-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
138 lines (104 loc) · 4.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from option import opt
from model import MCNet
from data_utils import TrainsetFromFolder, ValsetFromFolder
from eval import PSNR
from torch.optim.lr_scheduler import MultiStepLR
out_path = '/media/hdisk/liqiang/hyperSR/result/' + opt.datasetName + '/'
def main():
if opt.show:
if not os.path.exists("logs/"):
os.makedirs("logs/")
global writer
writer = SummaryWriter(log_dir='logs')
if opt.cuda:
print("=> Use GPU ID: '{}'".format(opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
# Loading datasets
train_set = TrainsetFromFolder('/media/hdisk/liqiang/hyperSR/train/'+ opt.datasetName + '/' + str(opt.upscale_factor) + '/')
train_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
val_set = ValsetFromFolder('/media/hdisk/liqiang/hyperSR/test/' + opt.datasetName + '/' + str(opt.upscale_factor))
val_loader = DataLoader(dataset=val_set, num_workers=opt.threads, batch_size= 1, shuffle=False)
# Buliding model
model = MCNet(opt)
criterion = nn.L1Loss()
if opt.cuda:
model = nn.DataParallel(model).cuda()
criterion = criterion.cuda()
else:
model = model.cpu()
print('# parameters:', sum(param.numel() for param in model.parameters()))
# Setting Optimizer
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-08)
# optionally resuming from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# Setting learning rate
scheduler = MultiStepLR(optimizer, milestones=[35, 70, 105, 140, 175], gamma=0.5, last_epoch = -1)
# Training
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
scheduler.step()
print("Epoch = {}, lr = {}".format(epoch, optimizer.param_groups[0]["lr"]))
train(train_loader, optimizer, model, criterion, epoch)
val(val_loader, model, epoch)
save_checkpoint(epoch, model, optimizer)
def train(train_loader, optimizer, model, criterion, epoch):
model.train()
for iteration, batch in enumerate(train_loader, 1):
input, label = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if opt.cuda:
input = input.cuda()
label = label.cuda()
SR = model(input)
loss = criterion(SR, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iteration % 100 == 0:
print("===> Epoch[{}]({}/{}): Loss: {:.10f}".format(epoch, iteration, len(train_loader), loss.data[0]))
if opt.show:
niter = epoch * len(train_loader) + iteration
if niter % 500 == 0:
writer.add_scalar('Train/Loss', loss.data[0], niter)
def val(val_loader, model, epoch):
model.eval()
val_psnr = 0
for iteration, batch in enumerate(val_loader, 1):
input, HR = Variable(batch[0], volatile=True), Variable(batch[1])
if opt.cuda:
input = input.cuda()
HR = HR.cuda()
SR = model(input)
val_psnr += PSNR(SR.cpu().data[0].numpy(), HR.cpu().data[0].numpy())
val_psnr = val_psnr / len(val_loader)
print("PSNR = {:.3f}".format(val_psnr))
if opt.show:
writer.add_scalar('Val/PSNR',val_psnr, epoch)
def save_checkpoint(epoch, model, optimizer):
model_out_path = "checkpoint/" + "model_{}_epoch_{}.pth".format(opt.upscale_factor, epoch)
state = {"epoch": epoch , "model": model.state_dict(), "optimizer":optimizer.state_dict()}
if not os.path.exists("checkpoin/"):
os.makedirs("checkpoint/")
torch.save(state, model_out_path)
if __name__ == "__main__":
main()