We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I'm getting this import error when trying to import the libraty
from torchao.quantization import quantize_ File "/home/coder/.local/lib/python3.10/site-packages/torchao/__init__.py", line 31, in <module> from torchao.quantization import ( File "/home/coder/.local/lib/python3.10/site-packages/torchao/quantization/__init__.py", line 7, in <module> from .smoothquant import * # noqa: F403 File "/home/coder/.local/lib/python3.10/site-packages/torchao/quantization/smoothquant.py", line 18, in <module> from .utils import ( File "/home/coder/.local/lib/python3.10/site-packages/torchao/quantization/utils.py", line 12, in <module> from .quant_primitives import ( File "/home/coder/.local/lib/python3.10/site-packages/torchao/quantization/quant_primitives.py", line 78, in <module> quant_lib = torch.library.Library("quant", "FRAGMENT") File "/home/coder/.local/lib/python3.10/site-packages/torch/library.py", line 34, in __init__ raise ValueError("Unsupported kind: ", kind) ValueError: ('Unsupported kind: ', 'FRAGMENT')
Cuda:
+---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.183.01 Driver Version: 535.183.01 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA L4 On | 00000000:35:00.0 Off | 0 | | N/A 47C P0 20W / 72W | 0MiB / 23034MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | No running processes found | +---------------------------------------------------------------------------------------+
Env
PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OneFlow version: none Nexfort version: none OneDiff version: none OneDiffX version: none OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L4 Nvidia driver version: 535.183.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.4 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 16 On-line CPU(s) list: 0-15 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7R13 Processor Stepping: 1 CPU MHz: 2944.343 BogoMIPS: 5299.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 256 KiB L1i cache: 256 KiB L2 cache: 4 MiB L3 cache: 32 MiB NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid Versions of relevant libraries: [pip3] diffusers==0.30.0 [pip3] numpy==1.24.0 [pip3] open-clip-torch==2.20.0 [pip3] pytorch-lightning==2.0.1 [pip3] torch==2.0.1 [pip3] torchao==0.4.0 [pip3] torchmetrics==1.4.2 [pip3] torchsde==0.2.6 [pip3] torchvision==0.15.2 [pip3] transformers==4.44.2 [pip3] triton==2.0.0 [conda] Could not collect
This issue did not happen when using Nvidia A10g / 24 GB.
The text was updated successfully, but these errors were encountered:
we only support pytorch 2.2+ right now and probably will be dropping 2.2. can you upgrade your PyTorch?
Sorry, something went wrong.
No branches or pull requests
I'm getting this import error when trying to import the libraty
Cuda:
Env
This issue did not happen when using Nvidia A10g / 24 GB.
The text was updated successfully, but these errors were encountered: