diff --git a/dowhy/causal_refuters/overrule/BCS/load_process_data_BCS.py b/dowhy/causal_refuters/overrule/BCS/load_process_data_BCS.py index 97b645d831..d887f7c7e6 100644 --- a/dowhy/causal_refuters/overrule/BCS/load_process_data_BCS.py +++ b/dowhy/causal_refuters/overrule/BCS/load_process_data_BCS.py @@ -99,7 +99,7 @@ def fit(self, X): # Categorical column elif (c in self.colCateg) or (data[c].dtype == "object"): # OneHotEncoder object - enc[c] = OneHotEncoder(sparse=False, dtype=int, handle_unknown="ignore") + enc[c] = OneHotEncoder(sparse_output=False, dtype=int, handle_unknown="ignore") # Fit to observed categories enc[c].fit(data[[c]]) diff --git a/dowhy/utils/encoding.py b/dowhy/utils/encoding.py index 2c4929acc1..0d91f48256 100644 --- a/dowhy/utils/encoding.py +++ b/dowhy/utils/encoding.py @@ -44,7 +44,7 @@ def one_hot_encode(data: pd.DataFrame, columns=None, drop_first: bool = False, e drop = None if drop_first: drop = "first" - encoder = OneHotEncoder(drop=drop, sparse=False) # NB sparse renamed to sparse_output in sklearn 1.2+ + encoder = OneHotEncoder(drop=drop, sparse_output=False) # NB sparse renamed to sparse_output in sklearn 1.2+ encoded_data = encoder.fit_transform(data_to_encode)