diff --git a/src/qibo_comb_optimisation/optimisation_class/optimisation_class.py b/src/qibo_comb_optimisation/optimisation_class/optimisation_class.py index eace43d..79b433d 100644 --- a/src/qibo_comb_optimisation/optimisation_class/optimisation_class.py +++ b/src/qibo_comb_optimisation/optimisation_class/optimisation_class.py @@ -179,7 +179,7 @@ def qubo_to_ising(self, constant=0.0): for (u, v), bias in self.Qdict.items(): if u == v: - h[u] = h.setdefault(u, 0) + bias/2 + h[u] = h.setdefault(u, 0) + bias / 2 linear_offset += bias else: @@ -392,7 +392,9 @@ def canonical_q(self): for i in range(self.n): for j in range(i, self.n): if (j, i) in self.Qdict: - self.Qdict[(i, j)] = self.Qdict.get((i, j), 0) + self.Qdict.pop((j, i)) + self.Qdict[(i, j)] = self.Qdict.get((i, j), 0) + self.Qdict.pop( + (j, i) + ) self.Qdict.pop((j, i), None) return self.Qdict @@ -419,7 +421,7 @@ def qubo_to_qaoa_circuit(self, p: int, gamma: list = None, beta: list = None): # Create the Ising Hamiltonian using Qibo symbolic_ham = sum(h[i] * Z(i) for i in h) - symbolic_ham += sum(J[(u, v)] * Z(u)*Z(v) for (u, v) in J) + symbolic_ham += sum(J[(u, v)] * Z(u) * Z(v) for (u, v) in J) # Define the QAOA model hamiltonian = SymbolicHamiltonian(symbolic_ham)