-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathutils.py
135 lines (113 loc) · 4.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import scipy
import cv2
def cycle(iterable):
while True:
for x in iterable:
yield x
def evaluate_pose(E, P):
R_gt = P[:3, :3]
t_gt = P[:3, 3]
R1, R2, t = cv2.decomposeEssentialMat(E)
t = t.squeeze()
theta_1 = np.linalg.norm(scipy.linalg.logm(R1.T.dot(R_gt)), 'fro') / np.sqrt(2)
theta_2 = np.linalg.norm(scipy.linalg.logm(R2.T.dot(R_gt)), 'fro') / np.sqrt(2)
theta = min(theta_1, theta_2) * 180 / np.pi
tran_cos = np.inner(t, t_gt) / (np.linalg.norm(t_gt) * np.linalg.norm(t))
tran = np.arccos(tran_cos) * 180 / np.pi
return theta, tran
def average_precision(labels, logits):
'''
inputs: label: num_examples x num_pts
logits: num_examples x num_pts
:return: average precision
'''
from sklearn.metrics import average_precision_score
sum_ap = 0
count = 0
for label, logit in zip(labels, logits):
if np.sum(label) == 0:
continue
ap = average_precision_score(label, logit)
sum_ap += ap
count += 1
map = sum_ap/count if count != 0 else 0
return map
def homogenize(kp):
'''
turn into homogeneous coordinates
:param kp: n*2 coordinates
:return: n*3 coordinates where the last channel is 1
'''
ones = np.ones_like(kp[:, 0:1])
return np.concatenate((kp, ones), 1)
def random_choice(array, size):
rand = np.random.RandomState(1234)
num_data = len(array)
if num_data > size:
idx = rand.choice(num_data, size, replace=False)
else:
idx = rand.choice(num_data, size, replace=True)
return array[idx]
def drawlines(img1, img2, lines, pts1, pts2, color=None, thickness=-1):
''' img1 - image on which we draw the epilines for the points in img2
lines - corresponding epilines '''
r, c = img1.shape[:2]
# img1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
# img2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR)
color_ = color
for r, pt1, pt2 in zip(lines, pts1, pts2):
if r[1] == 0:
continue
if color_ is None:
color = tuple(np.random.randint(0, 255, 3).tolist())
else:
color = color_
x0, y0 = map(int, [0, -r[2]/r[1]])
x1, y1 = map(int, [c, -(r[2]+r[0]*c)/r[1]])
img1 = cv2.line(img1, (x0, y0), (x1, y1), color, 1)
img1 = cv2.circle(img1, tuple(pt1), 5, color, thickness)
img2 = cv2.circle(img2, tuple(pt2), 5, color, thickness)
return img1, img2
def to_jet(input, type='tensor', mode='HW1'):
import matplotlib.pyplot as plt
cm = plt.get_cmap('jet')
if type == 'tensor':
input = input.detach().cpu().numpy()
if mode == '1HW':
input = input.transpose(1, 2, 0)
elif mode == 'B1HW':
input = input.transpose(0, 2, 3, 1)
elif mode == 'HW':
input = input[..., np.newaxis] # hxwx1
if input.ndim == 3:
out = cm(input[:, :, 0])[:, :, :3]
else:
out = np.zeros_like(input).repeat(3, axis=-1)
for i, data in enumerate(input):
out[i] = cm(input[:, :, 0])[:, :, :3]
return out
def drawlinesMatch(img1, img2, pts1, pts2, concat_row=True):
rows1 = img1.shape[0]
cols1 = img1.shape[1]
rows2 = img2.shape[0]
cols2 = img2.shape[1]
interval = 5
if concat_row:
out = 255 * np.ones((max([rows1, rows2]), cols1 + cols2+interval, 3), dtype='uint8')
out[:rows2, cols1+interval:cols1+cols2+interval, :] = img2
pts2[:, 0] += cols1 + interval
else:
out = 255 * np.ones((rows1 + rows2 + interval, max(cols1, cols2), 3), dtype='uint8')
out[rows1+interval:rows1+rows2+interval, :cols2] = img2
pts2[:, 1] += rows1 + interval
# Place the first image to the left
out[:rows1, :cols1, :] = img1
thickness = 3
radius = 5
for pt1, pt2 in zip(pts1, pts2):
cv2.circle(out, (int(pt1[0]), int(pt1[1])), radius, tuple(np.array([255, 0, 0]).tolist()), -1, cv2.LINE_AA)
cv2.circle(out, (int(pt2[0]), int(pt2[1])), radius, tuple(np.array([255, 0, 0]).tolist()), -1, cv2.LINE_AA)
cv2.line(out, tuple(pt1.astype(int)), tuple(pt2.astype(int)), color=(0, 255, 0),
lineType=cv2.LINE_AA, thickness=thickness)
return out