You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
working on the cross-platform compile feature,
when I call torch_tensorrt.save(trt_gm, trt_ep_path, inputs=inputs) try to save the model
it will error out with RuntimeError: Engine has not been setup yet.
++++++++++++++++++++++++++++++++++++++++++++++++++ Dry-Run Results for Graph ++++++++++++++++++++++++++++++++++++++++++++++++++
The graph consists of 1 Total Operators, of which 1 operators are supported, 100.0% coverage
Compiled with: CompilationSettings(enabled_precisions={<dtype.f32: 7>}, debug=True, workspace_size=0, min_block_size=1, torch_executed_ops=set(), pass_through_build_failures=False, max_aux_streams=None, version_compatible=False, optimization_level=None, use_python_runtime=False, truncate_double=False, use_fast_partitioner=True, enable_experimental_decompositions=False, device=Device(type=DeviceType.GPU, gpu_id=0), require_full_compilation=False, disable_tf32=False, assume_dynamic_shape_support=False, sparse_weights=False, make_refitable=False, engine_capability=<EngineCapability.STANDARD: 1>, num_avg_timing_iters=1, dla_sram_size=1048576, dla_local_dram_size=1073741824, dla_global_dram_size=536870912, dryrun=False, hardware_compatible=False, timing_cache_path='/tmp/timing_cache.bin', lazy_engine_init=True, enable_cross_platform_compatibility=True)
Graph Structure:
Inputs: List[Tensor: (2, 3)@float32, Tensor: (2, 3)@float32]
...
TRT Engine #1 - Submodule name: _run_on_acc_0
Engine Inputs: List[Tensor: (2, 3)@float32, Tensor: (2, 3)@float32]
Number of Operators in Engine: 1
Engine Outputs: Tensor: (2, 3)@float32
...
Outputs: List[Tensor: (2, 3)@float32]
------------------------- Aggregate Stats -------------------------
Average Number of Operators per TRT Engine: 1.0
Most Operators in a TRT Engine: 1
********** Recommendations **********
- For minimal graph segmentation, select min_block_size=1 which would generate 1 TRT engine(s)
- The current level of graph segmentation is equivalent to selecting min_block_size=1 which generates 1 TRT engine(s)
Traceback (most recent call last):
File "/home/lanl/git/script/python/test_save_cross_platform.py", line 23, in <module>
torch_tensorrt.save(trt_gm, trt_ep_path, inputs=inputs)
File "/home/lanl/git/py311/TensorRT/py/torch_tensorrt/_compile.py", line 528, in save
exp_program = export(module, arg_inputs, kwarg_inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/git/py311/TensorRT/py/torch_tensorrt/dynamo/_exporter.py", line 35, in export
patched_module = transform(gm, inputs, kwarg_inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/git/py311/TensorRT/py/torch_tensorrt/dynamo/_exporter.py", line 62, in transform
_, outputs_map = partitioning.run_shape_analysis(gm, inputs, kwarg_inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/git/py311/TensorRT/py/torch_tensorrt/dynamo/partitioning/common.py", line 156, in run_shape_analysis
parent_module(*inputs, **kwarg_inputs)
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/fx/graph_module.py", line 738, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/fx/graph_module.py", line 316, in __call__
raise e
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/fx/graph_module.py", line 303, in __call__
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1566, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1575, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<eval_with_key>.39", line 6, in forward
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1566, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/miniconda3/envs/torch_tensorrt_py311/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1616, in _call_impl
result = forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/lanl/git/py311/TensorRT/py/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.py", line 217, in forward
raise RuntimeError("Engine has not been setup yet.")
RuntimeError: Engine has not been setup yet.
To Reproduce
Steps to reproduce the behavior:
Expected behavior
torch_tensorrt.save(trt_gm, trt_ep_path, inputs=inputs) should success.
Environment
Build information about Torch-TensorRT can be found by turning on debug messages
Torch-TensorRT Version (e.g. 1.0.0):
PyTorch Version (e.g. 1.0):
CPU Architecture:
OS (e.g., Linux):
How you installed PyTorch (conda, pip, libtorch, source):
Build command you used (if compiling from source):
Are you using local sources or building from archives:
Python version:
CUDA version:
GPU models and configuration:
Any other relevant information:
Additional context
The text was updated successfully, but these errors were encountered:
This is what @peri044 has replied in the slack:
this is because we are running shape analysis during the save call which expects the engines to be setup. We can ideally remove this step and read the shape data from the graph itself. I can take this AI on me.
Bug Description
working on the cross-platform compile feature,
when I call torch_tensorrt.save(trt_gm, trt_ep_path, inputs=inputs) try to save the model
it will error out with RuntimeError: Engine has not been setup yet.
To Reproduce
Steps to reproduce the behavior:
Expected behavior
torch_tensorrt.save(trt_gm, trt_ep_path, inputs=inputs) should success.
Environment
conda
,pip
,libtorch
, source):Additional context
The text was updated successfully, but these errors were encountered: