-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpredict.py
312 lines (260 loc) · 16.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from test import predict_location, get_ensemble_weight, generate_inpaint_mask
from dataset import Shuttlecock_Trajectory_Dataset, Video_IterableDataset
from utils.general import *
def predict(indices, y_pred=None, c_pred=None, img_scaler=(1, 1)):
""" Predict coordinates from heatmap or inpainted coordinates.
Args:
indices (torch.Tensor): indices of input sequence with shape (N, L, 2)
y_pred (torch.Tensor, optional): predicted heatmap sequence with shape (N, L, H, W)
c_pred (torch.Tensor, optional): predicted inpainted coordinates sequence with shape (N, L, 2)
img_scaler (Tuple): image scaler (w_scaler, h_scaler)
Returns:
pred_dict (Dict): dictionary of predicted coordinates
Format: {'Frame':[], 'X':[], 'Y':[], 'Visibility':[]}
"""
pred_dict = {'Frame':[], 'X':[], 'Y':[], 'Visibility':[]}
batch_size, seq_len = indices.shape[0], indices.shape[1]
indices = indices.detach().cpu().numpy()if torch.is_tensor(indices) else indices.numpy()
# Transform input for heatmap prediction
if y_pred is not None:
y_pred = y_pred > 0.5
y_pred = y_pred.detach().cpu().numpy() if torch.is_tensor(y_pred) else y_pred
y_pred = to_img_format(y_pred) # (N, L, H, W)
# Transform input for coordinate prediction
if c_pred is not None:
c_pred = c_pred.detach().cpu().numpy() if torch.is_tensor(c_pred) else c_pred
prev_f_i = -1
for n in range(batch_size):
for f in range(seq_len):
f_i = indices[n][f][1]
if f_i != prev_f_i:
if c_pred is not None:
# Predict from coordinate
c_p = c_pred[n][f]
cx_pred, cy_pred = int(c_p[0] * WIDTH * img_scaler[0]), int(c_p[1] * HEIGHT* img_scaler[1])
elif y_pred is not None:
# Predict from heatmap
y_p = y_pred[n][f]
bbox_pred = predict_location(to_img(y_p))
cx_pred, cy_pred = int(bbox_pred[0]+bbox_pred[2]/2), int(bbox_pred[1]+bbox_pred[3]/2)
cx_pred, cy_pred = int(cx_pred*img_scaler[0]), int(cy_pred*img_scaler[1])
else:
raise ValueError('Invalid input')
vis_pred = 0 if cx_pred == 0 and cy_pred == 0 else 1
pred_dict['Frame'].append(int(f_i))
pred_dict['X'].append(cx_pred)
pred_dict['Y'].append(cy_pred)
pred_dict['Visibility'].append(vis_pred)
prev_f_i = f_i
else:
break
return pred_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--video_file', type=str, help='file path of the video')
parser.add_argument('--tracknet_file', type=str, help='file path of the TrackNet model checkpoint')
parser.add_argument('--inpaintnet_file', type=str, default='', help='file path of the InpaintNet model checkpoint')
parser.add_argument('--batch_size', type=int, default=16, help='batch size for inference')
parser.add_argument('--eval_mode', type=str, default='weight', choices=['nonoverlap', 'average', 'weight'], help='evaluation mode')
parser.add_argument('--max_sample_num', type=int, default=1800, help='maximum number of frames to sample for generating median image')
parser.add_argument('--video_range', type=lambda splits: [int(s) for s in splits.split(',')], default=None, help='range of start second and end second of the video for generating median image')
parser.add_argument('--save_dir', type=str, default='pred_result', help='directory to save the prediction result')
parser.add_argument('--large_video', action='store_true', default=False, help='whether to process large video')
parser.add_argument('--output_video', action='store_true', default=False, help='whether to output video with predicted trajectory')
parser.add_argument('--traj_len', type=int, default=8, help='length of trajectory to draw on video')
args = parser.parse_args()
num_workers = args.batch_size if args.batch_size <= 16 else 16
video_file = args.video_file
video_name = video_file.split('/')[-1][:-4]
video_range = args.video_range if args.video_range else None
large_video = args.large_video
out_csv_file = os.path.join(args.save_dir, f'{video_name}_ball.csv')
out_video_file = os.path.join(args.save_dir, f'{video_name}.mp4')
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# Load model
tracknet_ckpt = torch.load(args.tracknet_file)
tracknet_seq_len = tracknet_ckpt['param_dict']['seq_len']
bg_mode = tracknet_ckpt['param_dict']['bg_mode']
tracknet = get_model('TrackNet', tracknet_seq_len, bg_mode).cuda()
tracknet.load_state_dict(tracknet_ckpt['model'])
if args.inpaintnet_file:
inpaintnet_ckpt = torch.load(args.inpaintnet_file)
inpaintnet_seq_len = inpaintnet_ckpt['param_dict']['seq_len']
inpaintnet = get_model('InpaintNet').cuda()
inpaintnet.load_state_dict(inpaintnet_ckpt['model'])
else:
inpaintnet = None
cap = cv2.VideoCapture(args.video_file)
w, h = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
w_scaler, h_scaler = w / WIDTH, h / HEIGHT
img_scaler = (w_scaler, h_scaler)
tracknet_pred_dict = {'Frame':[], 'X':[], 'Y':[], 'Visibility':[], 'Inpaint_Mask':[],
'Img_scaler': (w_scaler, h_scaler), 'Img_shape': (w, h)}
# Test on TrackNet
tracknet.eval()
seq_len = tracknet_seq_len
if args.eval_mode == 'nonoverlap':
# Create dataset with non-overlap sampling
if large_video:
dataset = Video_IterableDataset(video_file, seq_len=seq_len, sliding_step=seq_len, bg_mode=bg_mode,
max_sample_num=args.max_sample_num, video_range=video_range)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, drop_last=False)
print(f'Video length: {dataset.video_len}')
else:
# Sample all frames from video
frame_list = generate_frames(args.video_file)
dataset = Shuttlecock_Trajectory_Dataset(seq_len=seq_len, sliding_step=seq_len, data_mode='heatmap', bg_mode=bg_mode,
frame_arr=np.array(frame_list)[:, :, :, ::-1], padding=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=num_workers, drop_last=False)
for step, (i, x) in enumerate(tqdm(data_loader)):
x = x.float().cuda()
with torch.no_grad():
y_pred = tracknet(x).detach().cpu()
# Predict
tmp_pred = predict(i, y_pred=y_pred, img_scaler=img_scaler)
for key in tmp_pred.keys():
tracknet_pred_dict[key].extend(tmp_pred[key])
else:
# Create dataset with overlap sampling for temporal ensemble
if large_video:
dataset = Video_IterableDataset(video_file, seq_len=seq_len, sliding_step=1, bg_mode=bg_mode,
max_sample_num=args.max_sample_num, video_range=video_range)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, drop_last=False)
video_len = dataset.video_len
print(f'Video length: {video_len}')
else:
# Sample all frames from video
frame_list = generate_frames(args.video_file)
dataset = Shuttlecock_Trajectory_Dataset(seq_len=seq_len, sliding_step=1, data_mode='heatmap', bg_mode=bg_mode,
