-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogic Minimization.py
315 lines (302 loc) · 9.76 KB
/
Logic Minimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def Transpose(l):
l2=list(zip(*l))
l1=[]
for i in l2:
l1.append(list(i))
return l1
def binary(n):
s=""
while n>=2:
s+=str((n%2))
n//=2
s+=str(n)
while len(s)<num:
s+='0'
return s[::-1]
def adjacency(s1,s2): #To check the adjacency of two implicants
num=0
n=len(s1)
for i in range(n):
if s1[i]!=s2[i]:
index=i
num+=1
adj=True if (num==1 and (s1[index]!="_" and s2[index]!="_")) else False
return adj,index
def imp(l):
n=len(l)
c=[]
for i in range(n):
if l[i]:
c.append(i)
return set(c)
def Minimize(minterms,dontcares):
tot=minterms[::]
tot.extend(dontcares)
implicants=[]
mincover=[]
l1=[]
l2=[]
l3=[]
for i in tot:
l1.append(binary(i))
l2.append([i])
n=len(l1)
ch=1
while ch:
ch=0
for i in range(n-1):
if l1[i].count('1')>l1[i+1].count('1'):
l1[i],l1[i+1]=l1[i+1],l1[i]
l2[i],l2[i+1]=l2[i+1],l2[i]
ch=1
while True:
m1=[]
m2=[]
n=len(l1)
l3=[False]*n
i=0
j=0
while i<n:
while j<n :
if l1[j].count('1')==l1[i].count('1'): #Constructing the Prime Implicant Table
j+=1
if j<n:
if l1[j].count('1')!=l1[i].count('1'):
if l1[j].count('1')==l1[i].count('1')+1:
num1=j
else:
num1=j
i=num1
else:
i=j
break
elif l1[j].count('1')==l1[i].count('1')+1:
adj,ind=adjacency(l1[i],l1[j])
if adj:
l3[i]=True
l3[j]=True
p=l1[i][:ind:]+"_"+l1[i][ind+1::]
if p not in m1:
m1.append(p)
m=l2[i][::]
m.extend(l2[j])
m2.append(m)
if j+1<n:
j+=1
else:
j=num1
i+=1
else:
j=num1
i+=1
num1=0
for i in range(n):
if not(l3[i]):
implicants.append(l1[i])
mincover.append(l2[i])
num1+=1
if num1==n:
break
l1=m1[::]
l2=m2[::]
ok=False
implicants.reverse()
mincover.reverse()
final=set(minterms) #Constructing the Cover Table
lst=minterms[::]
for i in range(len(implicants)):
mincover[i]=list(set(mincover[i])&final)
l1=[]
for i in range(len(implicants)):
l0=[]
for j in range(len(lst)):
l0.append(lst[j] in mincover[i])
l1.append(l0)
minimized=[]
num1=1
num2=1
while num1:
num1=0
ch=len(implicants)
n=len(lst)
while num2:
num2=0
l2=Transpose(l1)
j=0
epi=[]
for num in range(len(lst)):
if l2[num].count(True)==1:
epi.append(lst[num])
# print("Picking EPIs")
while epi!=[]:
# print(j) #Picking the Essential Prime Implicants
if epi[0] not in lst:
del epi[0]
continue
ind1=lst.index(epi[0])
i=l2[ind1].index(True)
a=0
while a<len(lst):
if lst[a] in mincover[i]:
del lst[a]
del l2[a]
else:
a+=1
l1=Transpose(l2)
minimized.append(implicants[i])
del implicants[i]
del mincover[i]
del epi[0]
if l1!=[]:
del l1[i]
l2=Transpose(l1)
j=0
num2=1
# print(minimized)
final=set(lst)
for i in range(len(implicants)):
mincover[i]=list(set(mincover[i])&final)
l2=Transpose(l1)
if final!=set():
ch=1
while ch:
ch=0
for i in range(len(implicants)-1):
if l1[i].count(True)<l1[i+1].count(True):
l1[i],l1[i+1]=l1[i+1],l1[i]
implicants[i],implicants[i+1]=implicants[i+1],implicants[i]
mincover[i],mincover[i+1]=mincover[i+1],mincover[i]
ch=1
ch=len(implicants)
i=ch-1
while i>0:
j=i-1
while j>=0:
if set(mincover[i])&set(mincover[j])==set(mincover[i]): #Removing dominated rows
s1=set(mincover[j])-set(mincover[i])
x=0
for m1 in range(len(implicants)):
if s1&set(mincover[m1])==s1 and implicants[m1].count('_')>=implicants[j].count('_'):
x+=1
if x>1 and implicants[i].count('_')>implicants[j].count('_') and mincover[i]!=[]:
del implicants[j]
del mincover[j]
del l1[j]
else:
del implicants[i]
del mincover[i]
del l1[i]
num2=1
i-=1
j=i-1
continue
j-=1
if j==-1:
i-=1
ch=1
l2=Transpose(l1)
while ch:
ch=0
for i in range(len(lst)-1):
if l2[i].count(True)>l2[i+1].count(True):
l2[i],l2[i+1]=l2[i+1],l2[i]
lst[i],lst[i+1]=lst[i+1],lst[i]
ch=1
final=set(lst)
ch=len(lst)
i=ch-1
while i>0:
j=i-1
while j>=0:
if imp(l2[i])&imp(l2[j])==imp(l2[j]): #Removing dominating columns
del l2[i]
del lst[i]
num2=1
i-=1
j=i-1
continue
j-=1
if j==-1:
i-=1
l1=Transpose(l2)
final=set(lst)
for i in range(len(implicants)):
mincover[i]=list(set(mincover[i])&final)
if final!=set():
minimized.append(implicants[0])
final=final-set(mincover[0])
lst=list(final)
del implicants[0]
del mincover[0]
del l1[0]
l2=Transpose(l1)
num1=1
return minimized
var=tuple()
print("LOGIC MINIMIZATION OF BOOLEAN FUNCTION (Uses Quine-McCluskey Method)\n")
num=int(input("Enter no. of variables in the Boolean function: "))
lim=pow(2,num)
print("\nEnter the variables (make sure they are in order): ")
for i in range(num):
a=input()
var+=(a,)
print("\nEnter list of minterms to be covered (Enter",lim,"to terminate):")
minterms=[]
dontcares=[]
while True:
a=int(input())
if a>=lim:
break
minterms.append(a)
print("\nEnter list of don't cares (Enter",lim,"to terminate):")
while True:
a=int(input())
if a>=lim:
break
dontcares.append(a)
minimal=Minimize(minterms,dontcares)
f_sop=""
min_not=list(set(range(0,lim))-set(minterms)-set(dontcares))
minimal1=Minimize(min_not,dontcares)
f_pos=""
ch=1
while ch:
ch=0
for i in range(len(minimal1)-1):
if minimal1[i].count('_')<minimal1[i+1].count('_'):
minimal1[i],minimal1[i+1]=minimal1[i+1],minimal1[i]
ch=1
if minimal==[]:
f_sop+="0"
f_pos+="0"
elif minimal[0]=="_"*num:
f_sop+="1"
f_pos+="1"
else:
num_terms=len(minimal)
for i in range(num_terms):
term=minimal[i]
for j in range(len(term)):
if term[j]=="_":
continue
else:
f_sop+=var[j]
if term[j]=="0":
f_sop+="'"
if i<num_terms-1:
f_sop+=" + "
for term in minimal1:
if term.count("_")<num-1 and minimal1!=[term]:
f_pos+="("
for j in range(num):
if term[j]=="_":
continue
else:
f_pos+=var[j]
if term[j]=="1":
f_pos+="'"
if j<num-1 and term[j+1::]!=(num-j-1)*"_":
f_pos+=" + "
if term.count("_")<num-1 and minimal1!=[term]:
f_pos+=")"
print("\nMinimized Boolean Function: \n\nF = {} (SOP)\n = {} (POS)".format(f_sop,f_pos))