-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpbt.py
113 lines (87 loc) · 2.99 KB
/
pbt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import print_function, division
import numpy as np
from sage.all import StandardTableaux, SemistandardTableaux, Partitions
from math import sqrt
import sys
__all__ = [
"F_std",
"F_std_coeff",
"p_EPR",
"print_det_std",
"print_prob_epr",
"specht",
"weyl",
"box_added",
"GUE0_lambda_max",
"GUE0_lambda_max_estimate",
]
### Preliminaries ###
def memoize(f):
memo = {}
def g(*args):
if args not in memo:
memo[args] = f(*args)
return memo[args]
return g
def specht(mu):
"""Dimension of Specht module [mu]. Denoted d_mu in [CLM+18]."""
return StandardTableaux(mu).cardinality().n()
def weyl(d, mu):
"""Dimension of Weyl module V_mu^d. Denoted m_{d,mu} in [CLM+18]."""
return SemistandardTableaux(shape=mu, max_entry=d).cardinality().n()
def box_added(alpha, d):
"""Partitions of maximal length d obtained by adding one box to alpha."""
for i, j in alpha.addable_cells():
if i < d:
yield alpha.add_cell(i)
### Deterministic PBT ###
def F_std(d, N):
"""Exact formula for the entanglement fidelity from [SSMH17]. Denoted F^std_d(N) in [CLM+18]."""
# memoize specht() and weyl() results (but only for current call)
specht_mem, weyl_mem = memoize(specht), memoize(weyl)
return sum(
d ** (-N - 2)
* sum(sqrt(specht_mem(mu) * weyl_mem(d, mu)) for mu in box_added(alpha, d)) ** 2
for alpha in Partitions(n=N - 1, max_length=d)
)
def F_std_coeff(d):
"""In [CLM+18], we prove that F^std_d(N) = 1 - c/N + o(1/N), where c = (d^2 - 1) / 4. Return the coefficient c."""
return (d ** 2 - 1) / 4
### Probabilistic PBT ###
def p_EPR(d, N):
"""
Exact expression for the success probability from [SSMH17]. Denoted p^EPR_d(N) in [CLM+18].
We use the formula derived in the proof of Theorem 1.3 of [CLM+18].
"""
return sum(
d ** -N * (weyl(d, alpha) * specht(alpha) * N) / (alpha[0] + d)
for alpha in Partitions(n=N - 1, max_length=d)
)
def GUE0_lambda_max(d):
A = np.random.randn(d, d) + 1j * np.random.randn(d, d)
A = (A + A.T.conj()) / 2
A = A - A.trace() / d * np.eye(d)
return np.sort(np.linalg.eigvalsh(A))[-1]
def GUE0_lambda_max_estimate(d, num_samples):
"""
In [CLM+18], we prove that p^EPR_d(N) = 1 - c*sqrt(d/(N-1)) + o(1/sqrt(N)), where c = E[lambda_max(G)].
This function estimates the coefficient c.
"""
return np.mean([GUE0_lambda_max(d) for _ in range(num_samples)])
### Pretty Printing ###
def print_det_std(d, N_min, N_max, N_step=10):
print("N F O")
sys.stdout.flush()
for N in range(N_min, N_max + 1, N_step):
F = F_std(d, N)
O = N * (1 - F)
print(N, F, O)
sys.stdout.flush()
def print_prob_epr(d, N_min, N_max, N_step=10):
print("N p FO")
sys.stdout.flush()
for N in range(N_min, N_max + 1, N_step):
p = p_EPR(d, N)
FO = np.sqrt((N - 1) / d) * (1 - p)
print(N, p, FO)
sys.stdout.flush()