diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 0459f7955..bf519a967 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -32,19 +32,18 @@ repos: name: Upgrade Python syntax args: [--py38-plus] - # TODO - # - repo: https://github.com/PyCQA/autoflake - # rev: v2.3.1 - # hooks: - # - id: autoflake - # name: Remove unused imports and variables - # args: [ - # --remove-all-unused-imports, - # --remove-unused-variables, - # --remove-duplicate-keys, - # --ignore-init-module-imports, - # --in-place, - # ] + - repo: https://github.com/PyCQA/autoflake + rev: v2.3.1 + hooks: + - id: autoflake + name: Remove unused imports and variables + args: [ + --remove-all-unused-imports, + --remove-unused-variables, + --remove-duplicate-keys, + --ignore-init-module-imports, + --in-place, + ] - repo: https://github.com/google/yapf rev: v0.40.2 diff --git a/.ruff.toml b/.ruff.toml index 30da9dd30..6344f76ab 100644 --- a/.ruff.toml +++ b/.ruff.toml @@ -1,7 +1,27 @@ include = ["pyproject.toml", "pyg_lib/**/*.py"] +extend-exclude = [ + "pyg_lib/testing.py", + "test", + "tools", + "setup.py", + "benchmark", +] src = ["pyg_lib"] line-length = 80 target-version = "py38" [lint] -select = ["D"] +select = [ + "D", +] +ignore = [ + "D100", # TODO Don't ignore "Missing docstring in public module" + "D104", # TODO Don't ignore "Missing docstring in public package" + "D205", # Ignore "blank line required between summary line and description" +] + +[lint.pydocstyle] +convention = "google" + +[format] +quote-style = "single" diff --git a/pyg_lib/ops/__init__.py b/pyg_lib/ops/__init__.py index 579aa52e3..e9b069458 100644 --- a/pyg_lib/ops/__init__.py +++ b/pyg_lib/ops/__init__.py @@ -5,7 +5,7 @@ from torch import Tensor -def pytreeify(cls): +def _pytreeify(cls): r"""A pytree is Python nested data structure. It is a tree in the sense that nodes are Python collections (e.g., list, tuple, dict) and the leaves are Python values. @@ -56,7 +56,7 @@ def new_backward(ctx, *flat_grad_outputs): return cls -@pytreeify +@_pytreeify class GroupedMatmul(torch.autograd.Function): @staticmethod def forward(ctx, args: Tuple[Tensor]) -> Tuple[Tensor]: @@ -96,8 +96,11 @@ def backward(ctx, *outs_grad: Tuple[Tensor]) -> Tuple[Tensor]: return tuple(inputs_grad + others_grad) -def grouped_matmul(inputs: List[Tensor], others: List[Tensor], - biases: Optional[List[Tensor]] = None) -> List[Tensor]: +def grouped_matmul( + inputs: List[Tensor], + others: List[Tensor], + biases: Optional[List[Tensor]] = None, +) -> List[Tensor]: r"""Performs dense-dense matrix multiplication according to groups, utilizing dedicated kernels that effectively parallelize over groups. @@ -135,14 +138,17 @@ def grouped_matmul(inputs: List[Tensor], others: List[Tensor], return outs -def segment_matmul(inputs: Tensor, ptr: Tensor, other: Tensor, - bias: Optional[Tensor] = None) -> Tensor: +def segment_matmul( + inputs: Tensor, + ptr: Tensor, + other: Tensor, + bias: Optional[Tensor] = None, +) -> Tensor: r"""Performs dense-dense matrix multiplication according to segments along the first dimension of :obj:`inputs` as given by :obj:`ptr`, utilizing dedicated kernels that effectively parallelize over groups. - .. code-block:: python - + Example: inputs = torch.randn(8, 16) ptr = torch.tensor([0, 5, 8]) other = torch.randn(2, 16, 32) @@ -153,11 +159,11 @@ def segment_matmul(inputs: Tensor, ptr: Tensor, other: Tensor, assert out[5:8] == inputs[5:8] @ other[1] Args: - input (torch.Tensor): The left operand 2D matrix of shape + inputs (torch.Tensor): The left operand 2D matrix of shape :obj:`[N, K]`. ptr (torch.Tensor): Compressed vector of shape :obj:`[B + 1]`, holding - the boundaries of segments. - For best performance, given as a CPU tensor. + the boundaries of segments. For best performance, given as a CPU + tensor. other (torch.Tensor): The right operand 3D tensor of shape :obj:`[B, K, M]`. bias (torch.Tensor, optional): Optional bias term of shape @@ -181,7 +187,7 @@ def sampled_add( ) -> Tensor: r"""Performs a sampled **addition** of :obj:`left` and :obj:`right` according to the indices specified in :obj:`left_index` and - :obj:`right_index`: + :obj:`right_index`. .. math:: \textrm{out} = \textrm{left}[\textrm{left_index}] + @@ -213,7 +219,7 @@ def sampled_sub( ) -> Tensor: r"""Performs a sampled **subtraction** of :obj:`left` by :obj:`right` according to the indices specified in :obj:`left_index` and - :obj:`right_index`: + :obj:`right_index`. .. math:: \textrm{out} = \textrm{left}[\textrm{left_index}] - @@ -245,7 +251,7 @@ def sampled_mul( ) -> Tensor: r"""Performs a sampled **multiplication** of :obj:`left` and :obj:`right` according to the indices specified in :obj:`left_index` and - :obj:`right_index`: + :obj:`right_index`. .. math:: \textrm{out} = \textrm{left}[\textrm{left_index}] * @@ -277,7 +283,7 @@ def sampled_div( ) -> Tensor: r"""Performs a sampled **division** of :obj:`left` by :obj:`right` according to the indices specified in :obj:`left_index` and - :obj:`right_index`: + :obj:`right_index`. .. math:: \textrm{out} = \textrm{left}[\textrm{left_index}] / @@ -351,7 +357,6 @@ def softmax_csr( :rtype: :class:`Tensor` Examples: - >>> src = torch.randn(4, 4) >>> ptr = torch.tensor([0, 4]) >>> softmax(src, ptr) diff --git a/pyg_lib/ops/scatter_reduce.py b/pyg_lib/ops/scatter_reduce.py index 0bbb69ec1..5bfd84cd0 100644 --- a/pyg_lib/ops/scatter_reduce.py +++ b/pyg_lib/ops/scatter_reduce.py @@ -89,6 +89,7 @@ def fused_scatter_reduce( dim_size: int, reduce_list: List[str], ) -> Tensor: + r"""Fuses multiple scatter operations into a single kernel.""" # TODO (matthias): Add support for `out`. # TODO (matthias): Add backward functionality. # TODO (matthias): Add support for inputs.dim() != 2. diff --git a/pyg_lib/sampler/__init__.py b/pyg_lib/sampler/__init__.py index c2ca0c496..301701d9a 100644 --- a/pyg_lib/sampler/__init__.py +++ b/pyg_lib/sampler/__init__.py @@ -61,7 +61,7 @@ def neighbor_sample( :obj:`node_time` as default for seed nodes. Needs to be specified in case edge-level sampling is used via :obj:`edge_time`. (default: :obj:`None`) - edge-weight (torch.Tensor, optional): If given, will perform biased + edge_weight (torch.Tensor, optional): If given, will perform biased sampling based on the weight of each edge. (default: :obj:`None`) csc (bool, optional): If set to :obj:`True`, assumes that the graph is given in CSC format :obj:`(colptr, row)`. (default: :obj:`False`) @@ -117,10 +117,8 @@ def hetero_neighbor_sample( .. note :: Similar to :meth:`neighbor_sample`, but expects a dictionary of node types (:obj:`str`) and edge types (:obj:`Tuple[str, str, str]`) for - each non-boolean argument. - - Args: - kwargs: Arguments of :meth:`neighbor_sample`. + each non-boolean argument. See :meth:`neighbor_sample` for more + details. """ src_node_types = {k[0] for k in rowptr_dict.keys()} dst_node_types = {k[-1] for k in rowptr_dict.keys()} @@ -193,8 +191,14 @@ def subgraph( return torch.ops.pyg.subgraph(rowptr, col, nodes, return_edge_id) -def random_walk(rowptr: Tensor, col: Tensor, seed: Tensor, walk_length: int, - p: float = 1.0, q: float = 1.0) -> Tensor: +def random_walk( + rowptr: Tensor, + col: Tensor, + seed: Tensor, + walk_length: int, + p: float = 1.0, + q: float = 1.0, +) -> Tensor: r"""Samples random walks of length :obj:`walk_length` from all node indices in :obj:`seed` in the graph given by :obj:`(rowptr, col)`, as described in the `"node2vec: Scalable Feature Learning for Networks"