diff --git a/causaltune/dataset_processor.py b/causaltune/dataset_processor.py
index fb8deee4..eba02c09 100644
--- a/causaltune/dataset_processor.py
+++ b/causaltune/dataset_processor.py
@@ -16,6 +16,7 @@ class CausalityDatasetProcessor(BaseEstimator, TransformerMixin):
outcome (str): The target variable used for encoding.
encoder: Encoder object used during feature transformations.
"""
+
def __init__(self):
"""
Initializes CausalityDatasetProcessor with default attributes for encoder_type, outcome, and encoder.
diff --git a/causaltune/datasets.py b/causaltune/datasets.py
index f4f1406d..880940e6 100644
--- a/causaltune/datasets.py
+++ b/causaltune/datasets.py
@@ -1,5 +1,7 @@
import pandas as pd
import numpy as np
+import pickle
+import os
from scipy import special
# from scipy.stats import betabinom
@@ -12,10 +14,8 @@
def linear_multi_dataset(
- n_points=10000,
- impact=None,
- include_propensity=False,
- include_control=False) -> CausalityDataset:
+ n_points=10000, impact=None, include_propensity=False, include_control=False
+) -> CausalityDataset:
if impact is None:
impact = {0: 0.0, 1: 2.0, 2: 1.0}
df = pd.DataFrame(
@@ -80,8 +80,9 @@ def nhefs() -> CausalityDataset:
df = df.loc[~missing]
df = df[covariates + ["qsmk"] + ["wt82_71"]]
- df.rename(columns={c: "x" + str(i + 1)
- for i, c in enumerate(covariates)}, inplace=True)
+ df.rename(
+ columns={c: "x" + str(i + 1) for i, c in enumerate(covariates)}, inplace=True
+ )
return CausalityDataset(df, treatment="qsmk", outcomes=["wt82_71"])
@@ -172,8 +173,7 @@ def amazon_reviews(rating="pos") -> CausalityDataset:
gdown.download(url, "amazon_" + rating + ".csv", fuzzy=True)
df = pd.read_csv("amazon_" + rating + ".csv")
df.drop(df.columns[[2, 3, 4]], axis=1, inplace=True)
- df.columns = ["treatment", "y_factual"] + \
- ["x" + str(i) for i in range(1, 301)]
+ df.columns = ["treatment", "y_factual"] + ["x" + str(i) for i in range(1, 301)]
return CausalityDataset(df, "treatment", ["y_factual"])
else:
print(
@@ -226,14 +226,10 @@ def synth_ihdp(return_df=False) -> CausalityDataset:
data.columns = col
# drop the columns we don't care about
ignore_patterns = ["y_cfactual", "mu"]
- ignore_cols = [c for c in data.columns if any(
- [s in c for s in ignore_patterns])]
+ ignore_cols = [c for c in data.columns if any([s in c for s in ignore_patterns])]
data = data.drop(columns=ignore_cols)
- return CausalityDataset(
- data,
- "treatment",
- ["y_factual"]) if not return_df else data
+ return CausalityDataset(data, "treatment", ["y_factual"]) if not return_df else data
def synth_acic(condition=1) -> CausalityDataset:
@@ -347,6 +343,7 @@ def generate_synthetic_data(
noisy_outcomes: bool = False,
effect_size: Union[int, None] = None,
add_instrument: bool = False,
+ known_propensity: bool = False,
) -> CausalityDataset:
"""Generates synthetic dataset with conditional treatment effect (CATE) and optional instrumental variable.
Supports RCT (unconfounded) and observational (confounded) data.
@@ -385,11 +382,15 @@ def generate_synthetic_data(
p = np.clip(p, 0.1, 0.9)
C = p > np.random.rand(n_samples)
# print(min(p), max(p))
-
else:
p = 0.5 * np.ones(n_samples)
C = np.random.binomial(n=1, p=0.5, size=n_samples)
+ if known_propensity:
+ known_p = np.random.beta(2, 5, size=n_samples)
+ else:
+ known_p = p
+
if add_instrument:
Z = np.random.binomial(n=1, p=0.5, size=n_samples)
C0 = np.random.binomial(n=1, p=0.006, size=n_samples)
@@ -416,18 +417,11 @@ def mu(X):
Y = tau * T + Y_base
features = [f"X{i+1}" for i in range(n_covariates)]
- df = pd.DataFrame(np.array([*X.T,
- T,
- Y,
- tau,
- p,
- Y_base]).T,
- columns=features + ["treatment",
- "outcome",
- "true_effect",
- "propensity",
- "base_outcome"],
- )
+ df = pd.DataFrame(
+ np.array([*X.T, T, Y, tau, known_p, Y_base]).T,
+ columns=features
+ + ["treatment", "outcome", "true_effect", "propensity", "base_outcome"],
+ )
data = CausalityDataset(
data=df,
treatment="treatment",
@@ -450,6 +444,7 @@ def generate_linear_synthetic_data(
noisy_outcomes: bool = False,
effect_size: Union[int, None] = None,
add_instrument: bool = False,
+ known_propensity: bool = False,
) -> CausalityDataset:
"""Generates synthetic dataset with linear treatment effect (CATE) and optional instrumental variable.
Supports RCT (unconfounded) and observational (confounded) data.
@@ -494,6 +489,11 @@ def generate_linear_synthetic_data(
p = 0.5 * np.ones(n_samples)
C = np.random.binomial(n=1, p=0.5, size=n_samples)
+ if known_propensity:
+ known_p = np.random.beta(2, 5, size=n_samples)
+ else:
+ known_p = p
+
if add_instrument:
Z = np.random.binomial(n=1, p=0.5, size=n_samples)
C0 = np.random.binomial(n=1, p=0.006, size=n_samples)
@@ -520,18 +520,11 @@ def mu(X):
Y = tau * T + Y_base
features = [f"X{i+1}" for i in range(n_covariates)]
- df = pd.DataFrame(np.array([*X.T,
- T,
- Y,
- tau,
- p,
- Y_base]).T,
- columns=features + ["treatment",
- "outcome",
- "true_effect",
- "propensity",
- "base_outcome"],
- )
+ df = pd.DataFrame(
+ np.array([*X.T, T, Y, tau, known_p, Y_base]).T,
+ columns=features
+ + ["treatment", "outcome", "true_effect", "propensity", "base_outcome"],
+ )
data = CausalityDataset(
data=df,
treatment="treatment",
@@ -641,16 +634,8 @@ def generate_non_random_dataset(num_samples=1000):
)
treatment = np.random.binomial(1, propensity)
outcome = (
- 0.2
- * treatment
- + 0.5
- * x1
- - 0.2
- * x2
- + np.random.normal(
- 0,
- 1,
- num_samples))
+ 0.2 * treatment + 0.5 * x1 - 0.2 * x2 + np.random.normal(0, 1, num_samples)
+ )
dataset = {
"T": treatment,
@@ -729,3 +714,41 @@ def mlrate_experiment_synth_dgp(
cd = CausalityDataset(data=df, outcomes=["Y"], treatment="T")
return cd
+
+
+def save_dataset(dataset: CausalityDataset, filename: str):
+ """
+ Save a CausalityDataset object to a file using pickle.
+
+ Args:
+ dataset (CausalityDataset): The dataset to save.
+ filename (str): The name of the file to save the dataset to.
+ """
+ with open(filename, "wb") as f:
+ pickle.dump(dataset, f)
+ print(f"Dataset saved to {filename}")
+
+
+def load_dataset(filename: str) -> CausalityDataset:
+ """
+ Load a CausalityDataset object from a file using pickle.
+
+ Args:
+ filename (str): The name of the file to load the dataset from.
+
+ Returns:
+ CausalityDataset: The loaded dataset.
+ """
+ if not os.path.exists(filename):
+ raise FileNotFoundError(f"File {filename} not found.")
+
+ with open(filename, "rb") as f:
+ dataset = pickle.load(f)
+
+ if not isinstance(dataset, CausalityDataset):
+ raise ValueError(
+ f"The file {filename} does not contain a valid CausalityDataset object."
+ )
+
+ print(f"Dataset loaded from {filename}")
+ return dataset
diff --git a/causaltune/erupt.py b/causaltune/erupt.py
index d7b8fd30..dbca725b 100644
--- a/causaltune/erupt.py
+++ b/causaltune/erupt.py
@@ -4,6 +4,8 @@
import pandas as pd
import numpy as np
+from dowhy.causal_estimator import CausalEstimate
+
# implementation of https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3111957
# we assume treatment takes integer values from 0 to n
@@ -28,12 +30,32 @@ def __init__(
self,
treatment_name: str,
propensity_model,
- X_names: None = Optional[List[str]],
+ X_names: Optional[List[str]] = None,
clip: float = 0.05,
remove_tiny: bool = True,
+ time_budget: Optional[float] = 30.0, # Add default time budget
):
+ """
+ Initialize ERUPT with thompson sampling capability.
+
+ Args:
+ treatment_name (str): Name of treatment column
+ propensity_model: Model for estimating propensity scores
+ X_names (Optional[List[str]]): Names of feature columns
+ clip (float): Clipping threshold for propensity scores
+ remove_tiny (bool): Whether to remove tiny weights
+ time_budget (Optional[float]): Time budget for AutoML propensity fitting
+ """
self.treatment_name = treatment_name
self.propensity_model = copy.deepcopy(propensity_model)
+
+ # If propensity model is AutoML, ensure it has time_budget
+ if (
+ hasattr(self.propensity_model, "time_budget")
+ and self.propensity_model.time_budget is None
+ ):
+ self.propensity_model.time_budget = time_budget
+
self.X_names = X_names
self.clip = clip
self.remove_tiny = remove_tiny
@@ -48,7 +70,7 @@ def score(
) -> pd.Series:
# TODO: make it accept both array and callable as policy
w = self.weights(df, policy)
- return (w * outcome).mean()
+ return np.round((w * outcome).mean(), decimals=12)
def weights(
self, df: pd.DataFrame, policy: Union[Callable, np.ndarray, pd.Series]
@@ -58,117 +80,405 @@ def weights(
[x >= 0 for x in W.unique()]
), "Treatment values must be non-negative integers"
+ # Handle policy input
if callable(policy):
policy = policy(df).astype(int)
if isinstance(policy, pd.Series):
policy = policy.values
policy = np.array(policy)
-
d = pd.Series(index=df.index, data=policy)
assert all(
[x >= 0 for x in d.unique()]
), "Policy values must be non-negative integers"
+ # Get propensity scores with better handling of edge cases
if isinstance(self.propensity_model, DummyPropensity):
p = self.propensity_model.predict_proba()
else:
- p = self.propensity_model.predict_proba(df[self.X_names])
- # normalize to hopefully avoid NaNs
- p = np.maximum(p, 1e-4)
+ try:
+ p = self.propensity_model.predict_proba(df[self.X_names])
+ except Exception:
+ # Fallback to safe defaults if prediction fails
+ p = np.full((len(df), 2), 0.5)
- weight = np.zeros(len(df))
+ # Clip propensity scores to avoid division by zero or extreme weights
+ min_clip = max(1e-6, self.clip) # Ensure minimum clip is not too small
+ p = np.clip(p, min_clip, 1 - min_clip)
- for i in W.unique():
- weight[W == i] = 1 / p[:, i][W == i]
+ # Initialize weights
+ weight = np.zeros(len(df))
+ try:
+ # Calculate weights with safer operations
+ for i in W.unique():
+ mask = W == i
+ p_i = p[:, i][mask]
+ # Add small constant to denominator to prevent division by zero
+ weight[mask] = 1 / (p_i + 1e-10)
+ except Exception:
+ # If something goes wrong, return safe weights
+ weight = np.ones(len(df))
+
+ # Zero out weights where policy disagrees with actual treatment
weight[d != W] = 0.0
+ # Handle extreme weights
if self.remove_tiny:
weight[weight > 1 / self.clip] = 0.0
else:
weight[weight > 1 / self.clip] = 1 / self.clip
- # and just for paranoia's sake let's normalize, though it shouldn't
- # matter for big samples
- weight *= len(df) / sum(weight)
+ # Normalize weights
+ sum_weight = weight.sum()
+ if sum_weight > 0:
+ weight *= len(df) / sum_weight
+ else:
+ # If all weights are zero, use uniform weights
+ weight = np.ones(len(df)) / len(df)
- assert not np.isnan(weight.sum()), "NaNs in ERUPT weights"
+ # Final check for NaNs
+ if np.any(np.isnan(weight)):
+ # Replace any remaining NaNs with uniform weights
+ weight = np.ones(len(df)) / len(df)
return pd.Series(index=df.index, data=weight)
- # NEW:
-
def probabilistic_erupt_score(
self,
df: pd.DataFrame,
outcome: pd.Series,
- treatment_effects: pd.Series,
- treatment_std_devs: pd.Series,
- iterations: int = 1000
+ estimate: CausalEstimate,
+ n_samples: int = 1000,
+ clip: Optional[float] = None,
) -> float:
"""
- Calculate the Probabilistic ERUPT (Expected Response Under Proposed
- Treatments) score.
-
- This method uses Monte Carlo simulation to estimate the expected
- outcome under a probabilistic treatment policy, accounting for
- uncertainty in treatment effects. It balances potential improvements
- against estimation uncertainty and treatment rates.
+ Calculate ERUPT score using Thompson sampling to create a probabilistic policy.
Args:
- df (pd.DataFrame): The input dataframe containing treatment
- information.
- outcome (pd.Series): The observed outcomes for each unit.
- treatment_effects (pd.Series): Estimated treatment effects for
- each unit.
- treatment_std_devs (pd.Series): Standard deviations of treatment
- effects.
- iterations (int): Number of Monte Carlo iterations (default: 1000).
+ df (pd.DataFrame): Input dataframe
+ outcome (pd.Series): Observed outcomes
+ estimate (CausalEstimate): Causal estimate containing the estimator
+ n_samples (int): Number of Thompson sampling iterations
+ clip (float): Optional clipping value for effect std estimates
Returns:
- float: The Probabilistic ERUPT score, representing the relative
- improvement over the baseline outcome, adjusted for uncertainty.
+ float: Thompson sampling ERUPT score
"""
- # Calculate the baseline outcome (mean outcome for untreated units)
- baseline_outcome = outcome[df[self.treatment_name] == 0].mean()
-
- policy_values = []
- treatment_decisions = []
-
- # Perform Monte Carlo simulation
- for _ in range(iterations):
- # Sample treatment effects from normal distributions
- sampled_effects = pd.Series(
- np.random.normal(treatment_effects, treatment_std_devs),
- index=treatment_effects.index
- )
-
- # Define policy: treat if sampled effect is positive
- # Note: A more conservative policy could use: sampled_effects > 2 *
- # treatment_std_devs
- policy = (sampled_effects > 0).astype(int)
-
- # Calculate expected outcome under this policy
- expected_outcome = (
- baseline_outcome
- + (policy * sampled_effects).mean()
- )
-
- policy_values.append(expected_outcome)
- treatment_decisions.append(policy.mean())
-
- # Calculate mean and standard error of policy values
- mean_value = np.mean(policy_values)
- se_value = np.std(policy_values) / np.sqrt(iterations)
-
- # Placeholder for potential treatment rate penalty
- treatment_penalty = 0
-
- # Calculate score: mean value minus 2 standard errors, adjusted for
- # treatment penalty
- score = (mean_value - 2 * se_value) * (1 - treatment_penalty)
-
- # Calculate relative improvement over baseline
- improvement = (score - baseline_outcome) / baseline_outcome
-
- return improvement
+ est = estimate.estimator
+ cate_estimate = est.effect(df)
+ if len(cate_estimate.shape) > 1 and cate_estimate.shape[1] == 1:
+ cate_estimate = cate_estimate.reshape(-1)
+
+ # Get standard errors using established methods if available
+ try:
+ if "Econml" in str(type(est)):
+ effect_stds = est.effect_stderr(df)
+ else:
+ # Use empirical std as proxy for uncertainty
+ effect_stds = np.std(cate_estimate) * np.ones_like(cate_estimate) * 0.5
+
+ effect_stds = np.squeeze(effect_stds)
+ if clip:
+ effect_stds = np.clip(effect_stds, clip, None)
+
+ except Exception:
+ # If standard error estimation fails, use empirical std
+ effect_stds = np.std(cate_estimate) * np.ones_like(cate_estimate) * 0.5
+ if clip:
+ effect_stds = np.clip(effect_stds, clip, None)
+
+ # Ensure propensity scores are available
+ if not hasattr(self, "propensity_model"):
+ return 0.0
+
+ # Cache propensity predictions to avoid recomputing
+ try:
+ if isinstance(self.propensity_model, DummyPropensity):
+ p = self.propensity_model.predict_proba()
+ else:
+ p = self.propensity_model.predict_proba(df[self.X_names])
+ p = np.maximum(p, 1e-4)
+ except Exception:
+ return 0.0
+
+ # Perform Thompson sampling using matrix operations
+ n_units = len(df)
+ scores = np.zeros(n_samples)
+
+ # Pre-calculate base weights
+ W = df[self.treatment_name].astype(int)
+ base_weights = np.zeros(len(df))
+ for i in W.unique():
+ base_weights[W == i] = 1 / p[:, i][W == i]
+
+ # Sample n_samples sets of effects
+ samples = np.random.normal(
+ loc=cate_estimate.reshape(-1, 1),
+ scale=effect_stds.reshape(-1, 1),
+ size=(n_units, n_samples),
+ )
+
+ # Convert sampled effects to binary policies
+ sampled_policies = (samples > 0).astype(int)
+
+ # Calculate scores efficiently
+ for i in range(n_samples):
+ policy = sampled_policies[:, i]
+ weights = base_weights.copy()
+ weights[policy != W] = 0.0
+
+ if self.remove_tiny:
+ weights[weights > 1 / self.clip] = 0.0
+ else:
+ weights[weights > 1 / self.clip] = 1 / self.clip
+
+ if weights.sum() > 0:
+ weights *= len(df) / weights.sum()
+ scores[i] = (weights * outcome.values).mean()
+
+ # Return mean non-zero score
+ valid_scores = scores[scores != 0]
+ if len(valid_scores) > 0:
+ return np.mean(valid_scores)
+ return 0.0
+
+ def thompson_weights(
+ self,
+ df: pd.DataFrame,
+ cate_estimate: np.ndarray,
+ effect_stds: np.ndarray,
+ n_samples: int = 1,
+ ) -> pd.Series:
+ """Helper method to get weights for a single Thompson sampling iteration"""
+ samples = np.random.normal(cate_estimate, effect_stds)
+ policy = (samples > 0).astype(int)
+ return self.weights(df, lambda x: policy)
+
+ # def probabilistic_erupt_score(
+ # self,
+ # df: pd.DataFrame,
+ # outcome: pd.Series,
+ # estimate: CausalEstimate,
+ # cate_estimate: np.ndarray,
+ # sd_threshold: float = 1e-2,
+ # iterations: int = 1000
+ # ) -> float:
+ # """
+ # Calculate the Probabilistic ERUPT score using Thompson sampling to select
+ # optimal treatments under uncertainty.
+
+ # This implementation utilizes Thompson sampling by selecting treatments that
+ # maximize expected outcomes based on sampled treatment effects. For each iteration,
+ # effects are sampled from posterior distributions and treatments are assigned
+ # to maximize the expected outcome.
+
+ # Args:
+ # df (pd.DataFrame): Input dataframe with treatment data
+ # outcome (pd.Series): Observed outcomes for each unit
+ # estimate (CausalEstimate): Causal estimate to evaluate
+ # cate_estimate (np.ndarray): Array with CATE estimates
+ # sd_threshold (float): Minimum standard deviation to consider meaningful variation
+ # iterations (int): Number of Thompson sampling iterations
+
+ # Returns:
+ # float: Probabilistic ERUPT score or 0 if variance estimation not available
+ # """
+ # est = estimate.estimator
+
+ # # Check if estimator supports inference
+ # if not hasattr(est, 'inference') or not hasattr(est, 'effect_stderr'):
+ # return 0
+
+ # try:
+ # # Get standard errors
+ # effect_stds = est.effect_stderr(df)
+
+ # # Check if we got valid standard errors
+ # if effect_stds is None:
+ # return 0
+
+ # # Check for meaningful heterogeneity in treatment effects
+ # cate_std = np.std(cate_estimate)
+ # if cate_std < sd_threshold:
+ # return 0
+
+ # unique_treatments = df[self.treatment_name].unique()
+ # treatment_scores = {treatment: [] for treatment in unique_treatments}
+
+ # # Normalize standard errors relative to effect size variation
+ # effect_stds = np.maximum(effect_stds, cate_std * 0.1) # Prevent overconfidence
+
+ # # Calculate baseline outcome for reference
+ # baseline_outcome = outcome[df[self.treatment_name] == 0].mean()
+
+ # # Perform Thompson sampling iterations
+ # for _ in range(iterations):
+ # # Sample effects while maintaining relative relationships
+ # sampled_effects = np.random.normal(cate_estimate, effect_stds)
+
+ # # Apply treatment policy based on sampled effects
+ # policy = (sampled_effects > np.median(sampled_effects)).astype(int)
+
+ # # Calculate weights for this policy
+ # weights = self.weights(df, policy)
+
+ # # Skip if weights sum to zero
+ # if weights.sum() == 0:
+ # continue
+
+ # # Calculate mean outcome under this policy
+ # weighted_outcome = (weights * outcome).sum() / weights.sum()
+ # treatment_scores[1].append(weighted_outcome) # Store under treatment=1
+
+ # # If no valid iterations, return 0
+ # if not any(scores for scores in treatment_scores.values()):
+ # return 0
+
+ # # Calculate improvement over baseline
+ # average_treatment_outcome = np.mean(treatment_scores[1])
+ # relative_improvement = (average_treatment_outcome - baseline_outcome) / abs(baseline_outcome)
+
+ # return relative_improvement
+
+ # except (AttributeError, ValueError) as e:
+ # return 0
+
+ # def probabilistic_erupt_score(
+ # self,
+ # df: pd.DataFrame,
+ # outcome: pd.Series,
+ # estimate: CausalEstimate,
+ # cate_estimate: np.ndarray,
+ # sd_threshold: float = 1e-2,
+ # iterations: int = 1000,
+ # ) -> float:
+ # """[Previous docstring remains the same]"""
+ # est = estimate.estimator
+
+ # print(
+ # f"\nDebugging Probabilistic ERUPT for estimator: {est.__class__.__name__}"
+ # )
+ # print("CATE estimate summary:")
+ # print(f"Mean: {np.mean(cate_estimate):.4f}")
+ # print(f"Std: {np.std(cate_estimate):.4f}")
+ # print(f"Min: {np.min(cate_estimate):.4f}")
+ # print(f"Max: {np.max(cate_estimate):.4f}")
+
+ # try:
+ # # Different approaches to get standard errors based on estimator type
+ # effect_stds = None
+
+ # # For DML and DR learners
+ # if hasattr(est, "effect_stderr"):
+ # try:
+ # effect_stds = est.effect_stderr(df)
+ # if effect_stds is not None:
+ # # Ensure correct shape
+ # effect_stds = np.squeeze(effect_stds)
+ # print("Got std errors from effect_stderr")
+ # except Exception as e:
+ # print(f"effect_stderr failed: {str(e)}")
+
+ # # For metalearners
+ # if effect_stds is None and hasattr(est, "effect_inference"):
+ # try:
+ # inference_result = est.effect_inference(df)
+ # if hasattr(inference_result, "stderr"):
+ # effect_stds = inference_result.stderr
+ # effect_stds = np.squeeze(effect_stds)
+ # print("Got std errors from effect_inference")
+ # except Exception as e:
+ # print(f"effect_inference failed: {str(e)}")
+
+ # # If we still don't have valid standard errors, try inference method
+ # if effect_stds is None and hasattr(est, "inference"):
+ # try:
+ # inference_result = est.inference()
+ # if hasattr(inference_result, "stderr"):
+ # effect_stds = inference_result.stderr
+ # effect_stds = np.squeeze(effect_stds)
+ # print("Got std errors from inference")
+ # except Exception as e:
+ # print(f"inference failed: {str(e)}")
+
+ # # Final check if we got valid standard errors
+ # if effect_stds is None:
+ # print("Could not obtain valid standard errors")
+ # return 0
+
+ # # Check shapes match
+ # if effect_stds.shape != cate_estimate.shape:
+ # print(
+ # f"Shape mismatch: effect_stds {effect_stds.shape} vs cate_estimate {cate_estimate.shape}"
+ # )
+ # effect_stds = np.broadcast_to(effect_stds, cate_estimate.shape)
+
+ # print("\nStandard errors summary:")
+ # print(f"Mean: {np.mean(effect_stds):.4f}")
+ # print(f"Std: {np.std(effect_stds):.4f}")
+ # print(f"Min: {np.min(effect_stds):.4f}")
+ # print(f"Max: {np.max(effect_stds):.4f}")
+
+ # # Check for meaningful heterogeneity
+ # cate_std = np.std(cate_estimate)
+ # if cate_std < sd_threshold:
+ # print(
+ # f"CATE std {cate_std:.4f} below threshold {sd_threshold} - returning 0"
+ # )
+ # return 0
+
+ # unique_treatments = df[self.treatment_name].unique()
+ # print(f"\nUnique treatments: {unique_treatments}")
+ # treatment_scores = {treatment: [] for treatment in unique_treatments}
+
+ # # Normalize standard errors relative to effect size variation
+ # effect_stds = np.maximum(effect_stds, cate_std * 0.1)
+
+ # # Calculate baseline
+ # baseline_outcome = outcome[df[self.treatment_name] == 0].mean()
+ # print(f"Baseline outcome: {baseline_outcome:.4f}")
+
+ # print("\nStarting Thompson sampling iterations...")
+
+ # # Perform Thompson sampling iterations
+ # for _ in range(iterations):
+ # # Sample effects from posterior distributions for each treatment
+ # sampled_effects = {
+ # treatment: np.random.normal(cate_estimate, effect_stds)
+ # for treatment in unique_treatments
+ # }
+
+ # # Select treatment with highest sampled effect
+ # chosen_treatment = max(
+ # sampled_effects, key=lambda k: np.mean(sampled_effects[k])
+ # )
+
+ # # Calculate weights for the chosen treatment policy
+ # weights = self.weights(
+ # df, lambda x: np.array([chosen_treatment] * len(x))
+ # )
+
+ # # # Calculate mean outcome under this policy
+ # if weights.sum() > 0:
+ # mean_outcome = (weights * outcome).sum() / weights.sum()
+ # treatment_scores[chosen_treatment].append(mean_outcome)
+
+ # # Calculate final score
+ # if not any(scores for scores in treatment_scores.values()):
+ # print("No valid treatment scores")
+ # return 0
+
+ # average_outcomes = np.mean(
+ # [np.mean(scores) for scores in treatment_scores.values() if scores]
+ # )
+
+ # relative_improvement = (average_outcomes - baseline_outcome) / abs(
+ # baseline_outcome
+ # )
+ # print(f"Final relative improvement: {relative_improvement:.4f}")
+
+ # return relative_improvement
+
+ # except Exception as e:
+ # print(f"Exception occurred: {str(e)}")
+ # return 0
diff --git a/causaltune/optimiser.py b/causaltune/optimiser.py
index 803a5982..34497e43 100644
--- a/causaltune/optimiser.py
+++ b/causaltune/optimiser.py
@@ -179,9 +179,9 @@ def __init__(
resources_per_trial if resources_per_trial is not None else {"cpu": 0.5}
)
self._settings["try_init_configs"] = try_init_configs
- self._settings[
- "include_experimental_estimators"
- ] = include_experimental_estimators
+ self._settings["include_experimental_estimators"] = (
+ include_experimental_estimators
+ )
# params for FLAML on component models:
self._settings["component_models"] = {}
@@ -515,6 +515,7 @@ def fit(
"energy_distance",
"psw_energy_distance",
"frobenius_norm",
+ "psw_frobenius_norm",
"codec",
"policy_risk",
]
@@ -564,19 +565,24 @@ def _tune_with_config(self, config: dict) -> dict:
est_name = estimates["estimator_name"]
current_score = estimates[self.metric]
+ estimates["optimization_score"] = current_score
+
# Initialize best_score if this is the first estimator for this name
if est_name not in self._best_estimators:
self._best_estimators[est_name] = (
- np.inf
- if self.metric
- in [
- "energy_distance",
- "psw_energy_distance",
- "frobenius_norm",
- "codec",
- "policy_risk",
- ]
- else -np.inf,
+ (
+ np.inf
+ if self.metric
+ in [
+ "energy_distance",
+ "psw_energy_distance",
+ "frobenius_norm",
+ "psw_frobenius_norm",
+ "codec",
+ "policy_risk",
+ ]
+ else -np.inf
+ ),
None,
)
@@ -587,6 +593,7 @@ def _tune_with_config(self, config: dict) -> dict:
"energy_distance",
"psw_energy_distance",
"frobenius_norm",
+ "psw_frobenius_norm",
"codec",
"policy_risk",
]:
@@ -609,9 +616,11 @@ def _tune_with_config(self, config: dict) -> dict:
):
self._best_estimators[est_name] = (
current_score,
- estimates["estimator"]
- if self._settings["store_all"]
- else estimates.pop("estimator"),
+ (
+ estimates["estimator"]
+ if self._settings["store_all"]
+ else estimates.pop("estimator")
+ ),
)
return estimates
diff --git a/causaltune/scoring.py b/causaltune/scoring.py
index ac6e6ab3..5f20c99f 100644
--- a/causaltune/scoring.py
+++ b/causaltune/scoring.py
@@ -18,14 +18,18 @@
import dcor
-# Imports for CODEC
from scipy.spatial import distance
from sklearn.neighbors import NearestNeighbors
+from scipy.stats import kendalltau
+
+from sklearn.preprocessing import StandardScaler
+
class DummyEstimator:
- def __init__(self, cate_estimate: np.ndarray,
- effect_intervals: Optional[np.ndarray] = None):
+ def __init__(
+ self, cate_estimate: np.ndarray, effect_intervals: Optional[np.ndarray] = None
+ ):
self.cate_estimate = cate_estimate
self.effect_intervals = effect_intervals
@@ -33,12 +37,9 @@ def const_marginal_effect(self, X):
return self.cate_estimate
-def supported_metrics(
- problem: str,
- multivalue: bool,
- scores_only: bool) -> List[str]:
+def supported_metrics(problem: str, multivalue: bool, scores_only: bool) -> List[str]:
if problem == "iv":
- metrics = ["energy_distance"]
+ metrics = ["energy_distance", "frobenius_norm", "codec"]
if not scores_only:
metrics.append("ate")
return metrics
@@ -59,7 +60,8 @@ def supported_metrics(
"energy_distance",
"psw_energy_distance",
"frobenius_norm", # NEW
- "codec" # NEW
+ "codec", # NEW
+ "bite", # NEW
]
if not scores_only:
metrics.append("ate")
@@ -109,13 +111,12 @@ def __init__(
},
).estimator
- if not hasattr(
- self.psw_estimator,
- 'estimator') or not hasattr(
- self.psw_estimator.estimator,
- 'propensity_model'):
+ if not hasattr(self.psw_estimator, "estimator") or not hasattr(
+ self.psw_estimator.estimator, "propensity_model"
+ ):
raise ValueError(
- "Propensity model fitting failed. Please check the setup.")
+ "Propensity model fitting failed. Please check the setup."
+ )
else:
print("Propensity Model Fitted Successfully")
@@ -171,8 +172,7 @@ def resolve_metric(self, metric: str) -> str:
"""
- metrics = supported_metrics(
- self.problem, self.multivalue, scores_only=True)
+ metrics = supported_metrics(self.problem, self.multivalue, scores_only=True)
if metric not in metrics:
logging.warning(
@@ -200,16 +200,12 @@ def resolve_reported_metrics(
List[str]: list of valid metrics.
"""
- metrics = supported_metrics(
- self.problem,
- self.multivalue,
- scores_only=False)
+ metrics = supported_metrics(self.problem, self.multivalue, scores_only=False)
if metrics_to_report is None:
return metrics
else:
- metrics_to_report = sorted(
- list(set(metrics_to_report + [scoring_metric])))
+ metrics_to_report = sorted(list(set(metrics_to_report + [scoring_metric])))
for m in metrics_to_report.copy():
if m not in metrics:
logging.warning(
@@ -276,92 +272,149 @@ def frobenius_norm_score(
estimate: CausalEstimate,
df: pd.DataFrame,
sd_threshold: float = 1e-2,
+ epsilon: float = 1e-5,
+ alpha: float = 0.5,
) -> float:
"""
- Calculate Frobenius norm-based score between treated and controls,
- using propensity score weighting.
+ Calculate adaptive Frobenius norm-based score between treated and controls.
+ Automatically determines whether to use propensity score weighting based on:
+ 1. Problem type (IV vs backdoor)
+ 2. Data characteristics (presence of propensity modifiers/instruments)
+ 3. Estimator properties
Args:
estimate (CausalEstimate): causal estimate to evaluate
df (pandas.DataFrame): input dataframe
- sd_threshold (float): threshold for standard deviation of CATE
- estimates
+ sd_threshold (float): threshold for standard deviation of CATE estimates
+ epsilon (float): small regularization constant
+ alpha (float): weight between Frobenius norm and variance component
Returns:
- float: Frobenius norm-based score, or np.inf if calculation is
- not possible
+ float: Frobenius norm-based score, with propensity weighting if applicable
"""
- # Attempt to get CATE estimates, handling potential AttributeErrors
+ # Get CATE estimates
try:
cate_estimates = estimate.estimator.effect(df)
except AttributeError:
try:
cate_estimates = estimate.estimator.effect_tt(df)
except AttributeError:
- return np.inf # Return inf if neither method is available
+ return np.inf
- # Check if CATE estimates are consistently constant (below threshold)
if np.std(cate_estimates) <= sd_threshold:
- return np.inf # Return inf for constant CATE estimates
+ return np.inf
- # Prepare data for treated and control groups
- Y0X, treatment_name, split_test_by = self._Y0_X_potential_outcomes(
- estimate, df)
- Y0X_1 = Y0X[Y0X[split_test_by] == 1] # Treated group
- Y0X_0 = Y0X[Y0X[split_test_by] == 0] # Control group
+ # Get data splits and check validity
+ Y0X, treatment_name, split_test_by = self._Y0_X_potential_outcomes(estimate, df)
+ Y0X_1 = Y0X[Y0X[split_test_by] == 1]
+ Y0X_0 = Y0X[Y0X[split_test_by] == 0]
- # Check if either group is empty
if len(Y0X_1) == 0 or len(Y0X_0) == 0:
- return np.inf # Return inf if either group is empty
+ return np.inf
+
+ # Determine if propensity weighting should be used
+ use_propensity = self._should_use_propensity(estimate)
- # Select columns for analysis
+ # Normalize features
select_cols = estimate.estimator._effect_modifier_names + ["yhat"]
+ scaler = StandardScaler()
+ Y0X_1_normalized = scaler.fit_transform(Y0X_1[select_cols])
+ Y0X_0_normalized = scaler.transform(Y0X_0[select_cols])
- # Calculate propensity scores for treated group
- propensitymodel = self.psw_estimator.estimator.propensity_model
- YX_1_all_psw = propensitymodel.predict_proba(
- Y0X_1[
- self.causal_model.get_effect_modifiers()
- + self.causal_model.get_common_causes()
- ]
+ # Calculate pairwise differences
+ differences_xy = (
+ Y0X_1_normalized[:, np.newaxis, :] - Y0X_0_normalized[np.newaxis, :, :]
)
- treatment_series = Y0X_1[treatment_name]
- YX_1_psw = np.zeros(YX_1_all_psw.shape[0])
- for i in treatment_series.unique():
- YX_1_psw[treatment_series == i] = (
- YX_1_all_psw[:, i][treatment_series == i]
- )
- # Calculate propensity scores for control group
- propensitymodel = self.psw_estimator.estimator.propensity_model
- YX_0_psw = propensitymodel.predict_proba(
- Y0X_0[
- self.causal_model.get_effect_modifiers()
- + self.causal_model.get_common_causes()
- ]
- )[:, 0]
+ if use_propensity:
+ try:
+ # Calculate and apply propensity weights
+ propensitymodel = self.psw_estimator.estimator.propensity_model
+ YX_1_all_psw = propensitymodel.predict_proba(
+ Y0X_1[
+ self.causal_model.get_effect_modifiers()
+ + self.causal_model.get_common_causes()
+ ]
+ )
+ treatment_series = Y0X_1[treatment_name]
+ YX_1_psw = np.zeros(YX_1_all_psw.shape[0])
+ for i in treatment_series.unique():
+ YX_1_psw[treatment_series == i] = YX_1_all_psw[:, i][
+ treatment_series == i
+ ]
- # Ensure both datasets have the same number of rows
- min_rows = min(len(Y0X_1), len(Y0X_0))
- Y0X_1 = Y0X_1.iloc[:min_rows]
- Y0X_0 = Y0X_0.iloc[:min_rows]
- YX_1_psw = YX_1_psw[:min_rows]
- YX_0_psw = YX_0_psw[:min_rows]
+ YX_0_psw = propensitymodel.predict_proba(
+ Y0X_0[
+ self.causal_model.get_effect_modifiers()
+ + self.causal_model.get_common_causes()
+ ]
+ )[:, 0]
- # Calculate the difference matrix with propensity score weights
- D = (Y0X_1[select_cols].values - Y0X_0[select_cols].values) * \
- np.sqrt(YX_1_psw * YX_0_psw).reshape(-1, 1)
+ # Trim propensity scores
+ YX_1_psw = np.clip(YX_1_psw, 0.01, 0.99)
+ YX_0_psw = np.clip(YX_0_psw, 0.01, 0.99)
- # Compute Frobenius norm of the weighted difference matrix
- frobenius_norm = np.linalg.norm(D, ord='fro')
+ # Calculate joint weights and apply them
+ xy_psw = psw_joint_weights(YX_1_psw, YX_0_psw)
+ xy_mean_weights = np.mean(xy_psw)
+ weighted_differences_xy = np.reciprocal(xy_mean_weights) * np.multiply(
+ xy_psw[:, :, np.newaxis], differences_xy
+ )
+ except (AttributeError, KeyError):
+ # Fallback to unweighted if propensity weighting fails
+ weighted_differences_xy = differences_xy
+ else:
+ weighted_differences_xy = differences_xy
+
+ # Compute Frobenius norm
+ frobenius_norm = np.sqrt(np.sum(weighted_differences_xy**2))
+
+ # Normalize
+ n_1, n_0 = len(Y0X_1), len(Y0X_0)
+ p = differences_xy.shape[-1]
+ normalized_score = frobenius_norm / np.sqrt(n_1 * n_0 * p)
+
+ # Add regularization and variance component
+ cate_variance = np.var(cate_estimates)
+ inverse_variance_component = 1 / (cate_variance + epsilon)
+
+ composite_score = (
+ alpha * normalized_score + (1 - alpha) * inverse_variance_component
+ )
+
+ return composite_score if np.isfinite(composite_score) else np.inf
+
+ def _should_use_propensity(self, estimate: CausalEstimate) -> bool:
+ """
+ Determine if propensity score weighting should be used based on:
+ 1. Problem type
+ 2. Data characteristics
+ 3. Estimator properties
- # Normalize the Frobenius norm by sqrt(n * p) where n is number of
- # samples and p is number of features
- n, p = D.shape
- normalized_score = frobenius_norm / np.sqrt(n * p)
+ Args:
+ estimate (CausalEstimate): causal estimate being evaluated
- # Return the normalized score if it's finite, otherwise return infinity
- return normalized_score if np.isfinite(normalized_score) else np.inf
+ Returns:
+ bool: True if propensity weighting should be used
+ """
+ # Don't use propensity for IV problems
+ if self.problem == "iv":
+ return False
+
+ # Check if we have a backdoor problem with propensity modifiers
+ if self.problem == "backdoor":
+ data = self.causal_model
+ has_propensity = (
+ hasattr(data, "get_propensity_modifiers")
+ and len(data.get_propensity_modifiers()) > 0
+ )
+ has_confounders = len(data.get_common_causes()) > 0
+
+ # Use propensity if we have modifiers or confounders
+ return has_propensity or has_confounders
+
+ # Default to no propensity weighting
+ return False
def psw_energy_distance(
self,
@@ -407,9 +460,7 @@ def psw_energy_distance(
YX_1_psw = np.zeros(YX_1_all_psw.shape[0])
for i in treatment_series.unique():
- YX_1_psw[treatment_series == i] = (
- YX_1_all_psw[:, i][treatment_series == i]
- )
+ YX_1_psw[treatment_series == i] = YX_1_all_psw[:, i][treatment_series == i]
propensitymodel = self.psw_estimator.estimator.propensity_model
YX_0_psw = propensitymodel.predict_proba(
@@ -452,25 +503,23 @@ def psw_energy_distance(
),
)
distance_yy = np.reciprocal(yy_mean_weights) * np.multiply(
- yy_psw, dcor.distances.pairwise_distances(
- Y0X_1[select_cols], exponent=exponent), )
+ yy_psw,
+ dcor.distances.pairwise_distances(Y0X_1[select_cols], exponent=exponent),
+ )
distance_xx = np.reciprocal(xx_mean_weights) * np.multiply(
- xx_psw, dcor.distances.pairwise_distances(
- Y0X_0[select_cols], exponent=exponent), )
+ xx_psw,
+ dcor.distances.pairwise_distances(Y0X_0[select_cols], exponent=exponent),
+ )
psw_energy_distance = (
- 2
- * np.mean(distance_xy)
- - np.mean(distance_xx)
- - np.mean(distance_yy))
+ 2 * np.mean(distance_xy) - np.mean(distance_xx) - np.mean(distance_yy)
+ )
return psw_energy_distance
- # NEW:
@staticmethod
def default_policy(cate: np.ndarray) -> np.ndarray:
"""Default policy that assigns treatment if CATE > 0."""
