Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Normalization change in AddRandomWalkPE: From A D⁻¹ to D⁻¹ May Deviate from Paper #9915

Open
ywangmy opened this issue Jan 3, 2025 · 0 comments
Labels

Comments

@ywangmy
Copy link

ywangmy commented Jan 3, 2025

🐛 Describe the bug

Hi! I've been using AddRandomWalkPE and noticed a potential discrepancy between the current implementation and the RWPE methodology as described in the paper “Graph Neural Networks with Learnable Structural and Positional Representations” (arXiv:2110.07875).

  • The current implementation seems to use $D^{-1}$ as the transition matrix.
  • The initial implementation f35c85f appears to handle the normalization correctly as $A D^{-1}$, which was changed in 0ea43bb.

Could you please confirm whether the current normalization approach aligns with the paper?

Versions

PyTorch version: 2.3.0                                                         
Is debug build: False      
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
                                                                               
OS: Red Hat Enterprise Linux release 8.10 (Ootpa) (x86_64)                     
GCC version: (conda-forge gcc 13.3.0-1) 13.3.0                                 
Clang version: 11.1.0 (https://github.com/conda-forge/clangdev-feedstock 2816c2c
f231a2d3a6d621af9bbb2c590c9e63fe7)                                             
CMake version: version 3.30.5                                                  
Libc version: glibc-2.28                                                       
                                                                               
Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36
) [GCC 13.3.0] (64-bit runtime)                                                 
Python platform: Linux-4.18.0-553.33.1.el8_10.x86_64-x86_64-with-glibc2.28     
Is CUDA available: True                                                        
CUDA runtime version: Could not collect                                        
CUDA_MODULE_LOADING set to: LAZY                                               
GPU models and configuration:                                                  
GPU 0: NVIDIA RTX 6000 Ada Generation                                          
GPU 1: NVIDIA RTX 6000 Ada Generation                                           
GPU 2: NVIDIA RTX 6000 Ada Generation                                          
GPU 3: NVIDIA RTX 6000 Ada Generation                                          
GPU 4: NVIDIA RTX 6000 Ada Generation                                           
GPU 5: NVIDIA RTX 6000 Ada Generation                                           
GPU 6: NVIDIA RTX 6000 Ada Generation                                          
GPU 7: NVIDIA RTX 6000 Ada Generation                                           
                                                                                
Nvidia driver version: 565.57.01                                                
cuDNN version: Probably one of the following:                                   
/usr/lib64/libcudnn.so.8.9.7                                                    
/usr/lib64/libcudnn_adv_infer.so.8.9.7                                          
/usr/lib64/libcudnn_adv_train.so.8.9.7                                          
/usr/lib64/libcudnn_cnn_infer.so.8.9.7                                          
/usr/lib64/libcudnn_cnn_train.so.8.9.7                                          
/usr/lib64/libcudnn_ops_infer.so.8.9.7                                         
/usr/lib64/libcudnn_ops_train.so.8.9.7                                         
HIP runtime version: N/A                                                       
MIOpen runtime version: N/A                                                    
Is XNNPACK available: True                                                     
                                       
CPU:
Architecture:         x86_64
CPU op-mode(s):       32-bit, 64-bit
Byte Order:           Little Endian
CPU op-mode(s):       32-bit, 64-bit                                     [41/95]
Byte Order:           Little Endian  
CPU(s):               256                                                      
On-line CPU(s) list:  0-254
Off-line CPU(s) list: 255       
Thread(s) per core:   1        
Core(s) per socket:   64                                                       
Socket(s):            2                                                        
NUMA node(s):         2                                                        
Vendor ID:            AuthenticAMD                                              
CPU family:           25                                                       
Model:                1                                                        
Model name:           AMD EPYC 7763 64-Core Processor                          
Stepping:             1                                                        
CPU MHz:              2450.000                                                  
CPU max MHz:          3529.0520                                                 
CPU min MHz:          1500.0000                                                
BogoMIPS:             4899.95                                                  
Virtualization:       AMD-V                                                    
L1d cache:            32K                                                      
L1i cache:            32K                                                      
L2 cache:             512K                                                     
L3 cache:             32768K                                                    
NUMA node0 CPU(s):    0-63,128-191                                             
NUMA node1 CPU(s):    64-127,192-254                                           
Flags:                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca c
mov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rd
tscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni
pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsav
e avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignss
e 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext pe
rfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb s
tibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clfl
ushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_
total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin brs arat npt lbrv
 svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter p
fthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid
 overflow_recov succor smca                                                    
                                                                               
