@@ -635,115 +635,288 @@ def test_to_raindepth(dataset, expected):
635
635
np .array ([23.01029996 ]),
636
636
{
637
637
"units" : "dBZ" ,
638
+ "transform" : "dB" ,
639
+ "accutime" : 5 ,
640
+ "threshold" : 23.01029996 ,
641
+ "zerovalue" : 18.01029996 ,
642
+ },
643
+ )
644
+ },
645
+ attrs = {"precip_var" : "reflectivity" },
646
+ ),
647
+ ),
648
+ (
649
+ xr .Dataset (
650
+ data_vars = {
651
+ "precip_accum" : (
652
+ ["x" ],
653
+ np .array ([1.0 ]),
654
+ {
655
+ "units" : "mm" ,
638
656
"transform" : None ,
639
657
"accutime" : 5 ,
658
+ "threshold" : 1.0 ,
659
+ "zerovalue" : 1.0 ,
660
+ },
661
+ )
662
+ },
663
+ attrs = {"precip_var" : "precip_accum" },
664
+ ),
665
+ xr .Dataset (
666
+ data_vars = {
667
+ "reflectivity" : (
668
+ ["x" ],
669
+ np .array ([40.27719989 ]),
670
+ {
671
+ "units" : "dBZ" ,
672
+ "transform" : "dB" ,
673
+ "accutime" : 5 ,
674
+ "threshold" : 40.27719989 ,
675
+ "zerovalue" : 35.27719989 ,
676
+ },
677
+ )
678
+ },
679
+ attrs = {"precip_var" : "reflectivity" },
680
+ ),
681
+ ),
682
+ (
683
+ xr .Dataset (
684
+ data_vars = {
685
+ "precip_intensity" : (
686
+ ["x" ],
687
+ np .array ([1.0 ]),
688
+ {
689
+ "units" : "mm/h" ,
690
+ "transform" : "dB" ,
691
+ "accutime" : 5 ,
692
+ "threshold" : 1.0 ,
693
+ "zerovalue" : 1.0 ,
694
+ },
695
+ )
696
+ },
697
+ attrs = {"precip_var" : "precip_intensity" },
698
+ ),
699
+ xr .Dataset (
700
+ data_vars = {
701
+ "reflectivity" : (
702
+ ["x" ],
703
+ np .array ([24.61029996 ]),
704
+ {
705
+ "units" : "dBZ" ,
706
+ "transform" : "dB" ,
707
+ "accutime" : 5 ,
708
+ "threshold" : 24.61029996 ,
709
+ "zerovalue" : 19.61029996 ,
710
+ },
711
+ )
712
+ },
713
+ attrs = {"precip_var" : "reflectivity" },
714
+ ),
715
+ ),
716
+ (
717
+ xr .Dataset (
718
+ data_vars = {
719
+ "precip_accum" : (
720
+ ["x" ],
721
+ np .array ([1.0 ]),
722
+ {
723
+ "units" : "mm" ,
724
+ "transform" : "dB" ,
725
+ "accutime" : 5 ,
726
+ "threshold" : 1.0 ,
727
+ "zerovalue" : 1.0 ,
728
+ },
729
+ )
730
+ },
731
+ attrs = {"precip_var" : "precip_accum" },
732
+ ),
733
+ xr .Dataset (
734
+ data_vars = {
735
+ "reflectivity" : (
736
+ ["x" ],
737
+ np .array ([41.87719989 ]),
738
+ {
739
+ "units" : "dBZ" ,
740
+ "transform" : "dB" ,
741
+ "accutime" : 5 ,
742
+ "threshold" : 41.87719989 ,
743
+ "zerovalue" : 36.87719989 ,
744
+ },
745
+ )
746
+ },
747
+ attrs = {"precip_var" : "reflectivity" },
748
+ ),
749
+ ),
750
+ (
751
+ xr .Dataset (
752
+ data_vars = {
753
+ "reflectivity" : (
754
+ ["x" ],
755
+ np .array ([1.0 ]),
756
+ {
757
+ "units" : "dBZ" ,
758
+ "transform" : "dB" ,
759
+ "accutime" : 5 ,
760
+ "threshold" : 1.0 ,
