
end
if min(eig(Sigma(:,:,i1))) < cov_thresh % prevent cov from being too small
Sigma(:,:,i1) = Sigma(:,:,i1) + cov_thresh * eye(p);
end
prior = Nk / N;
end
% Get likelihood
p_xn = zeros(N,1);
for i1 = 1:M
p_xn = p_xn + prior(i1) * mvnpdf(X, mu(:,i1)', Sigma(:,:,i1));
end
loglik = sum(log(p_xn));
if (loglik-pre_ll<log(1.0001)) break;
else pre_ll = loglik; end
% Debug. draw contour step by step
% DebugPlot(X, gamma, mu, Sigma);
end
end
% Debug. draw contour step by step
function DebugPlot(X, gamma, mu, Sigma)
M = size(mu,2);
scatter(X(:,1), X(:,2), [], gamma), hold on, axis([-2 6 -1.5 3.5])
pause
for i1 = 1:M
error_ellipse(Sigma(i1,:,:), mu(i1,:), 'style', 'r', 'conf', 0.9)
end
hold off
pause
end