Versions of relevant libraries:                                                
[pip3] mypy-extensions==1.0.0                                                  
[pip3] numpy==1.24.3                                                           
[pip3] torch==2.3.0                    
[pip3] torch_cluster==1.6.3+pt23cu121
[pip3] torch-geometric==2.6.1
[pip3] torch_scatter==2.1.2+pt23cu121
[pip3] torch_sparse==0.6.18+pt23cu121
[pip3] numpy==1.24.3                                                      [0/95]
[pip3] torch==2.3.0                  
[pip3] torch_cluster==1.6.3+pt23cu121                                          
[pip3] torch-geometric==2.6.1
[pip3] torch_scatter==2.1.2+pt23cu121
[pip3] torch_sparse==0.6.18+pt23cu121
[pip3] torch_spline_conv==1.2.2+pt23cu121                                      
[pip3] torchaudio==2.3.0                                                       
[pip3] torchvision==0.18.0                                                     
[pip3] triton==2.3.0                                                            
[conda] blas                      1.0                         mkl              
[conda] cuda-cudart               12.1.105                      0    nvidia    
[conda] cuda-cupti                12.1.105                      0    nvidia    
[conda] cuda-libraries            12.1.0                        0    nvidia    
[conda] cuda-nvrtc                12.1.105                      0    nvidia     
[conda] cuda-nvtx                 12.1.105                      0    nvidia     
[conda] cuda-opencl               12.6.77                       0    nvidia    
[conda] cuda-runtime              12.1.0                        0    nvidia    
[conda] libblas                   3.9.0            12_linux64_mkl    conda-forge
[conda] libcblas                  3.9.0            12_linux64_mkl    conda-forge
[conda] libcublas                 12.1.0.26                     0    nvidia    
[conda] libcufft                  11.0.2.4                      0    nvidia    
[conda] libcurand                 10.3.7.77                     0    nvidia     
[conda] libcusolver               11.4.4.55                     0    nvidia    
[conda] libcusparse               12.0.2.55                     0    nvidia    
[conda] libjpeg-turbo             2.0.0                h9bf148f_0    pytorch    
[conda] liblapack                 3.9.0            12_linux64_mkl    conda-forge
[conda] libnvjitlink              12.1.105                      0    nvidia    
[conda] mkl                       2021.4.0           h06a4308_640               
[conda] mkl-service               2.4.0           py311h5eee18b_0               
[conda] mkl_fft                   1.3.1           py311h30b3d60_0               
[conda] mkl_random                1.2.2           py311hba01205_0               
[conda] numpy                     1.24.3          py311hc206e33_0               
[conda] numpy-base                1.24.3          py311hfd5febd_0               
[conda] pytorch                   2.3.0           py3.11_cuda12.1_cudnn8.9.2_0  
  pytorch                                                                       
[conda] pytorch-cuda              12.1                 ha16c6d3_6    pytorch    
[conda] pytorch-mutex             1.0                        cuda    pytorch   
[conda] torch-cluster             1.6.3+pt23cu121          pypi_0    pypi      
[conda] torch-geometric           2.6.1                    pypi_0    pypi      
[conda] torch-scatter             2.1.2+pt23cu121          pypi_0    pypi      
[conda] torch-sparse              0.6.18+pt23cu121          pypi_0    pypi     
[conda] torch-spline-conv         1.2.2+pt23cu121          pypi_0    pypi
[conda] torchaudio                2.3.0               py311_cu121    pytorch
[conda] torchtriton               2.3.0                     py311    pytorch
[conda] torchvision               0.18.0              py311_cu121    pytorch
@ywangmy ywangmy added the bug label Jan 3, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant