The MPII-Cooking-2 dataset and can be downloaded from here. After downloading the dataset, the directory structure should look like this:
.
├── experimentalSetup
├── videos
│ ├── s07-d72-cam-002.avi
│ └── ...
└── attributesAnnotations_MPII-Cooking-2.mat
We have provided the mpii_split.py script to split the dataset into training, validation, and testing set. The script will generate the following directory structure:
MPII
├── train.csv
├── test.csv
├── train
│ ├── addV
│ │ ├── s22-d26-cam-002_8666.mp4
│ │ ├── s22-d26-cam-002_8711.mp4
│ │ └── ...
| ├── arrangeV
│ │ ├── s28-d51-cam-002_2860.mp4
│ │ ├── s28-d51-cam-002_3142.mp4
│ │ └── ...
│ └── ...
└── test
├── addV
│ ├── s08-d02-cam-002_5200.mp4
│ ├── s08-d02-cam-002_5260.mp4
│ └── ...
└── ...
The original dataloader is modified to support the hdf5 format (in this demo we skip the validation set for simplicity). We have prepared the code in the convert_h5.py script to convert the dataset to hdf5 format, where the final directory structure should look like the same as the original dataset structure but in one hdf5 file.
-
After donwloading the dataset, prepare the csv files for training, validation, and testing set as
train.csv
,val.csv
,test.csv
. The format of the csv file is:path_to_video_1 label_1 path_to_video_2 label_2 path_to_video_3 label_3 ... path_to_video_N label_N
-
Please put all annotation json files and the frame lists or videos under the same directory, then refer to the convert_h5.py script to convert the dataset to hdf5 format as the MPII-Cooking-2 dataset preparation above.
-
Set
DATA.PATH_TO_DATA_DIR
to the appropriate path. -
Set
DATA.PATH_PREFIX
to be the path to the folder containing extracted frames accordingly.