-
Notifications
You must be signed in to change notification settings - Fork 25
/
detect_image.py
44 lines (31 loc) · 1.29 KB
/
detect_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Yolo v3 image detection
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import tensorflow as tf
import sys
import cv2
from yolo_v3 import Yolo_v3
from utils import load_images, load_class_names, draw_boxes
_MODEL_SIZE = (416, 416)
_CLASS_NAMES_FILE = 'coco.names'
_MAX_OUTPUT_SIZE = 50
detection_result = {}
def main(iou_threshold, confidence_threshold, input_names):
global detection_result
class_names = load_class_names(_CLASS_NAMES_FILE)
n_classes = len(class_names)
model = Yolo_v3(n_classes=n_classes, model_size=_MODEL_SIZE,
max_output_size=_MAX_OUTPUT_SIZE,
iou_threshold=iou_threshold,
confidence_threshold=confidence_threshold)
batch = load_images(input_names, model_size=_MODEL_SIZE)
inputs = tf.placeholder(tf.float32, [1, *_MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
detection_result = sess.run(detections, feed_dict={inputs: batch})
draw_boxes(input_names, detection_result, class_names, _MODEL_SIZE)
print('Detections have been saved successfully.')
if __name__ == '__main__':
main(0.5, 0.5, "input/office.jpg")