761
+ "zerovalue" : 1.0 ,
762
+ },
763
+ )
764
+ },
765
+ attrs = {"precip_var" : "reflectivity" },
766
+ ),
767
+ xr .Dataset (
768
+ data_vars = {
769
+ "reflectivity" : (
770
+ ["x" ],
771
+ np .array ([1.0 ]),
772
+ {
773
+ "units" : "dBZ" ,
774
+ "transform" : "dB" ,
775
+ "accutime" : 5 ,
776
+ "threshold" : 1.0 ,
777
+ "zerovalue" : - 4.0 ,
778
+ },
779
+ )
780
+ },
781
+ attrs = {"precip_var" : "reflectivity" },
782
+ ),
783
+ ),
784
+ (
785
+ xr .Dataset (
786
+ data_vars = {
787
+ "precip_intensity" : (
788
+ ["x" ],
789
+ np .array ([1.0 ]),
790
+ {
791
+ "units" : "mm/h" ,
792
+ "transform" : "log" ,
793
+ "accutime" : 5 ,
794
+ "threshold" : 1.0 ,
795
+ "zerovalue" : 1.0 ,
796
+ },
797
+ )
798
+ },
799
+ attrs = {"precip_var" : "precip_intensity" },
800
+ ),
801
+ xr .Dataset (
802
+ data_vars = {
803
+ "reflectivity" : (
804
+ ["x" ],
805
+ np .array ([29.95901167 ]),
806
+ {
807
+ "units" : "dBZ" ,
808
+ "transform" : "dB" ,
809
+ "accutime" : 5 ,
810
+ "threshold" : 29.95901167 ,
811
+ "zerovalue" : 24.95901167 ,
812
+ },
813
+ )
814
+ },
815
+ attrs = {"precip_var" : "reflectivity" },
816
+ ),
817
+ ),
818
+ (
819
+ xr .Dataset (
820
+ data_vars = {
821
+ "precip_accum" : (
822
+ ["x" ],
823
+ np .array ([1.0 ]),
824
+ {
825
+ "units" : "mm" ,
826
+ "transform" : "log" ,
827
+ "accutime" : 5 ,
828
+ "threshold" : 1.0 ,
829
+ "zerovalue" : 1.0 ,
830
+ },
831
+ )
832
+ },
833
+ attrs = {"precip_var" : "precip_accum" },
834
+ ),
835
+ xr .Dataset (
836
+ data_vars = {
837
+ "reflectivity" : (
838
+ ["x" ],
839
+ np .array ([47.2259116 ]),
840
+ {
841
+ "units" : "dBZ" ,
842
+ "transform" : "dB" ,
843
+ "accutime" : 5 ,
844
+ "threshold" : 47.2259116 ,
845
+ "zerovalue" : 42.2259116 ,
846
+ },
847
+ )
848
+ },
849
+ attrs = {"precip_var" : "reflectivity" },
850
+ ),
851
+ ),
852
+ (
853
+ xr .Dataset (
854
+ data_vars = {
855
+ "precip_intensity" : (
856
+ ["x" ],
857
+ np .array ([1.0 ]),
858
+ {
859
+ "units" : "mm/h" ,
860
+ "transform" : "sqrt" ,
861
+ "accutime" : 5 ,
862
+ "threshold" : 1.0 ,
863
+ "zerovalue" : 1.0 ,
864
+ },
865
+ )
866
+ },
867
+ attrs = {"precip_var" : "precip_intensity" },
868
+ ),
869
+ xr .Dataset (
870
+ data_vars = {
871
+ "reflectivity" : (
872
+ ["x" ],
873
+ np .array ([23.01029996 ]),
874
+ {
875
+ "units" : "dBZ" ,
876
+ "transform" : "dB" ,
877
+ "accutime" : 5 ,
640
878
"threshold" : 23.01029996 ,
641
- "zerovalue" : 23.01029996 ,
879
+ "zerovalue" : 18.01029996 ,
880
+ },
881
+ )
882
+ },
883
+ attrs = {"precip_var" : "reflectivity" },
884
+ ),
885
+ ),
886
+ (
887
+ xr .Dataset (
888
+ data_vars = {
889
+ "precip_accum" : (
890
