@@ -430,13 +430,11 @@ def forward(self, x, src, dim, index):
430
430
return y
431
431
432
432
# Operations expected to be removed in the traced graph after decompositions
433
- expected_ops = {
434
- torch .ops .aten .slice .Tensor ,
435
- torch .ops .aten .squeeze .dim ,
436
- torch .ops .aten .cat .default ,
437
- torch .ops .aten .reshape .default ,
433
+ expected_ops = {torch .ops .aten .scatter .src , torch .ops .aten .unsqueeze .default }
434
+ unexpected_ops = {
435
+ torch .ops .aten .select_scatter .default ,
436
+ torch .ops .aten .slice_scatter .default ,
438
437
}
439
- unexpected_ops = {torch .ops .aten .select_scatter .default }
440
438
441
439
inputs = [torch .zeros (2 , 2 ).cuda (), torch .ones (2 ).cuda (), 0 , 0 ]
442
440
@@ -469,6 +467,7 @@ def forward(self, x, src, dim, index):
469
467
"torch_compile" ,
470
468
inputs ,
471
469
min_block_size = 1 ,
470
+ truncate_long_and_double = True ,
472
471
pass_through_build_failures = True ,
473
472
)
474
473
optimized_model_results = optimized_model (* inputs ).detach ().cpu ()
@@ -494,13 +493,11 @@ def forward(self, x, src, dim, index):
494
493
return y
495
494
496
495
# Operations expected to be removed in the traced graph after decompositions
497
- expected_ops = {
498
- torch .ops .aten .slice .Tensor ,
499
- torch .ops .aten .squeeze .dim ,
500
- torch .ops .aten .unsqueeze .default ,
501
- torch .ops .aten .cat .default ,
496
+ expected_ops = {torch .ops .aten .scatter .src , torch .ops .aten .unsqueeze .default }
497
+ unexpected_ops = {
498
+ torch .ops .aten .select_scatter .default ,
499
+ torch .ops .aten .slice_scatter .default ,
502
500
}
503
- unexpected_ops = {torch .ops .aten .select_scatter .default }
504
501
505
502
inputs = [torch .zeros (2 , 2 ).cuda (), torch .ones (2 ).cuda (), 1 , 0 ]
506
503
@@ -533,6 +530,7 @@ def forward(self, x, src, dim, index):
533
530
"torch_compile" ,
534
531
inputs ,
535
532
min_block_size = 1 ,
533
+ truncate_long_and_double = True ,
536
534
pass_through_build_failures = True ,
537
535
)
538
536
optimized_model_results = optimized_model (* inputs ).detach ().cpu ()
0 commit comments