In some scenarios, the Triton written kernels are more performant than CK or other handwritten kernels, so we implement a framework that enables onnxruntime to use these Triton written kernels.
Here we use softmax
op as an example to show how to integrate a Triton written kernel into onnxruntime CUDA/ROCm EP.
We have implemented a softmax kernel using Triton at onnxruntime/core/providers/rocm/math/softmax_triton.py
@triton.jit
def softmax_kernel(
output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols,
BLOCK_SIZE: tl.constexpr
):
# softmax implementations
...
...
This is a very simple implementation. The n_cols
parameter should be smaller than BLOCK_SIZE
. And BLOCK_SIZE
MUST be determined at compile time.
In order to support different input shapes, we compile multiple kernels with different BLOCK_SIZE
s.
Each kernel with different BLOCK_SIZE
generates different num_warps
and shared memory usage, we call them metadata
, and these metadata are needed when launching kernels in onnxruntime.
We develop a script tools/ci_build/compile_triton.py
to compile kernel and generate metadata for kernel launching.
To generate metadata for softmax, we need to add description info and implement a get_function_table
function in softmax_triton.py
:
# kernel dtype and BLOCK_SIZE to generate.
dtypes = ['fp32', 'fp16']
blocks = [1024, 2048, 4096, 8192, 16384]
name_pattern = 'softmax_{}_{}'
sig_pattern = '*{},*{},i32,i32,i32'
group_pattern = 'softmax_{}'
"""
SHOULD implement a function that returns a metadata list with format:
function_table = [
{
'name': xx,
'group': yy,
'func': func,
'sig': sig,
'kwargs': kwargs
}
]
The kwargs is a dict of {string: int} which is used for kernel constants. For example, BLOCK_SIZE of softmax.
"""
def get_function_table():
...
When compiling onnxruntime with --use_triton_kernel
flag, this softmax kernel will be compiled and combined into libonnxruntime_providers_rocm.so
for ROCm or libonnxruntime_providers_cuda.so
for CUDA.
To use the Triton kernels in onnxruntime, we need to implement a C++ op that calls these Triton kernels.
Similar with CK, we implement a function that returns all possible Triton kernels, and the TunableOp
will select the best one.
template <typename T, typename OutputT>
auto GetSoftmaxTritonOps() {
std::vector<std::pair<std::string, tunable::Op<SoftmaxParams<T, OutputT>>>> ret;
auto group_name = GetSoftmaxTritonGroupName<T>();
// here use group_name to get all kernel with same group_name
// for example, 'softmax_fp16' represents a group of kernels with different BLOCK_SIZE for float16 softmax
auto *kernel_list = GetOrtTritonKernelByGroup(group_name);
if (kernel_list == nullptr) {
return ret;
}
for (auto i : *kernel_list) {
// check params match
...
}
return ret;
}
Using kernel_explorer, we can test this softmax kernel like:
export KERNEL_EXPLORER_BUILD_DIR=<ONNXRUNTIME_BUILD_DIR>
python onnxruntime/python/tools/kernel_explorer/kernels/softmax_test.py
and the result shows that TunableOp
selects softmax_fp16_2048
which is a Triton written kernel and better than others.
SoftmaxTunable float16 batch_count=1 softmax_elements=2048 is_log_softmax=0 4.27 us, 1.92 GB/s
softmax_fp16_2048 float16 batch_count=1 softmax_elements=2048 is_log_softmax=0 4.48 us, 1.83 GB/s
...