+ ["x" ],
891
+ np .array ([1.0 ]),
892
+ {
893
+ "units" : "mm" ,
894
+ "transform" : "sqrt" ,
895
+ "accutime" : 5 ,
896
+ "threshold" : 1.0 ,
897
+ "zerovalue" : 1.0 ,
898
+ },
899
+ )
900
+ },
901
+ attrs = {"precip_var" : "precip_accum" },
902
+ ),
903
+ xr .Dataset (
904
+ data_vars = {
905
+ "reflectivity" : (
906
+ ["x" ],
907
+ np .array ([40.27719989 ]),
908
+ {
909
+ "units" : "dBZ" ,
910
+ "transform" : "dB" ,
911
+ "accutime" : 5 ,
912
+ "threshold" : 40.27719989 ,
913
+ "zerovalue" : 35.27719989 ,
642
914
},
643
915
)
644
916
},
645
917
attrs = {"precip_var" : "reflectivity" },
646
918
),
647
919
),
648
- # (
649
- # np.array([1]),
650
- # {
651
- # "accutime": 5,
652
- # "transform": None,
653
- # "unit": "mm/h",
654
- # "threshold": 0,
655
- # "zerovalue": 0,
656
- # },
657
- # np.array([23.01029996]),
658
- # ),
659
- # (
660
- # np.array([1]),
661
- # {
662
- # "accutime": 5,
663
- # "transform": None,
664
- # "unit": "mm",
665
- # "threshold": 0,
666
- # "zerovalue": 0,
667
- # },
668
- # np.array([40.27719989]),
669
- # ),
670
- # (
671
- # np.array([1]),
672
- # {
673
- # "accutime": 5,
674
- # "transform": "dB",
675
- # "unit": "mm/h",
676
- # "threshold": 0,
677
- # "zerovalue": 0,
678
- # },
679
- # np.array([24.61029996]),
680
- # ),
681
- # (
682
- # np.array([1]),
683
- # {
684
- # "accutime": 5,
685
- # "transform": "dB",
686
- # "unit": "mm",
687
- # "threshold": 0,
688
- # "zerovalue": 0,
689
- # },
690
- # np.array([41.87719989]),
691
- # ),
692
- # (
693
- # np.array([1]),
694
- # {
695
- # "accutime": 5,
696
- # "transform": "dB",
697
- # "unit": "dBZ",
698
- # "threshold": 0,
699
- # "zerovalue": 0,
700
- # },
701
- # np.array([1]),
702
- # ),
703
- # (
704
- # np.array([1]),
705
- # {
706
- # "accutime": 5,
707
- # "transform": "log",
708
- # "unit": "mm/h",
709
- # "threshold": 0,
710
- # "zerovalue": 0,
711
- # },
712
- # np.array([29.95901167]),
713
- # ),
714
- # (
715
- # np.array([1.0]),
716
- # {
717
- # "accutime": 5,
718
- # "transform": "log",
719
- # "unit": "mm",
720
- # "threshold": 0,
721
- # "zerovalue": 0,
722
- # },
723
- # np.array([47.2259116]),
724
- # ),
725
- # (
726
- # np.array([1]),
727
- # {
728
- # "accutime": 5,
729
- # "transform": "sqrt",
730
- # "unit": "mm/h",
731
- # "threshold": 0,
732
- # "zerovalue": 0,
733
- # },
734
- # np.array([23.01029996]),
735
- # ),
736
- # (
737
- # np.array([1.0]),
738
- # {
739
- # "accutime": 5,
740
- # "transform": "sqrt",
741
- # "unit": "mm",
742
- # "threshold": 0,
743
- # "zerovalue": 0,
744
- # },
745
- # np.array([40.27719989]),
746
- # ),
747
920
]
748
921
749
922
0 commit comments