-
Notifications
You must be signed in to change notification settings - Fork 25
/
detect.py
109 lines (81 loc) · 3.77 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
"""Yolo v3 detection script.
Saves the detections in the `detection` folder.
Usage:
python detect.py <images/video> <iou threshold> <confidence threshold> <filenames>
Example:
python detect.py images 0.5 0.5 data/images/dog.jpg data/images/office.jpg
python detect.py video 0.5 0.5 data/video/shinjuku.mp4
Note that only one video can be processed at one run.
"""
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import tensorflow as tf
import sys
import cv2
from yolo_v3 import Yolo_v3
from utils import load_images, load_class_names, draw_boxes, draw_frame
_MODEL_SIZE = (416, 416)
_CLASS_NAMES_FILE = './data/labels/coco.names'
_MAX_OUTPUT_SIZE = 20
detection_result = {}
def main(type, iou_threshold, confidence_threshold, input_names):
global detection_result
class_names = load_class_names(_CLASS_NAMES_FILE)
n_classes = len(class_names)
model = Yolo_v3(n_classes=n_classes, model_size=_MODEL_SIZE,
max_output_size=_MAX_OUTPUT_SIZE,
iou_threshold=iou_threshold,
confidence_threshold=confidence_threshold)
if type == 'images':
#batch_size = len(input_names)
batch = load_images(input_names, model_size=_MODEL_SIZE)
inputs = tf.placeholder(tf.float32, [1, *_MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
detection_result = sess.run(detections, feed_dict={inputs: batch})
#detection_result = detection_result[0]
print("detection_result", detection_result)
draw_boxes(input_names, detection_result, class_names, _MODEL_SIZE)
print('Detections have been saved successfully.')
elif type == 'video':
inputs = tf.placeholder(tf.float32, [1, *_MODEL_SIZE, 3])
detections = model(inputs, training=False)
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
saver.restore(sess, './weights/model.ckpt')
win_name = 'Video detection'
cv2.namedWindow(win_name)
cap = cv2.VideoCapture(input_names[0])
frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'X264')
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('./detections/detections.mp4', fourcc, fps,
(int(frame_size[0]), int(frame_size[1])))
try:
while True:
ret, frame = cap.read()
if not ret:
break
resized_frame = cv2.resize(frame, dsize=_MODEL_SIZE[::-1],
interpolation=cv2.INTER_NEAREST)
detection_result = sess.run(detections,
feed_dict={inputs: [resized_frame]})
draw_frame(frame, frame_size, detection_result,
class_names, _MODEL_SIZE)
cv2.imshow(win_name, frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
out.write(frame)
finally:
cv2.destroyAllWindows()
cap.release()
print('Detections have been saved successfully.')
else:
raise ValueError("Inappropriate data type. Please choose either 'video' or 'images'.")
if __name__ == '__main__':
#main(sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), sys.argv[4:])
main("images", 0.5, 0.5, "road.jpg")