diff --git a/.github/scripts/unittest.sh b/.github/scripts/unittest.sh index bb2ad73715a..7f2b2100389 100755 --- a/.github/scripts/unittest.sh +++ b/.github/scripts/unittest.sh @@ -8,7 +8,7 @@ set -euo pipefail eval "$($(which conda) shell.bash hook)" && conda deactivate && conda activate ci echo '::group::Install testing utilities' -pip install --progress-bar=off pytest pytest-mock pytest-cov +pip install --progress-bar=off pytest pytest-mock pytest-cov expecttest echo '::endgroup::' python test/smoke_test.py diff --git a/test/conftest.py b/test/conftest.py index ea73b09b906..a9768598ded 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -19,6 +19,7 @@ def pytest_configure(config): config.addinivalue_line("markers", "needs_cuda: mark for tests that rely on a CUDA device") config.addinivalue_line("markers", "needs_mps: mark for tests that rely on a MPS device") config.addinivalue_line("markers", "dont_collect: mark for tests that should not be collected") + config.addinivalue_line("markers", "opcheck_only_one: only opcheck one parametrization") def pytest_collection_modifyitems(items): diff --git a/test/optests_failures_dict.json b/test/optests_failures_dict.json new file mode 100644 index 00000000000..3bad0bbb027 --- /dev/null +++ b/test/optests_failures_dict.json @@ -0,0 +1,5 @@ +{ + "_description": "This is a dict containing failures for tests autogenerated by generate_opcheck_tests. For more details, please see https://docs.google.com/document/d/1Pj5HRZvdOq3xpFpbEjUZp2hBovhy7Wnxw14m6lF2154/edit", + "_version": 1, + "data": {} +} diff --git a/test/test_models.py b/test/test_models.py index 33c6a84c941..088ea1bf7fa 100644 --- a/test/test_models.py +++ b/test/test_models.py @@ -25,16 +25,6 @@ SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1" -@contextlib.contextmanager -def disable_tf32(): - previous = torch.backends.cudnn.allow_tf32 - torch.backends.cudnn.allow_tf32 = False - try: - yield - finally: - torch.backends.cudnn.allow_tf32 = previous - - def list_model_fns(module): return [get_model_builder(name) for name in list_models(module)] @@ -681,7 +671,7 @@ def test_vitc_models(model_fn, dev): test_classification_model(model_fn, dev) -@disable_tf32() # see: https://github.com/pytorch/vision/issues/7618 +@torch.backends.cudnn.flags(allow_tf32=False) # see: https://github.com/pytorch/vision/issues/7618 @pytest.mark.parametrize("model_fn", list_model_fns(models)) @pytest.mark.parametrize("dev", cpu_and_cuda()) def test_classification_model(model_fn, dev): diff --git a/test/test_ops.py b/test/test_ops.py index 743fe159e37..6d80f037b88 100644 --- a/test/test_ops.py +++ b/test/test_ops.py @@ -10,6 +10,7 @@ import torch import torch.fx import torch.nn.functional as F +import torch.testing._internal.optests as optests from common_utils import assert_equal, cpu_and_cuda, cpu_and_cuda_and_mps, needs_cuda, needs_mps from PIL import Image from torch import nn, Tensor @@ -19,6 +20,14 @@ from torchvision.models.feature_extraction import get_graph_node_names +OPTESTS = [ + "test_schema", + "test_autograd_registration", + "test_faketensor", + "test_aot_dispatch_dynamic", +] + + # Context manager for setting deterministic flag and automatically # resetting it to its original value class DeterministicGuard: @@ -462,7 +471,7 @@ def test_boxes_shape(self): @pytest.mark.parametrize("aligned", (True, False)) @pytest.mark.parametrize("device", cpu_and_cuda_and_mps()) - @pytest.mark.parametrize("x_dtype", (torch.float16, torch.float32, torch.float64), ids=str) + @pytest.mark.parametrize("x_dtype", (torch.float16, torch.float32, torch.float64)) # , ids=str) @pytest.mark.parametrize("contiguous", (True, False)) @pytest.mark.parametrize("deterministic", (True, False)) def test_forward(self, device, contiguous, deterministic, aligned, x_dtype, rois_dtype=None): @@ -712,6 +721,7 @@ def _create_tensors_with_iou(self, N, iou_thresh): @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8)) @pytest.mark.parametrize("seed", range(10)) + @pytest.mark.opcheck_only_one() def test_nms_ref(self, iou, seed): torch.random.manual_seed(seed) err_msg = "NMS incompatible between CPU and reference implementation for IoU={}" @@ -732,6 +742,7 @@ def test_nms_input_errors(self): @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8)) @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10))) + @pytest.mark.opcheck_only_one() def test_qnms(self, iou, scale, zero_point): # Note: we compare qnms vs nms instead of qnms vs reference implementation. # This is because with the int conversion, the trick used in _create_tensors_with_iou @@ -759,6 +770,7 @@ def test_qnms(self, iou, scale, zero_point): ), ) @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8)) + @pytest.mark.opcheck_only_one() def test_nms_gpu(self, iou, device, dtype=torch.float64): dtype = torch.float32 if device == "mps" else dtype tol = 1e-3 if dtype is torch.half else 1e-5 @@ -778,6 +790,7 @@ def test_nms_gpu(self, iou, device, dtype=torch.float64): @needs_cuda @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8)) @pytest.mark.parametrize("dtype", (torch.float, torch.half)) + @pytest.mark.opcheck_only_one() def test_autocast(self, iou, dtype): with torch.cuda.amp.autocast(): self.test_nms_gpu(iou=iou, dtype=dtype, device="cuda") @@ -789,6 +802,7 @@ def test_autocast(self, iou, dtype): pytest.param("mps", marks=pytest.mark.needs_mps), ), ) + @pytest.mark.opcheck_only_one() def test_nms_float16(self, device): boxes = torch.tensor( [ @@ -805,6 +819,7 @@ def test_nms_float16(self, device): assert_equal(keep32, keep16) @pytest.mark.parametrize("seed", range(10)) + @pytest.mark.opcheck_only_one() def test_batched_nms_implementations(self, seed): """Make sure that both implementations of batched_nms yield identical results""" torch.random.manual_seed(seed) @@ -830,6 +845,15 @@ def test_batched_nms_implementations(self, seed): torch.testing.assert_close(empty, ops.batched_nms(empty, None, None, None)) +optests.generate_opcheck_tests( + testcase=TestNMS, + namespaces=["torchvision"], + failures_dict_path=os.path.join(os.path.dirname(__file__), "optests_failures_dict.json"), + additional_decorators=[], + test_utils=OPTESTS, +) + + class TestDeformConv: dtype = torch.float64