Open
Description
Bug Description
To Reproduce
Steps to reproduce the behavior:
- Run the code
model = models.resnet101(pretrained=False).eval().to("cuda")
exp_program = torch.export.export(model, tuple(inputs))
enabled_precisions = {torch.float}
debug = False
workspace_size = 20 << 30
min_block_size = 0
use_python_runtime = False
torch_executed_ops = {}
trt_gm = torch_trt.dynamo.compile(
exp_program,
tuple(inputs),
use_python_runtime=use_python_runtime,
enabled_precisions=enabled_precisions,
debug=debug,
min_block_size=min_block_size,
torch_executed_ops=torch_executed_ops,
make_refitable=True,
) # Output is a torch.fx.GraphModule
expected_outputs, compiled_outputs = model(*inputs), trt_gm(*inputs)
for expected_output, compiled_output in zip(expected_outputs, compiled_outputs):
assert torch.allclose(
expected_output, compiled_output, 1e-2, 1e-2
), "Compilation Result is not correct. Compilation failed"
print("Compilation successfully!")
Expected behavior
The error should be smaller
Environment
Build information about Torch-TensorRT can be found by turning on debug messages
- Torch-TensorRT Version (e.g. 1.0.0): 2.5.0
- PyTorch Version (e.g. 1.0): 2.5.0
- CPU Architecture: x86
- OS (e.g., Linux): Linux
- How you installed PyTorch (
conda
,pip
,libtorch
, source):source - Build command you used (if compiling from source):develop/edible
- Are you using local sources or building from archives:
- Python version:3.10.14
- CUDA version:12.1
- GPU models and configuration: A40
- Any other relevant information: