From e82fed4f34dd29af13656d6ce87474e7b79fca09 Mon Sep 17 00:00:00 2001 From: Mohit Kumar Date: Sun, 17 Nov 2024 13:20:31 +0530 Subject: [PATCH] Fix doctring log-likelihood to distribution --- pymc/distributions/multivariate.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/pymc/distributions/multivariate.py b/pymc/distributions/multivariate.py index da10b12fa9..80dce87dea 100644 --- a/pymc/distributions/multivariate.py +++ b/pymc/distributions/multivariate.py @@ -194,7 +194,7 @@ def quaddist_chol(value, mu, cov): class MvNormal(Continuous): r""" - Multivariate normal log-likelihood. + Multivariate normal distribution. .. math:: @@ -394,7 +394,7 @@ def rng_fn(cls, rng, nu, mu, cov, size): class MvStudentT(Continuous): r""" - Multivariate Student-T log-likelihood. + Multivariate Student-T distribution. .. math:: f(\mathbf{x}| \nu,\mu,\Sigma) = @@ -491,7 +491,7 @@ def logp(value, nu, mu, scale): class Dirichlet(SimplexContinuous): r""" - Dirichlet log-likelihood. + Dirichlet distribution. .. math:: @@ -563,7 +563,7 @@ def logp(value, a): class Multinomial(Discrete): r""" - Multinomial log-likelihood. + Multinomial distribution. Generalizes binomial distribution, but instead of each trial resulting in "success" or "failure", each one results in exactly one of some @@ -691,7 +691,7 @@ def rv_op(cls, n, a, *, size=None, rng=None): class DirichletMultinomial(Discrete): - r"""Dirichlet Multinomial log-likelihood. + r"""Dirichlet Multinomial distribution. Dirichlet mixture of Multinomials distribution, with a marginalized PMF. @@ -950,7 +950,7 @@ def rng_fn(cls, rng, nu, V, size): class Wishart(Continuous): r""" - Wishart log-likelihood. + Wishart distribution. The Wishart distribution is the probability distribution of the maximum-likelihood estimator (MLE) of the precision matrix of a @@ -1648,7 +1648,7 @@ def lkjcorr_default_transform(op, rv): class LKJCorr: r""" - The LKJ (Lewandowski, Kurowicka and Joe) log-likelihood. + The LKJ (Lewandowski, Kurowicka and Joe) distribution. The LKJ distribution is a prior distribution for correlation matrices. If eta = 1 this corresponds to the uniform distribution over correlation @@ -1753,7 +1753,7 @@ def rng_fn(cls, rng, mu, rowchol, colchol, size=None): class MatrixNormal(Continuous): r""" - Matrix-valued normal log-likelihood. + Matrix-valued normal distribution. .. math:: f(x \mid \mu, U, V) = @@ -1961,7 +1961,7 @@ def rv_op(cls, mu, sigma, *covs, size=None, rng=None): class KroneckerNormal(Continuous): r""" - Multivariate normal log-likelihood with Kronecker-structured covariance. + Multivariate normal distribution with Kronecker-structured covariance. .. math::