frame_arr=np.array(frame_list)[:, :, :, ::-1])
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=num_workers, drop_last=False)
video_len = len(frame_list)
# Init prediction buffer params
num_sample, sample_count = video_len-seq_len+1, 0
buffer_size = seq_len - 1
batch_i = torch.arange(seq_len) # [0, 1, 2, 3, 4, 5, 6, 7]
frame_i = torch.arange(seq_len-1, -1, -1) # [7, 6, 5, 4, 3, 2, 1, 0]
y_pred_buffer = torch.zeros((buffer_size, seq_len, HEIGHT, WIDTH), dtype=torch.float32)
weight = get_ensemble_weight(seq_len, args.eval_mode)
for step, (i, x) in enumerate(tqdm(data_loader)):
x = x.float().cuda()
b_size, seq_len = i.shape[0], i.shape[1]
with torch.no_grad():
y_pred = tracknet(x).detach().cpu()
y_pred_buffer = torch.cat((y_pred_buffer, y_pred), dim=0)
ensemble_i = torch.empty((0, 1, 2), dtype=torch.float32)
ensemble_y_pred = torch.empty((0, 1, HEIGHT, WIDTH), dtype=torch.float32)
for b in range(b_size):
if sample_count < buffer_size:
# Imcomplete buffer
y_pred = y_pred_buffer[batch_i+b, frame_i].sum(0) / (sample_count+1)
else:
# General case
y_pred = (y_pred_buffer[batch_i+b, frame_i] * weight[:, None, None]).sum(0)
ensemble_i = torch.cat((ensemble_i, i[b][0].reshape(1, 1, 2)), dim=0)
ensemble_y_pred = torch.cat((ensemble_y_pred, y_pred.reshape(1, 1, HEIGHT, WIDTH)), dim=0)
sample_count += 1
if sample_count == num_sample:
# Last batch
y_zero_pad = torch.zeros((buffer_size, seq_len, HEIGHT, WIDTH), dtype=torch.float32)
y_pred_buffer = torch.cat((y_pred_buffer, y_zero_pad), dim=0)
for f in range(1, seq_len):
# Last input sequence
y_pred = y_pred_buffer[batch_i+b+f, frame_i].sum(0) / (seq_len-f)
ensemble_i = torch.cat((ensemble_i, i[-1][f].reshape(1, 1, 2)), dim=0)
ensemble_y_pred = torch.cat((ensemble_y_pred, y_pred.reshape(1, 1, HEIGHT, WIDTH)), dim=0)
# Predict
tmp_pred = predict(ensemble_i, y_pred=ensemble_y_pred, img_scaler=img_scaler)
for key in tmp_pred.keys():
tracknet_pred_dict[key].extend(tmp_pred[key])
# Update buffer, keep last predictions for ensemble in next iteration
y_pred_buffer = y_pred_buffer[-buffer_size:]
#assert video_len == len(tracknet_pred_dict['Frame']), 'Prediction length mismatch'
# Test on TrackNetV3 (TrackNet + InpaintNet)
if inpaintnet is not None:
inpaintnet.eval()
seq_len = inpaintnet_seq_len
tracknet_pred_dict['Inpaint_Mask'] = generate_inpaint_mask(tracknet_pred_dict, th_h=h*0.05)
inpaint_pred_dict = {'Frame':[], 'X':[], 'Y':[], 'Visibility':[]}
if args.eval_mode == 'nonoverlap':
# Create dataset with non-overlap sampling
dataset = Shuttlecock_Trajectory_Dataset(seq_len=seq_len, sliding_step=seq_len, data_mode='coordinate', pred_dict=tracknet_pred_dict, padding=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=num_workers, drop_last=False)
for step, (i, coor_pred, inpaint_mask) in enumerate(tqdm(data_loader)):
coor_pred, inpaint_mask = coor_pred.float(), inpaint_mask.float()
with torch.no_grad():
coor_inpaint = inpaintnet(coor_pred.cuda(), inpaint_mask.cuda()).detach().cpu()
coor_inpaint = coor_inpaint * inpaint_mask + coor_pred * (1-inpaint_mask) # replace predicted coordinates with inpainted coordinates
# Thresholding
th_mask = ((coor_inpaint[:, :, 0] < COOR_TH) & (coor_inpaint[:, :, 1] < COOR_TH))
coor_inpaint[th_mask] = 0.