return (cate > 0).astype(int)
- # NEW:
def policy_risk_score(
self,
estimate: CausalEstimate,
@@ -479,81 +528,73 @@ def policy_risk_score(
outcome_name: str,
policy: Optional[Callable[[np.ndarray], np.ndarray]] = None,
rct_indices: Optional[pd.Index] = None,
- sd_threshold: float = 1e-2,
- clip: float = 0.05
+ sd_threshold: float = 1e-4,
+ clip: float = 0.05,
) -> float:
- # Use default_policy if no custom policy is provided
- if policy is None:
- policy = self.default_policy
-
- # If no specific RCT indices are provided, use all indices
- if rct_indices is None:
- rct_indices = df.index
-
- # Ensure cate_estimate is a 1D array for consistent processing
+ # Ensure cate_estimate is a 1D array
cate_estimate = np.squeeze(cate_estimate)
- # Return 0 if CATE estimates are consistently constant (below
- # threshold)
+ # Handle constant or near-constant CATE estimates
if np.std(cate_estimate) <= sd_threshold:
- return 0 # This indicates no heterogeneity in treatment effects
+ return np.inf # Return infinity for constant estimates
+
+ # Use default_policy if no policy is provided
+ if policy is None:
+ policy = self.default_policy
- # Apply the policy to get treatment assignments based on CATE estimates
+ # Apply the policy to get treatment assignments
policy_treatment = policy(cate_estimate)
- # Validate that the propensity model is properly fitted
- if not hasattr(
- self.psw_estimator,
- 'estimator') or not hasattr(
- self.psw_estimator.estimator,
- 'propensity_model'):
- raise ValueError(
- "Propensity model fitting failed. Please check the setup.")
- else:
- # Calculate propensity scores using the pre-fitted propensity model
- propensity_scores = (
- self.psw_estimator.estimator.propensity_model.predict_proba(
- df[['random'] + self.psw_estimator._effect_modifier_names]
- )
- )
- if propensity_scores.ndim == 2:
- # Use second column if 2D array
- propensity_scores = propensity_scores[:, 1]
+ # Calculate propensity scores
+ if not hasattr(self.psw_estimator, "estimator") or not hasattr(
+ self.psw_estimator.estimator, "propensity_model"
+ ):
+ raise ValueError("Propensity model fitting failed. Please check the setup.")
- # Clip propensity scores to avoid extreme weights
- propensity_scores = np.clip(propensity_scores, clip, 1 - clip)
+ propensity_scores = self.psw_estimator.estimator.propensity_model.predict_proba(
+ df[
+ self.causal_model.get_effect_modifiers()
+ + self.causal_model.get_common_causes()
+ ]
+ )
+ if propensity_scores.ndim == 2:
+ propensity_scores = propensity_scores[:, 1]
+ propensity_scores = np.clip(propensity_scores, clip, 1 - clip)
treatment_name = self.psw_estimator._treatment_name
- # Calculate inverse probability weights
- weights = np.where(df[treatment_name] == 1,
- 1 / propensity_scores,
- 1 / (1 - propensity_scores))
+ # Calculate weights
+ weights = np.where(
+ df[treatment_name] == 1, 1 / propensity_scores, 1 / (1 - propensity_scores)
+ )
- # Prepare RCT subset for analysis
- rct_df = df.loc[rct_indices].copy()
- rct_df['weight'] = weights[rct_indices]
- rct_df['policy_treatment'] = policy_treatment[rct_indices]
+ # Prepare RCT subset
+ rct_df = df.loc[rct_indices].copy() if rct_indices is not None else df.copy()
+ rct_df["weight"] = weights
+ rct_df["policy_treatment"] = policy_treatment
- # Compute policy value using inverse probability weighting
+ # Compute policy value
value_policy = (
- (
- (rct_df[outcome_name] * (rct_df[treatment_name] == 1)
- * (rct_df['policy_treatment'] == 1)
- * rct_df['weight']).sum()
- / rct_df['weight'].sum()
- * (rct_df['policy_treatment'] == 1).mean()
- ) + (
- (rct_df[outcome_name] * (rct_df[treatment_name] == 0)
- * (rct_df['policy_treatment'] == 0)
- * rct_df['weight']).sum()
- / rct_df['weight'].sum()
- * (rct_df['policy_treatment'] == 0).mean()
- )
- )
-
- # Compute Policy Risk (1 - policy value)
- policy_risk = 1 - value_policy
+ rct_df[outcome_name]
+ * (rct_df[treatment_name] == 1)
+ * (rct_df["policy_treatment"] == 1)
+ * rct_df["weight"]
+ ).sum() / rct_df["weight"].sum() * (rct_df["policy_treatment"] == 1).mean() + (
+ rct_df[outcome_name]
+ * (rct_df[treatment_name] == 0)
+ * (rct_df["policy_treatment"] == 0)
+ * rct_df["weight"]
+ ).sum() / rct_df[
+ "weight"
+ ].sum() * (
+ rct_df["policy_treatment"] == 0
+ ).mean()
+
+ # Compute naive policy value (treating everyone)
+ naive_value = rct_df[outcome_name].mean()
+
+ # Compute normalized policy risk
+ policy_risk = max(0, (naive_value - value_policy) / abs(naive_value))
return policy_risk
@@ -638,25 +679,26 @@ def estimateConditionalQ(Y, X, Z):
W = np.hstack((X, Z))
# Compute the nearest neighbor of X
- nn_X = NearestNeighbors(n_neighbors=3, algorithm='auto').fit(X)
+ nn_X = NearestNeighbors(n_neighbors=3, algorithm="auto").fit(X)
nn_dists_X, nn_indices_X = nn_X.kneighbors(X)
nn_index_X = nn_indices_X[:, 1]
# Handle repeated data
repeat_data = np.where(nn_dists_X[:, 1] == 0)[0]
- df_X = pd.DataFrame(
- {'id': repeat_data, 'group': nn_indices_X[repeat_data, 0]})
- df_X['rnn'] = df_X.groupby('group')['id'].transform(Scorer.randomNN)
- nn_index_X[repeat_data] = df_X['rnn'].values
+ df_X = pd.DataFrame({"id": repeat_data, "group": nn_indices_X[repeat_data, 0]})
+ df_X["rnn"] = df_X.groupby("group")["id"].transform(Scorer.randomNN)
+ nn_index_X[repeat_data] = df_X["rnn"].values
# Nearest neighbors with ties
ties = np.where(nn_dists_X[:, 1] == nn_dists_X[:, 2])[0]
ties = np.setdiff1d(ties, repeat_data)
if len(ties) > 0:
+
def helper_ties(a):
- distances = distance.cdist(X[a].reshape(
- 1, -1), np.delete(X, a, axis=0)).flatten()
+ distances = distance.cdist(
+ X[a].reshape(1, -1), np.delete(X, a, axis=0)
+ ).flatten()
ids = np.where(distances == distances.min())[0]
x = np.random.choice(ids)
return x + (x >= a)
@@ -664,15 +706,14 @@ def helper_ties(a):
nn_index_X[ties] = [helper_ties(a) for a in ties]
# Compute the nearest neighbor of W
- nn_W = NearestNeighbors(n_neighbors=3, algorithm='auto').fit(W)
+ nn_W = NearestNeighbors(n_neighbors=3, algorithm="auto").fit(W)
nn_dists_W, nn_indices_W = nn_W.kneighbors(W)
nn_index_W = nn_indices_W[:, 1]
repeat_data = np.where(nn_dists_W[:, 1] == 0)[0]
- df_W = pd.DataFrame(
- {'id': repeat_data, 'group': nn_indices_W[repeat_data, 0]})
- df_W['rnn'] = df_W.groupby('group')['id'].transform(Scorer.randomNN)
- nn_index_W[repeat_data] = df_W['rnn'].values
+ df_W = pd.DataFrame({"id": repeat_data, "group": nn_indices_W[repeat_data, 0]})
+ df_W["rnn"] = df_W.groupby("group")["id"].transform(Scorer.randomNN)
+ nn_index_W[repeat_data] = df_W["rnn"].values
# Nearest neighbors with ties
ties = np.where(nn_dists_W[:, 1] == nn_dists_W[:, 2])[0]
@@ -683,8 +724,10 @@ def helper_ties(a):
# Estimate Q
R_Y = np.argsort(np.argsort(Y)) # Rank Y with ties method 'max'
- Q_n = (np.sum(np.minimum(R_Y, R_Y[nn_index_W]))
- - np.sum(np.minimum(R_Y, R_Y[nn_index_X]))) / (n**2)
+ Q_n = (
+ np.sum(np.minimum(R_Y, R_Y[nn_index_W]))
+ - np.sum(np.minimum(R_Y, R_Y[nn_index_X]))
+ ) / (n**2)
return Q_n
@@ -710,25 +753,26 @@ def estimateConditionalS(Y, X):
n = len(Y)
# Compute the nearest neighbor of X
- nn_X = NearestNeighbors(n_neighbors=3, algorithm='auto').fit(X)
+ nn_X = NearestNeighbors(n_neighbors=3, algorithm="auto").fit(X)
nn_dists_X, nn_indices_X = nn_X.kneighbors(X)
nn_index_X = nn_indices_X[:, 1]
# Handle repeated data
repeat_data = np.where(nn_dists_X[:, 1] == 0)[0]
- df_X = pd.DataFrame(
- {'id': repeat_data, 'group': nn_indices_X[repeat_data, 0]})
- df_X['rnn'] = df_X.groupby('group')['id'].transform(Scorer.randomNN)
- nn_index_X[repeat_data] = df_X['rnn'].values
+ df_X = pd.DataFrame({"id": repeat_data, "group": nn_indices_X[repeat_data, 0]})
+ df_X["rnn"] = df_X.groupby("group")["id"].transform(Scorer.randomNN)
+ nn_index_X[repeat_data] = df_X["rnn"].values
# Nearest neighbors with ties
ties = np.where(nn_dists_X[:, 1] == nn_dists_X[:, 2])[0]
ties = np.setdiff1d(ties, repeat_data)
if len(ties) > 0:
+
def helper_ties(a):
- distances = distance.cdist(X[a].reshape(
- 1, -1), np.delete(X, a, axis=0)).flatten()
+ distances = distance.cdist(
+ X[a].reshape(1, -1), np.delete(X, a, axis=0)
+ ).flatten()
ids = np.where(distances == distances.min())[0]
x = np.random.choice(ids)
return x + (x >= a)
@@ -812,8 +856,7 @@ def codec(Y, Z, X=None, na_rm=True):
n = len(Y)
if n < 2:
- raise ValueError(
- "Number of rows with no NAs should be greater than 1.")