# Predict
tmp_pred = predict(i, c_pred=coor_inpaint, img_scaler=img_scaler)
for key in tmp_pred.keys():
inpaint_pred_dict[key].extend(tmp_pred[key])
else:
# Create dataset with overlap sampling for temporal ensemble
dataset = Shuttlecock_Trajectory_Dataset(seq_len=seq_len, sliding_step=1, data_mode='coordinate', pred_dict=tracknet_pred_dict)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=num_workers, drop_last=False)
weight = get_ensemble_weight(seq_len, args.eval_mode)
# Init buffer params
num_sample, sample_count = len(dataset), 0
buffer_size = seq_len - 1
batch_i = torch.arange(seq_len) # [0, 1, 2, 3, 4, 5, 6, 7]
frame_i = torch.arange(seq_len-1, -1, -1) # [7, 6, 5, 4, 3, 2, 1, 0]
coor_inpaint_buffer = torch.zeros((buffer_size, seq_len, 2), dtype=torch.float32)
for step, (i, coor_pred, inpaint_mask) in enumerate(tqdm(data_loader)):
coor_pred, inpaint_mask = coor_pred.float(), inpaint_mask.float()
b_size = i.shape[0]
with torch.no_grad():
coor_inpaint = inpaintnet(coor_pred.cuda(), inpaint_mask.cuda()).detach().cpu()
coor_inpaint = coor_inpaint * inpaint_mask + coor_pred * (1-inpaint_mask)
# Thresholding
th_mask = ((coor_inpaint[:, :, 0] < COOR_TH) & (coor_inpaint[:, :, 1] < COOR_TH))
coor_inpaint[th_mask] = 0.
coor_inpaint_buffer = torch.cat((coor_inpaint_buffer, coor_inpaint), dim=0)
ensemble_i = torch.empty((0, 1, 2), dtype=torch.float32)
ensemble_coor_inpaint = torch.empty((0, 1, 2), dtype=torch.float32)
for b in range(b_size):
if sample_count < buffer_size:
# Imcomplete buffer
coor_inpaint = coor_inpaint_buffer[batch_i+b, frame_i].sum(0)
coor_inpaint /= (sample_count+1)
else:
# General case
coor_inpaint = (coor_inpaint_buffer[batch_i+b, frame_i] * weight[:, None]).sum(0)
ensemble_i = torch.cat((ensemble_i, i[b][0].view(1, 1, 2)), dim=0)
ensemble_coor_inpaint = torch.cat((ensemble_coor_inpaint, coor_inpaint.view(1, 1, 2)), dim=0)
sample_count += 1
if sample_count == num_sample:
# Last input sequence
coor_zero_pad = torch.zeros((buffer_size, seq_len, 2), dtype=torch.float32)
coor_inpaint_buffer = torch.cat((coor_inpaint_buffer, coor_zero_pad), dim=0)
for f in range(1, seq_len):
coor_inpaint = coor_inpaint_buffer[batch_i+b+f, frame_i].sum(0)
coor_inpaint /= (seq_len-f)
ensemble_i = torch.cat((ensemble_i, i[-1][f].view(1, 1, 2)), dim=0)
ensemble_coor_inpaint = torch.cat((ensemble_coor_inpaint, coor_inpaint.view(1, 1, 2)), dim=0)
# Thresholding
th_mask = ((ensemble_coor_inpaint[:, :, 0] < COOR_TH) & (ensemble_coor_inpaint[:, :, 1] < COOR_TH))
ensemble_coor_inpaint[th_mask] = 0.
# Predict
tmp_pred = predict(ensemble_i, c_pred=ensemble_coor_inpaint, img_scaler=img_scaler)
for key in tmp_pred.keys():
inpaint_pred_dict[key].extend(tmp_pred[key])
# Update buffer, keep last predictions for ensemble in next iteration
coor_inpaint_buffer = coor_inpaint_buffer[-buffer_size:]
# Write csv file
pred_dict = inpaint_pred_dict if inpaintnet is not None else tracknet_pred_dict
write_pred_csv(pred_dict, save_file=out_csv_file)
# Write video with predicted coordinates
if args.output_video:
write_pred_video(video_file, pred_dict, save_file=out_video_file, traj_len=args.traj_len)
print('Done.')