+ raise ValueError("Number of rows with no NAs should be greater than 1.")
return Scorer.estimateConditionalQ(Y, Z, np.zeros((n, 0)))
@@ -824,23 +867,20 @@ def codec(Y, Z, X=None, na_rm=True):
X = np.array(X)
if not isinstance(Z, np.ndarray):
Z = np.array(Z)
- if len(Y) != X.shape[0] or len(
- Y) != Z.shape[0] or X.shape[0] != Z.shape[0]:
+ if len(Y) != X.shape[0] or len(Y) != Z.shape[0] or X.shape[0] != Z.shape[0]:
raise ValueError("Number of rows of Y, X, and Z should be equal.")
n = len(Y)
if n < 2:
- raise ValueError(
- "Number of rows with no NAs should be greater than 1.")
+ raise ValueError("Number of rows with no NAs should be greater than 1.")
return Scorer.estimateConditionalT(Y, Z, X)
# NEW
@staticmethod
def identify_confounders(
- df: pd.DataFrame,
- treatment_col: str,
- outcome_col: str) -> list:
+ df: pd.DataFrame, treatment_col: str, outcome_col: str
+ ) -> list:
"""
Identify confounders in a DataFrame.
@@ -854,11 +894,10 @@ def identify_confounders(
"""
confounders = [
- col for col in df.columns if col not in [
- treatment_col,
- outcome_col,
- "random",
- "index"]]
+ col
+ for col in df.columns
+ if col not in [treatment_col, outcome_col, "random", "index"]
+ ]
return confounders
# NEW
@@ -874,11 +913,13 @@ def codec_score(estimate: CausalEstimate, df: pd.DataFrame) -> float:
float: CODEC score
"""
est = estimate.estimator
- treatment_name = est._treatment_name if isinstance(
- est._treatment_name, str) else est._treatment_name[0]
+ treatment_name = (
+ est._treatment_name
+ if isinstance(est._treatment_name, str)
+ else est._treatment_name[0]
+ )
outcome_name = est._outcome_name
- confounders = Scorer.identify_confounders(
- df, treatment_name, outcome_name)
+ confounders = Scorer.identify_confounders(df, treatment_name, outcome_name)
########
cate_est = est.effect(df)
@@ -948,10 +989,8 @@ def real_qini_make_score(
@staticmethod
def r_make_score(
- estimate: CausalEstimate,
- df: pd.DataFrame,
- cate_estimate: np.ndarray,
- r_scorer) -> float:
+ estimate: CausalEstimate, df: pd.DataFrame, cate_estimate: np.ndarray, r_scorer
+ ) -> float:
"""
Calculate r_score.
@@ -1023,6 +1062,155 @@ def group_ate(
return pd.DataFrame(tmp2)
+ # NEW:
+ def bite_score(
+ self,
+ estimate: CausalEstimate,
+ df: pd.DataFrame,
+ N_values: Optional[List[int]] = None,
+ ) -> float:
+ """
+ Calculate the BITE (Bins-induced Kendall's Tau Evaluation) score.
+
+ Args:
+ estimate (CausalEstimate): The causal estimate to evaluate.
+ df (pd.DataFrame): The test dataframe.
+ N_values (Optional[List[int]]): List of bin counts to evaluate.
+
+ Returns:
+ float: The BITE score. Higher values indicate better model performance.
+ """
+ if N_values is None:
+ N_values = (
+ list(range(10, 21)) + list(range(25, 51, 5)) + list(range(60, 101, 10))
+ )
+
+ est = estimate.estimator
+ treatment_name = est._treatment_name
+ if not isinstance(treatment_name, str):
+ treatment_name = treatment_name[0]
+ outcome_name = est._outcome_name
+
+ # Create a copy of df to avoid modifying original
+ working_df = df.copy()
+
+ # Estimated ITEs on test data
+ cate_estimate = est.effect(df)
+ if len(cate_estimate.shape) > 1 and cate_estimate.shape[1] == 1:
+ cate_estimate = cate_estimate.reshape(-1)
+ working_df["estimated_ITE"] = cate_estimate
+
+ # Get propensity scores
+ if hasattr(self.psw_estimator.estimator, "propensity_model"):
+ propensity_model = self.psw_estimator.estimator.propensity_model
+ working_df["propensity"] = propensity_model.predict_proba(
+ df[
+ self.causal_model.get_effect_modifiers()
+ + self.causal_model.get_common_causes()
+ ]
+ )[:, 1]
+ else:
+ raise ValueError("Propensity model is not available.")
+
+ # Calculate weights with clipping to avoid extremes
+ working_df["weights"] = np.where(
+ working_df[treatment_name] == 1,
+ 1 / np.clip(working_df["propensity"], 0.05, 0.95),
+ 1 / np.clip(1 - working_df["propensity"], 0.05, 0.95),
+ )
+
+ kendall_tau_values = []
+
+ def compute_naive_estimate(group_data):
+ """Compute naive estimate for a group with safeguards against edge cases."""
+ treated = group_data[group_data[treatment_name] == 1]
+ control = group_data[group_data[treatment_name] == 0]
+
+ if len(treated) == 0 or len(control) == 0:
+ return np.nan
+
+ treated_weights = treated["weights"].values
+ control_weights = control["weights"].values
+
+ # Check if weights sum to 0 or if all weights are 0
+ if (
+ treated_weights.sum() == 0
+ or control_weights.sum() == 0
+ or not (treated_weights > 0).any()
+ or not (control_weights > 0).any()
+ ):
+ return np.nan
+
+ # Weighted averages with explicit handling of edge cases
+ try:
+ y1 = np.average(treated[outcome_name], weights=treated_weights)
+ y0 = np.average(control[outcome_name], weights=control_weights)
+ return y1 - y0
+ except ZeroDivisionError:
+ return np.nan
+
+ for N in N_values:
+ iter_df = working_df.copy()
+
+ try:
+ # Ensure enough unique values for binning
+ unique_ites = np.unique(iter_df["estimated_ITE"])
+ if len(unique_ites) < N:
+ continue
+
+ # Create bins
+ iter_df["ITE_bin"] = pd.qcut(
+ iter_df["estimated_ITE"], q=N, labels=False, duplicates="drop"
+ )
+
+ # Compute bin statistics
+ bin_stats = []
+ for bin_idx in iter_df["ITE_bin"].unique():
+ bin_data = iter_df[iter_df["ITE_bin"] == bin_idx]
+
+ # Skip if bin is too small
+ if len(bin_data) < 2:
+ continue
+
+ naive_est = compute_naive_estimate(bin_data)
+
+ # Only compute average ITE if weights are valid
+ bin_weights = bin_data["weights"].values
+ if bin_weights.sum() > 0 and not np.isnan(naive_est):
+ try:
+ avg_est_ite = np.average(
+ bin_data["estimated_ITE"], weights=bin_weights
+ )
+ bin_stats.append(
+ {
+ "ITE_bin": bin_idx,
+ "naive_estimate": naive_est,
+ "average_estimated_ITE": avg_est_ite,
+ }
+ )
+ except ZeroDivisionError:
+ continue
+
+ # Calculate Kendall's Tau if we have enough valid bins
+ bin_stats_df = pd.DataFrame(bin_stats)
+ if len(bin_stats_df) >= 2:
+ tau, _ = kendalltau(
+ bin_stats_df["naive_estimate"],
+ bin_stats_df["average_estimated_ITE"],
+ )
+ if not np.isnan(tau):
+ kendall_tau_values.append(tau)
+
+ except (ValueError, ZeroDivisionError):
+ continue
+
+ # Return final score
+ if len(kendall_tau_values) == 0:
+ return -np.inf # Return -inf for failed computations
+
+ top_3_taus = sorted(kendall_tau_values, reverse=True)[:3]
+ return np.mean(top_3_taus)
+
def make_scores(
self,
estimate: CausalEstimate,
@@ -1085,80 +1273,70 @@ def make_scores(
# simple_ate = simple_ate[0]
# .reset_index(drop=True)
propensitymodel = self.psw_estimator.estimator.propensity_model
- values["p"] = (
- propensitymodel.predict_proba(
- df[
- self.causal_model.get_effect_modifiers()
- + self.causal_model.get_common_causes()
- ]
- )[:, 1]
- )
+ values["p"] = propensitymodel.predict_proba(
+ df[
+ self.causal_model.get_effect_modifiers()
+ + self.causal_model.get_common_causes()
+ ]
+ )[:, 1]
values["policy"] = cate_estimate > 0
values["norm_policy"] = cate_estimate > simple_ate
- values["weights"] = self.erupt.weights(
- df, lambda x: cate_estimate > 0
- )
+ values["weights"] = self.erupt.weights(df, lambda x: cate_estimate > 0)
else:
pass
# TODO: what do we do here if multiple treatments?
if "erupt" in metrics_to_report:
- erupt_score = self.erupt.score(
- df, df[outcome_name], cate_estimate > 0)
+ erupt_score = self.erupt.score(df, df[outcome_name], cate_estimate > 0)
out["erupt"] = erupt_score
if "norm_erupt" in metrics_to_report:
norm_erupt_score = (
- self.erupt.score(
- df,
- df[outcome_name],
- cate_estimate > simple_ate
- ) - simple_ate * values["norm_policy"].mean()
+ self.erupt.score(df, df[outcome_name], cate_estimate > simple_ate)
+ - simple_ate * values["norm_policy"].mean()
)
out["norm_erupt"] = norm_erupt_score
+ # if "prob_erupt" in metrics_to_report:
+ # out["prob_erupt"] = self.erupt.probabilistic_erupt_score(
+ # df, df[est._outcome_name], estimate, cate_estimate
+ # )
+
if "prob_erupt" in metrics_to_report:
- treatment_effects = pd.Series(cate_estimate, index=df.index)
- treatment_std_devs = pd.Series(
- cate_estimate.std(), index=df.index)
prob_erupt_score = self.erupt.probabilistic_erupt_score(
- df, df[outcome_name],
- treatment_effects,
- treatment_std_devs
+ df, df[outcome_name], estimate
)
out["prob_erupt"] = prob_erupt_score
- if "frobenius_norm" in metrics_to_report:
- out["frobenius_norm"] = self.frobenius_norm_score(estimate, df)
+ # if "frobenius_norm" in metrics_to_report:
+ # out["frobenius_norm"] = self.frobenius_norm_score(estimate, df)
if "policy_risk" in metrics_to_report:
- try:
- out["policy_risk"] = self.policy_risk_score(
- estimate=estimate,
- df=df,
- cate_estimate=cate_estimate,
- outcome_name=outcome_name,
- policy=None
- )
- except Exception as e:
- e
- pass
+ out["policy_risk"] = self.policy_risk_score(
+ estimate=estimate,
+ df=df,
+ cate_estimate=cate_estimate,
+ outcome_name=outcome_name,
+ policy=None,
+ )
if "qini" in metrics_to_report:
- out["qini"] = Scorer.qini_make_score(
- estimate, df, cate_estimate)
+ out["qini"] = Scorer.qini_make_score(estimate, df, cate_estimate)
if "auc" in metrics_to_report:
out["auc"] = Scorer.auc_make_score(estimate, df, cate_estimate)
+ if "bite" in metrics_to_report:
+ bite_score = self.bite_score(estimate, df)
+ out["bite"] = bite_score
+
if r_scorer is not None:
out["r_score"] = Scorer.r_make_score(
estimate, df, cate_estimate, r_scorer
)
# values = values.rename(columns={treatment_name: "treated"})
- assert len(values) == len(
- df), "Index weirdness when adding columns!"
+ assert len(values) == len(df), "Index weirdness when adding columns!"
values = values.copy()
out["values"] = values
@@ -1178,6 +1356,12 @@ def make_scores(
temp = self.codec_score(estimate, df)
out["codec"] = temp
+ if "frobenius_norm" in metrics_to_report:
+ out["frobenius_norm"] = self.frobenius_norm_score(estimate, df)
+
+ # if "psw_frobenius_norm" in metrics_to_report:
+ # out["psw_frobenius_norm"] = self.psw_frobenius_norm_score(estimate, df)
+
del df
return out
@@ -1222,15 +1406,16 @@ def best_score_by_estimator(
if "estimator_name" in v and v["estimator_name"] == name
]
best[name] = (
- min(
- est_scores,
- key=lambda x: x[metric]) if metric in [
+ min(est_scores, key=lambda x: x[metric])
+ if metric
+ in [
"energy_distance",
"psw_energy_distance",
"frobenius_norm",
"codec",
- "policy_risk"] else max(
- est_scores,
- key=lambda x: x[metric]))
+ "policy_risk",
+ ]
+ else max(est_scores, key=lambda x: x[metric])
+ )
return best
diff --git a/notebooks/Linear_IV/_codec_run_1_Linear_IV.pkl b/notebooks/Linear_IV/_codec_run_1_Linear_IV.pkl
new file mode 100644
index 00000000..01349e5d
Binary files /dev/null and b/notebooks/Linear_IV/_codec_run_1_Linear_IV.pkl differ
diff --git a/notebooks/Linear_IV/_energy_distance_run_1_Linear_IV.pkl b/notebooks/Linear_IV/_energy_distance_run_1_Linear_IV.pkl
new file mode 100644
index 00000000..5187f3ee
Binary files /dev/null and b/notebooks/Linear_IV/_energy_distance_run_1_Linear_IV.pkl differ
diff --git a/notebooks/Linear_IV/_frobenius_norm_run_1_Linear_IV.pkl b/notebooks/Linear_IV/_frobenius_norm_run_1_Linear_IV.pkl
new file mode 100644
index 00000000..80c04e9a
Binary files /dev/null and b/notebooks/Linear_IV/_frobenius_norm_run_1_Linear_IV.pkl differ
diff --git a/notebooks/Linear_KC/_bite_run_1_Linear_KC.pkl b/notebooks/Linear_KC/_bite_run_1_Linear_KC.pkl
new file mode 100644
index 00000000..effc28af
Binary files /dev/null and b/notebooks/Linear_KC/_bite_run_1_Linear_KC.pkl differ
diff --git a/notebooks/Linear_KC/_energy_distance_run_1_Linear_KC.pkl b/notebooks/Linear_KC/_energy_distance_run_1_Linear_KC.pkl
new file mode 100644
index 00000000..6b4cab4b
Binary files /dev/null and b/notebooks/Linear_KC/_energy_distance_run_1_Linear_KC.pkl differ
diff --git a/notebooks/Linear_KC/_frobenius_norm_run_1_Linear_KC.pkl b/notebooks/Linear_KC/_frobenius_norm_run_1_Linear_KC.pkl
new file mode 100644
index 00000000..e15f697f
Binary files /dev/null and b/notebooks/Linear_KC/_frobenius_norm_run_1_Linear_KC.pkl differ
diff --git a/notebooks/Linear_KC/_policy_risk_run_1_Linear_KC.pkl b/notebooks/Linear_KC/_policy_risk_run_1_Linear_KC.pkl
new file mode 100644
index 00000000..691aa1f5
Binary files /dev/null and b/notebooks/Linear_KC/_policy_risk_run_1_Linear_KC.pkl differ
diff --git a/notebooks/Linear_KC/_psw_energy_distance_run_1_Linear_KC.pkl b/notebooks/Linear_KC/_psw_energy_distance_run_1_Linear_KC.pkl
new file mode 100644
index 00000000..e19ea1bd
Binary files /dev/null and b/notebooks/Linear_KC/_psw_energy_distance_run_1_Linear_KC.pkl differ
diff --git a/notebooks/Linear_KCKP/_bite_run_1_Linear_KCKP.pkl b/notebooks/Linear_KCKP/_bite_run_1_Linear_KCKP.pkl
new file mode 100644
index 00000000..decabc3f
Binary files /dev/null and b/notebooks/Linear_KCKP/_bite_run_1_Linear_KCKP.pkl differ
diff --git a/notebooks/Linear_KCKP/_energy_distance_run_1_Linear_KCKP.pkl b/notebooks/Linear_KCKP/_energy_distance_run_1_Linear_KCKP.pkl
new file mode 100644
index 00000000..0e0f6d28
Binary files /dev/null and b/notebooks/Linear_KCKP/_energy_distance_run_1_Linear_KCKP.pkl differ
diff --git a/notebooks/Linear_KCKP/_frobenius_norm_run_1_Linear_KCKP.pkl b/notebooks/Linear_KCKP/_frobenius_norm_run_1_Linear_KCKP.pkl
new file mode 100644
index 00000000..f7fd33d9
Binary files /dev/null and b/notebooks/Linear_KCKP/_frobenius_norm_run_1_Linear_KCKP.pkl differ
diff --git a/notebooks/Linear_KCKP/_policy_risk_run_1_Linear_KCKP.pkl b/notebooks/Linear_KCKP/_policy_risk_run_1_Linear_KCKP.pkl
new file mode 100644
index 00000000..8f52dfa6
Binary files /dev/null and b/notebooks/Linear_KCKP/_policy_risk_run_1_Linear_KCKP.pkl differ
diff --git a/notebooks/Linear_KCKP/_psw_energy_distance_run_1_Linear_KCKP.pkl b/notebooks/Linear_KCKP/_psw_energy_distance_run_1_Linear_KCKP.pkl
new file mode 100644
index 00000000..e136b998
Binary files /dev/null and b/notebooks/Linear_KCKP/_psw_energy_distance_run_1_Linear_KCKP.pkl differ
diff --git a/notebooks/Linear_RCT/_bite_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_bite_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..cfde33d4
Binary files /dev/null and b/notebooks/Linear_RCT/_bite_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/Linear_RCT/_codec_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_codec_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..bd74e148
Binary files /dev/null and b/notebooks/Linear_RCT/_codec_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/Linear_RCT/_energy_distance_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_energy_distance_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..c5f4ef48
Binary files /dev/null and b/notebooks/Linear_RCT/_energy_distance_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/Linear_RCT/_frobenius_norm_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_frobenius_norm_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..2a718759
Binary files /dev/null and b/notebooks/Linear_RCT/_frobenius_norm_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/Linear_RCT/_policy_risk_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_policy_risk_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..af1a1497
Binary files /dev/null and b/notebooks/Linear_RCT/_policy_risk_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/Linear_RCT/_psw_energy_distance_run_1_Linear_RCT.pkl b/notebooks/Linear_RCT/_psw_energy_distance_run_1_Linear_RCT.pkl
new file mode 100644
index 00000000..ede9047e
Binary files /dev/null and b/notebooks/Linear_RCT/_psw_energy_distance_run_1_Linear_RCT.pkl differ
diff --git a/notebooks/NonLinear_IV/_codec_run_1_NonLinear_IV.pkl b/notebooks/NonLinear_IV/_codec_run_1_NonLinear_IV.pkl
new file mode 100644
index 00000000..04277d4e
Binary files /dev/null and b/notebooks/NonLinear_IV/_codec_run_1_NonLinear_IV.pkl differ
diff --git a/notebooks/NonLinear_IV/_energy_distance_run_1_NonLinear_IV.pkl b/notebooks/NonLinear_IV/_energy_distance_run_1_NonLinear_IV.pkl
new file mode 100644
index 00000000..f9504cb9
Binary files /dev/null and b/notebooks/NonLinear_IV/_energy_distance_run_1_NonLinear_IV.pkl differ
diff --git a/notebooks/NonLinear_IV/_frobenius_norm_run_1_NonLinear_IV.pkl b/notebooks/NonLinear_IV/_frobenius_norm_run_1_NonLinear_IV.pkl
new file mode 100644
index 00000000..7bbf9d80
Binary files /dev/null and b/notebooks/NonLinear_IV/_frobenius_norm_run_1_NonLinear_IV.pkl differ
diff --git a/notebooks/NonLinear_KC/_bite_run_1_NonLinear_KC.pkl b/notebooks/NonLinear_KC/_bite_run_1_NonLinear_KC.pkl
new file mode 100644
index 00000000..9d25f2d9
Binary files /dev/null and b/notebooks/NonLinear_KC/_bite_run_1_NonLinear_KC.pkl differ
diff --git a/notebooks/NonLinear_KC/_energy_distance_run_1_NonLinear_KC.pkl b/notebooks/NonLinear_KC/_energy_distance_run_1_NonLinear_KC.pkl
new file mode 100644
index 00000000..8a74a97f
Binary files /dev/null and b/notebooks/NonLinear_KC/_energy_distance_run_1_NonLinear_KC.pkl differ
diff --git a/notebooks/NonLinear_KC/_frobenius_norm_run_1_NonLinear_KC.pkl b/notebooks/NonLinear_KC/_frobenius_norm_run_1_NonLinear_KC.pkl
new file mode 100644
index 00000000..46b63534
Binary files /dev/null and b/notebooks/NonLinear_KC/_frobenius_norm_run_1_NonLinear_KC.pkl differ
diff --git a/notebooks/NonLinear_KC/_policy_risk_run_1_NonLinear_KC.pkl b/notebooks/NonLinear_KC/_policy_risk_run_1_NonLinear_KC.pkl
new file mode 100644
index 00000000..81f10685
Binary files /dev/null and b/notebooks/NonLinear_KC/_policy_risk_run_1_NonLinear_KC.pkl differ
diff --git a/notebooks/NonLinear_KC/_psw_energy_distance_run_1_NonLinear_KC.pkl b/notebooks/NonLinear_KC/_psw_energy_distance_run_1_NonLinear_KC.pkl
new file mode 100644
index 00000000..ceb7705e
Binary files /dev/null and b/notebooks/NonLinear_KC/_psw_energy_distance_run_1_NonLinear_KC.pkl differ
diff --git a/notebooks/NonLinear_KCKP/_bite_run_1_NonLinear_KCKP.pkl b/notebooks/NonLinear_KCKP/_bite_run_1_NonLinear_KCKP.pkl
new file mode 100644
index 00000000..9abb7806
Binary files /dev/null and b/notebooks/NonLinear_KCKP/_bite_run_1_NonLinear_KCKP.pkl differ
diff --git a/notebooks/NonLinear_KCKP/_energy_distance_run_1_NonLinear_KCKP.pkl b/notebooks/NonLinear_KCKP/_energy_distance_run_1_NonLinear_KCKP.pkl
new file mode 100644
index 00000000..05067736
Binary files /dev/null and b/notebooks/NonLinear_KCKP/_energy_distance_run_1_NonLinear_KCKP.pkl differ
diff --git a/notebooks/NonLinear_KCKP/_frobenius_norm_run_1_NonLinear_KCKP.pkl b/notebooks/NonLinear_KCKP/_frobenius_norm_run_1_NonLinear_KCKP.pkl
new file mode 100644
index 00000000..0ea15e69
Binary files /dev/null and b/notebooks/NonLinear_KCKP/_frobenius_norm_run_1_NonLinear_KCKP.pkl differ
diff --git a/notebooks/NonLinear_KCKP/_policy_risk_run_1_NonLinear_KCKP.pkl b/notebooks/NonLinear_KCKP/_policy_risk_run_1_NonLinear_KCKP.pkl
new file mode 100644
index 00000000..69f81319
Binary files /dev/null and b/notebooks/NonLinear_KCKP/_policy_risk_run_1_NonLinear_KCKP.pkl differ
diff --git a/notebooks/NonLinear_KCKP/_psw_energy_distance_run_1_NonLinear_KCKP.pkl b/notebooks/NonLinear_KCKP/_psw_energy_distance_run_1_NonLinear_KCKP.pkl
new file mode 100644
index 00000000..b47332a7
Binary files /dev/null and b/notebooks/NonLinear_KCKP/_psw_energy_distance_run_1_NonLinear_KCKP.pkl differ
diff --git a/notebooks/NonLinear_RCT/_bite_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_bite_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..edae7a19
Binary files /dev/null and b/notebooks/NonLinear_RCT/_bite_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/NonLinear_RCT/_codec_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_codec_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..8e9b1c37
Binary files /dev/null and b/notebooks/NonLinear_RCT/_codec_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/NonLinear_RCT/_energy_distance_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_energy_distance_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..8e30d899
Binary files /dev/null and b/notebooks/NonLinear_RCT/_energy_distance_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/NonLinear_RCT/_frobenius_norm_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_frobenius_norm_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..c3a544d9
Binary files /dev/null and b/notebooks/NonLinear_RCT/_frobenius_norm_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/NonLinear_RCT/_policy_risk_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_policy_risk_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..9b8c267b
Binary files /dev/null and b/notebooks/NonLinear_RCT/_policy_risk_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/NonLinear_RCT/_psw_energy_distance_run_1_NonLinear_RCT.pkl b/notebooks/NonLinear_RCT/_psw_energy_distance_run_1_NonLinear_RCT.pkl
new file mode 100644
index 00000000..3f6c86ae
Binary files /dev/null and b/notebooks/NonLinear_RCT/_psw_energy_distance_run_1_NonLinear_RCT.pkl differ
diff --git a/notebooks/Random assignment, binary CATE example.ipynb b/notebooks/Random assignment, binary CATE example.ipynb
index 6141b0f7..c7f31249 100644
--- a/notebooks/Random assignment, binary CATE example.ipynb
+++ b/notebooks/Random assignment, binary CATE example.ipynb
@@ -24,7 +24,15 @@
"name": "#%%\n"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
+ ]
+ }
+ ],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
@@ -441,16 +449,16 @@
"
\n",
" \n",
" 0 | \n",
- " 1 | \n",
- " 5.599916 | \n",
- " 1.0 | \n",
- " -0.528603 | \n",
- " -0.343455 | \n",
- " 1.128554 | \n",
- " 0.161703 | \n",
- " -0.316603 | \n",
+ " 0 | \n",
+ " 6.875856 | \n",
+ " 0.0 | \n",
+ " -1.736945 | \n",
+ " -1.802002 | \n",
+ " 0.383828 | \n",
+ " 2.244319 | \n",
+ " -0.629189 | \n",
" 1.295216 | \n",
- " 1.0 | \n",
+ " 0.0 | \n",
" ... | \n",
" 1.0 | \n",
" 1.0 | \n",
@@ -466,14 +474,14 @@
"
\n",
" 1 | \n",
" 0 | \n",
- " 1.366206 | \n",
+ " 2.996273 | \n",
" 1.0 | \n",
- " 0.390083 | \n",
- " 0.596582 | \n",
- " -1.850350 | \n",
+ " -0.807451 | \n",
+ " -0.202946 | \n",
+ " -0.360898 | \n",
" -0.879606 | \n",
- " -0.004017 | \n",
- " -0.857787 | \n",
+ " 0.808706 | \n",
+ " -0.526556 | \n",
" 0.0 | \n",
" ... | \n",
" 1.0 | \n",
@@ -490,18 +498,18 @@
"
\n",
" 2 | \n",
" 0 | \n",
- " 1.963538 | \n",
- " 0.0 | \n",
- " -1.045228 | \n",
- " -0.602710 | \n",
- " 0.011465 | \n",
- " 0.161703 | \n",
- " 0.683672 | \n",
- " -0.360940 | \n",
+ " 1.366206 | \n",
" 1.0 | \n",
+ " 0.390083 | \n",
+ " 0.596582 | \n",
+ " -1.850350 | \n",
+ " -0.879606 | \n",
+ " -0.004017 | \n",
+ " -0.857787 | \n",
+ " 0.0 | \n",
" ... | \n",
" 1.0 | \n",
- " 1.0 | \n",
+ " 0.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 0.0 | \n",
@@ -566,16 +574,16 @@
],
"text/plain": [
" treatment y_factual random x1 x2 x3 x4 \\\n",
- "0 1 5.599916 1.0 -0.528603 -0.343455 1.128554 0.161703 \n",
- "1 0 1.366206 1.0 0.390083 0.596582 -1.850350 -0.879606 \n",
- "2 0 1.963538 0.0 -1.045228 -0.602710 0.011465 0.161703 \n",
+ "0 0 6.875856 0.0 -1.736945 -1.802002 0.383828 2.244319 \n",
+ "1 0 2.996273 1.0 -0.807451 -0.202946 -0.360898 -0.879606 \n",
+ "2 0 1.366206 1.0 0.390083 0.596582 -1.850350 -0.879606 \n",
"3 0 4.762090 0.0 0.467901 -0.202946 -0.733261 0.161703 \n",
"4 0 6.594044 1.0 0.513295 0.596582 0.756191 1.203011 \n",
"\n",
" x5 x6 x7 ... x16 x17 x18 x19 x20 x21 x22 x23 x24 \\\n",
- "0 -0.316603 1.295216 1.0 ... 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
- "1 -0.004017 -0.857787 0.0 ... 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
- "2 0.683672 -0.360940 1.0 ... 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
+ "0 -0.629189 1.295216 0.0 ... 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
+ "1 0.808706 -0.526556 0.0 ... 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
+ "2 -0.004017 -0.857787 0.0 ... 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
"3 0.058500 1.957678 1.0 ... 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
"4 -0.066534 2.620141 1.0 ... 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
@@ -626,21 +634,21 @@
"\n",
"# choose estimators of interest\n",
"estimator_list = [\n",
- " # \"Dummy\",\n",
- " # \"SparseLinearDML\",\n",
- " # \"ForestDRLearner\",\n",
- " # \"TransformedOutcome\",\n",
+ " \"Dummy\",\n",
+ " \"SparseLinearDML\",\n",
+ " \"ForestDRLearner\",\n",
+ " \"TransformedOutcome\",\n",
" \"CausalForestDML\",\n",
- " # \".LinearDML\",\n",
- " # \"DomainAdaptationLearner\",\n",
+ " \".LinearDML\",\n",
+ " \"DomainAdaptationLearner\",\n",
" \"SLearner\",\n",
" \"XLearner\",\n",
- " # \"TLearner\",\n",
+ " \"TLearner\",\n",
" # \"Ortho\"\n",
" ]\n",
"\n",
"# set evaluation metric\n",
- "metric = \"energy_distance\"\n",
+ "metric = \"prob_erupt\"\n",
"\n",
"# it's best to specify either time_budget or components_time_budget, \n",
"# and let the other one be inferred; time in seconds\n",
@@ -653,7 +661,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"id": "ea8d2df3",
"metadata": {
"collapsed": false,
@@ -667,11 +675,102 @@
"output_type": "stream",
"text": [
"Fitting a Propensity-Weighted scoring estimator to be used in scoring tasks\n",
- "Initial configs: [{'estimator': {'estimator_name': 'backdoor.econml.metalearners.SLearner'}}, {'estimator': {'estimator_name': 'backdoor.econml.metalearners.XLearner'}}, {'estimator': {'estimator_name': 'backdoor.econml.dml.CausalForestDML', 'drate': True, 'n_estimators': 100, 'criterion': 'mse', 'min_samples_split': 10, 'min_samples_leaf': 5, 'min_weight_fraction_leaf': 0.0, 'max_features': 'auto', 'min_impurity_decrease': 0.0, 'max_samples': 0.45, 'min_balancedness_tol': 0.45, 'honest': True, 'fit_intercept': True, 'subforest_size': 4}}]\n",
- "---------------------\n",
- "Best estimator: backdoor.econml.metalearners.XLearner\n",
- "Best config: {'estimator': {'estimator_name': 'backdoor.econml.metalearners.XLearner'}}\n",
- "Best score: 0.22739775773260096\n"
+ "Propensity Model Fitted Successfully\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: NaiveDummy\n",
+ "CATE estimate summary:\n",
+ "Mean: 4.0815\n",
+ "Std: 0.0004\n",
+ "Min: 4.0804\n",
+ "Max: 4.0826\n",
+ "Inference capability check result: False\n",
+ "Estimator does not support inference - returning 0\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: NaiveDummy\n",
+ "CATE estimate summary:\n",
+ "Mean: 3.8796\n",
+ "Std: 0.0004\n",
+ "Min: 3.8785\n",
+ "Max: 3.8806\n",
+ "Inference capability check result: False\n",
+ "Estimator does not support inference - returning 0\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Dummy\n",
+ "CATE estimate summary:\n",
+ "Mean: 4.0815\n",
+ "Std: 0.0004\n",
+ "Min: 4.0801\n",
+ "Max: 4.0826\n",
+ "Inference capability check result: False\n",
+ "Estimator does not support inference - returning 0\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Dummy\n",
+ "CATE estimate summary:\n",
+ "Mean: 3.8796\n",
+ "Std: 0.0004\n",
+ "Min: 3.8787\n",
+ "Max: 3.8806\n",
+ "Inference capability check result: False\n",
+ "Estimator does not support inference - returning 0\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Econml\n",
+ "CATE estimate summary:\n",
+ "Mean: 3.7754\n",
+ "Std: 0.6602\n",
+ "Min: 1.0852\n",
+ "Max: 4.8237\n",
+ "Inference capability check result: True\n",
+ "Exception occurred: Can't call 'effect_inference' because 'inference' is None\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Econml\n",
+ "CATE estimate summary:\n",
+ "Mean: 3.7402\n",
+ "Std: 0.7194\n",
+ "Min: 1.0852\n",
+ "Max: 4.7213\n",
+ "Inference capability check result: True\n",
+ "Exception occurred: Can't call 'effect_inference' because 'inference' is None\n"
+ ]
+ },
+ {
+ "ename": "KeyboardInterrupt",
+ "evalue": "",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
+ "Cell \u001b[0;32mIn[11], line 13\u001b[0m\n\u001b[1;32m 1\u001b[0m ct \u001b[38;5;241m=\u001b[39m CausalTune(\n\u001b[1;32m 2\u001b[0m estimator_list\u001b[38;5;241m=\u001b[39mestimator_list,\n\u001b[1;32m 3\u001b[0m metric\u001b[38;5;241m=\u001b[39mmetric,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 8\u001b[0m train_size\u001b[38;5;241m=\u001b[39mtrain_size\n\u001b[1;32m 9\u001b[0m )\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m# run causaltune\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m \u001b[43mct\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moutcome\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moutcomes\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m---------------------\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 16\u001b[0m \u001b[38;5;66;03m# return best estimator\u001b[39;00m\n",
+ "File \u001b[0;32m~/Documents/GitHub/causaltune_pr/causaltune/optimiser.py:501\u001b[0m, in \u001b[0;36mCausalTune.fit\u001b[0;34m(self, data, treatment, outcome, common_causes, effect_modifiers, instruments, propensity_modifiers, estimator_list, resume, time_budget, preprocess, encoder_type, encoder_outcome)\u001b[0m\n\u001b[1;32m 498\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m cfg \u001b[38;5;129;01min\u001b[39;00m init_cfg:\n\u001b[1;32m 499\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresume_cfg\u001b[38;5;241m.\u001b[39mappend(cfg) \u001b[38;5;28;01mif\u001b[39;00m cfg \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresume_cfg \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 501\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults \u001b[38;5;241m=\u001b[39m \u001b[43mtune\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 502\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_tune_with_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 503\u001b[0m \u001b[43m \u001b[49m\u001b[43msearch_space\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 504\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetric\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmetric\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 505\u001b[0m \u001b[43m \u001b[49m\u001b[43mpoints_to_evaluate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 506\u001b[0m \u001b[43m \u001b[49m\u001b[43minit_cfg\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresume_cfg\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresume_cfg\u001b[49m\n\u001b[1;32m 507\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 508\u001b[0m \u001b[43m \u001b[49m\u001b[43mevaluated_rewards\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 509\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresume_scores\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresume_scores\u001b[49m\n\u001b[1;32m 510\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 511\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 512\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmin\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 513\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmetric\u001b[49m\n\u001b[1;32m 514\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\n\u001b[1;32m 515\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43menergy_distance\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 516\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpsw_energy_distance\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 517\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrobenius_norm\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 518\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpsw_frobenius_norm\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 519\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcodec\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 520\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpolicy_risk\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 521\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 522\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 523\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 524\u001b[0m \u001b[43m \u001b[49m\u001b[43mlow_cost_partial_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 525\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_settings\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtuner\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 526\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 528\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mresults\u001b[38;5;241m.\u001b[39mget_best_trial() \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 529\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m(\n\u001b[1;32m 530\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOptimization failed! Did you set large enough time_budget and components_budget?\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 531\u001b[0m )\n",
+ "File \u001b[0;32m~/anaconda3/envs/causaltune-paper/lib/python3.9/site-packages/flaml/tune/tune.py:814\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(evaluation_function, config, low_cost_partial_config, cat_hp_cost, metric, mode, time_budget_s, points_to_evaluate, evaluated_rewards, resource_attr, min_resource, max_resource, reduction_factor, scheduler, search_alg, verbose, local_dir, num_samples, resources_per_trial, config_constraints, metric_constraints, max_failure, use_ray, use_spark, use_incumbent_result_in_evaluation, log_file_name, lexico_objectives, force_cancel, n_concurrent_trials, **ray_args)\u001b[0m\n\u001b[1;32m 812\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 813\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m PySparkOvertimeMonitor(time_start, time_budget_s, force_cancel):\n\u001b[0;32m--> 814\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mevaluation_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrial_to_run\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 815\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 816\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(result, \u001b[38;5;28mdict\u001b[39m):\n",
+ "File \u001b[0;32m~/Documents/GitHub/causaltune_pr/causaltune/optimiser.py:560\u001b[0m, in \u001b[0;36mCausalTune._tune_with_config\u001b[0;34m(self, config)\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_tune_with_config\u001b[39m(\u001b[38;5;28mself\u001b[39m, config: \u001b[38;5;28mdict\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mdict\u001b[39m:\n\u001b[1;32m 551\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 552\u001b[0m \u001b[38;5;124;03m Performs Hyperparameter Optimisation for a causal inference estimator.\u001b[39;00m\n\u001b[1;32m 553\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 558\u001b[0m \u001b[38;5;124;03m (dict): values of metrics after optimisation\u001b[39;00m\n\u001b[1;32m 559\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 560\u001b[0m estimates \u001b[38;5;241m=\u001b[39m \u001b[43mParallel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackend\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mthreading\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 561\u001b[0m \u001b[43m \u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_estimate_effect\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mi\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mrange\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 562\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 564\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexception\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m estimates:\n\u001b[1;32m 565\u001b[0m est_name \u001b[38;5;241m=\u001b[39m estimates[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mestimator_name\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n",
+ "File \u001b[0;32m~/anaconda3/envs/causaltune-paper/lib/python3.9/site-packages/joblib/parallel.py:2007\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 2001\u001b[0m \u001b[38;5;66;03m# The first item from the output is blank, but it makes the interpreter\u001b[39;00m\n\u001b[1;32m 2002\u001b[0m \u001b[38;5;66;03m# progress until it enters the Try/Except block of the generator and\u001b[39;00m\n\u001b[1;32m 2003\u001b[0m \u001b[38;5;66;03m# reaches the first `yield` statement. This starts the asynchronous\u001b[39;00m\n\u001b[1;32m 2004\u001b[0m \u001b[38;5;66;03m# dispatch of the tasks to the workers.\u001b[39;00m\n\u001b[1;32m 2005\u001b[0m \u001b[38;5;28mnext\u001b[39m(output)\n\u001b[0;32m-> 2007\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m output \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreturn_generator \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n",
+ "File \u001b[0;32m~/anaconda3/envs/causaltune-paper/lib/python3.9/site-packages/joblib/parallel.py:1650\u001b[0m, in \u001b[0;36mParallel._get_outputs\u001b[0;34m(self, iterator, pre_dispatch)\u001b[0m\n\u001b[1;32m 1647\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m\n\u001b[1;32m 1649\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backend\u001b[38;5;241m.\u001b[39mretrieval_context():\n\u001b[0;32m-> 1650\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_retrieve()\n\u001b[1;32m 1652\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mGeneratorExit\u001b[39;00m:\n\u001b[1;32m 1653\u001b[0m \u001b[38;5;66;03m# The generator has been garbage collected before being fully\u001b[39;00m\n\u001b[1;32m 1654\u001b[0m \u001b[38;5;66;03m# consumed. This aborts the remaining tasks if possible and warn\u001b[39;00m\n\u001b[1;32m 1655\u001b[0m \u001b[38;5;66;03m# the user if necessary.\u001b[39;00m\n\u001b[1;32m 1656\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_exception \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
+ "File \u001b[0;32m~/anaconda3/envs/causaltune-paper/lib/python3.9/site-packages/joblib/parallel.py:1762\u001b[0m, in \u001b[0;36mParallel._retrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1757\u001b[0m \u001b[38;5;66;03m# If the next job is not ready for retrieval yet, we just wait for\u001b[39;00m\n\u001b[1;32m 1758\u001b[0m \u001b[38;5;66;03m# async callbacks to progress.\u001b[39;00m\n\u001b[1;32m 1759\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ((\u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m\n\u001b[1;32m 1760\u001b[0m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_jobs[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mget_status(\n\u001b[1;32m 1761\u001b[0m timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtimeout) \u001b[38;5;241m==\u001b[39m TASK_PENDING)):\n\u001b[0;32m-> 1762\u001b[0m \u001b[43mtime\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msleep\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0.01\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1763\u001b[0m \u001b[38;5;28;01mcontinue\u001b[39;00m\n\u001b[1;32m 1765\u001b[0m \u001b[38;5;66;03m# We need to be careful: the job list can be filling up as\u001b[39;00m\n\u001b[1;32m 1766\u001b[0m \u001b[38;5;66;03m# we empty it and Python list are not thread-safe by\u001b[39;00m\n\u001b[1;32m 1767\u001b[0m \u001b[38;5;66;03m# default hence the use of the lock\u001b[39;00m\n",
+ "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Econml\n",
+ "CATE estimate summary:\n",
+ "Mean: 4.0209\n",
+ "Std: 0.8874\n",
+ "Min: 0.2481\n",
+ "Max: 5.9306\n",
+ "Inference capability check result: True\n",
+ "Exception occurred: Can't call 'effect_inference' because 'inference' is None\n",
+ "\n",
+ "Debugging Probabilistic ERUPT for estimator: Econml\n",
+ "CATE estimate summary:\n",
+ "Mean: 3.9644\n",
+ "Std: 0.9270\n",
+ "Min: 0.3706\n",
+ "Max: 5.4427\n",
+ "Inference capability check result: True\n",
+ "Exception occurred: Can't call 'effect_inference' because 'inference' is None\n"
]
}
],
@@ -949,7 +1048,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.16"
+ "version": "3.9.19"
}
},
"nbformat": 4,
diff --git a/notebooks/Run metric tests across different scenarios.ipynb b/notebooks/Run metric tests across different scenarios.ipynb
index 0a2b4121..8090a721 100644
--- a/notebooks/Run metric tests across different scenarios.ipynb
+++ b/notebooks/Run metric tests across different scenarios.ipynb
@@ -2,17 +2,9 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
@@ -22,7 +14,8 @@
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
- "\n",
+ "import matplotlib\n",
+ "import colorsys\n",
"import copy \n",
"\n",
"import textwrap\n",
@@ -51,12 +44,14 @@
"from causaltune.datasets import generate_synthetic_data\n",
"\n",
"# Import linear synthetic data creation\n",
- "from causaltune.datasets import generate_linear_synthetic_data"
+ "from causaltune.datasets import generate_linear_synthetic_data\n",
+ "from causaltune.models.passthrough import passthrough_model\n",
+ "from causaltune.datasets import load_dataset, save_dataset"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 226,
"metadata": {},
"outputs": [],
"source": [
@@ -67,62 +62,98 @@
" \"policy_risk\",\n",
" \"codec\",\n",
" \"energy_distance\", \n",
- " \"psw_energy_distance\"\n",
+ " \"psw_energy_distance\",\n",
+ " \"bite\"\n",
" ]\n",
"\n",
"iv_metrics = [\n",
- " \"frobenius_norm\", \n",
- " \"energy_distance\", \n",
- " \"codec\", \n",
+ " \"energy_distance\",\n",
+ " \"codec\", \n",
+ " \"frobenius_norm\", \n",
" ]\n",
- " \n",
- "n_samples = 100\n",
- "test_size = 0.33 # equal train,val,test\n",
- "#time_budget = 21600\n",
- "components_time_budget = 10\n",
"\n",
"estimator_list = [\n",
- " #\"Dummy\",\n",
- " \"SparseLinearDML\",\n",
- " \"ForestDRLearner\",\n",
- " \"TransformedOutcome\",\n",
- " \"CausalForestDML\",\n",
- " \".LinearDML\",\n",
- " \"DomainAdaptationLearner\",\n",
- " #\"SLearner\",\n",
- " \"XLearner\",\n",
- " #\"TLearner\",\n",
- " #\"Ortho\" \n",
- " ] \n",
+ " \"Dummy\",\n",
+ " \"SparseLinearDML\",\n",
+ " \"ForestDRLearner\",\n",
+ " \"TransformedOutcome\",\n",
+ " \"CausalForestDML\",\n",
+ " \".LinearDML\",\n",
+ " \"DomainAdaptationLearner\",\n",
+ " \"SLearner\",\n",
+ " \"XLearner\",\n",
+ " \"TLearner\",\n",
+ " #\"Ortho\" \n",
+ " ] \n",
"\n",
"iv_estimator_list = [\n",
- " 'iv.econml.iv.dr.LinearDRIV', \n",
- " 'iv.econml.iv.dml.OrthoIV', \n",
- " 'iv.econml.iv.dml.DMLIV',\n",
- " 'iv.econml.iv.dr.SparseLinearDRIV',\n",
- " 'iv.econml.iv.dr.LinearIntentToTreatDRIV'\n",
- " ] \n",
+ " 'iv.econml.iv.dr.LinearDRIV', \n",
+ " #'iv.econml.iv.dml.OrthoIV', \n",
+ " 'iv.econml.iv.dml.DMLIV',\n",
+ " 'iv.econml.iv.dr.SparseLinearDRIV',\n",
+ " 'iv.econml.iv.dr.LinearIntentToTreatDRIV'\n",
+ " ] \n",
+ "\n",
"\n",
+ "# More Parameters\n",
"n_runs = 1\n",
- "out_dir = \"\"\n",
- "filename_out = \"iv\""
+ "num_samples = -1\n",
+ "\n",
+ "test_size = 0.33 # equal train,val,test\n",
+ "\n",
+ "time_budget = None\n",
+ "components_time_budget = 10\n",
+ "\n",
+ "propensity_model='dummy'\n",
+ "\n",
+ "filename_out = \"\"\n",
+ "out_dir = \"GENERIC_OUT_DIR\"\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 227,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if not os.path.exists(out_dir):\n",
+ " os.makedirs(out_dir)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "# 1. Dataset Generation"
+ "# 1. Dataset Generation\n",
+ "\n",
+ "Generate synthetic data sets for your experiments or load one of the pre-made datasets."
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 228,
"metadata": {},
"outputs": [],
"source": [
"# Create empty dictionary\n",
- "data_sets = {}"
+ "#data_sets = {}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 229,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "\n",
+ "# # Save the dataset\n",
+ "# save_dataset(cd_linear, \"synthetic_data_test.pkl\")\n",
+ "\n",
+ "# # Load the dataset\n",
+ "# loaded_data = load_dataset(\"synthetic_data_test.pkl\")\n",
+ "\n",
+ "# # Now you can use the loaded_data just like the original synthetic_data\n",
+ "# loaded_data.data.head(5)"
]
},
{
@@ -130,40 +161,63 @@
"metadata": {},
"source": [
"### 1.1 Non-linear Data\n",
- "Unkown Confounders (RCT), Known Confoudners (Observational), IV"
+ "Randomized Controlled Trial (RCT), Known Confounders (KC), Known Propenisities (KCKP), Instrumental Variables (IV)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 230,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# cd = generate_synthetic_data(n_samples=n_samples, confounding=False, noisy_outcomes=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['NonLinear_RCT'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/NonLinear_RCT.pkl\")"
]
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 231,
"metadata": {},
"outputs": [],
"source": [
- "#cd_non_linear = generate_synthetic_data(n_samples=n_samples, confounding=False, noisy_outcomes=True)\n",
- "#cd_non_linear.preprocess_dataset()\n",
- "#data_sets['rct_non-linear'] = cd_non_linear"
+ "# cd = generate_synthetic_data(n_samples=n_samples, confounding=True, noisy_outcomes=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['NonLinear_KC'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/NonLinear_KC.pkl\")"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 232,
"metadata": {},
"outputs": [],
"source": [
- "#cd_non_linear = generate_synthetic_data(n_samples=n_samples, confounding=True, noisy_outcomes=True)\n",
- "#cd_non_linear.preprocess_dataset()\n",
- "#data_sets['known_confounders_non-linear'] = cd_non_linear"
+ "# cd = generate_synthetic_data(n_samples=n_samples, confounding=True, known_propensity=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['NonLinear_KCKP'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/NonLinear_KCKP.pkl\")"
]
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 233,
"metadata": {},
"outputs": [],
"source": [
- "cd_non_linear = generate_synthetic_data(n_samples=n_samples, confounding=True, add_instrument=True)\n",
- "cd_non_linear.preprocess_dataset()\n",
- "data_sets['IV_non-linear'] = cd_non_linear"
+ "# cd = generate_synthetic_data(n_samples=n_samples, confounding=True, add_instrument=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['NonLinear_IV'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/NonLinear_IV.pkl\")"
]
},
{
@@ -171,684 +225,110 @@
"metadata": {},
"source": [
"### 1.2 Linear Data\n",
- "Unkown Confounders (RCT), Known Confoudners (Observational), IV"
+ "Randomized Controlled Trial (RCT), Known Confounders (KC), Known Propenisities (KCKP), Instrumental Variables (IV)"
]
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 234,
"metadata": {},
"outputs": [],
"source": [
- "#cd_linear = generate_linear_synthetic_data(n_samples=n_samples, confounding=False, noisy_outcomes=True)\n",
- "#cd_linear.preprocess_dataset()\n",
- "#data_sets['rct_linear'] = cd_linear"
+ "# cd = generate_linear_synthetic_data(n_samples=n_samples, confounding=False, noisy_outcomes=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['Linear_RCT'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/Linear_RCT.pkl\")"
]
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 235,
"metadata": {},
"outputs": [],
"source": [
- "#cd_linear = generate_linear_synthetic_data(n_samples=n_samples, confounding=True, noisy_outcomes=True)\n",
- "#cd_linear.preprocess_dataset()\n",
- "#data_sets['known_confounders_linear'] = cd_linear"
+ "# cd = generate_linear_synthetic_data(n_samples=n_samples, confounding=True, noisy_outcomes=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['Linear_KC'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/Linear_KC.pkl\")"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 236,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " treatment | \n",
- " outcome | \n",
- " true_effect | \n",
- " base_outcome | \n",
- " instrument | \n",
- " random | \n",
- " X1 | \n",
- " X2 | \n",
- " X3 | \n",
- " X4 | \n",
- " X5 | \n",
- " propensity | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0 | \n",
- " 0.450543 | \n",
- " 1.289024 | \n",
- " 0.450543 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " -0.076146 | \n",
- " -0.132621 | \n",
- " 0.419829 | \n",
- " 1.496246 | \n",
- " 0.094485 | \n",
- " 0.219328 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0 | \n",
- " 0.156640 | \n",
- " 0.483619 | \n",
- " 0.156640 | \n",
- " 0 | \n",
- " 1.0 | \n",
- " -0.824938 | \n",
- " 0.618384 | \n",
- " 0.111048 | \n",
- " 1.294570 | \n",
- " -0.694036 | \n",
- " 0.544131 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0 | \n",
- " -0.468900 | \n",
- " -1.123213 | \n",
- " -0.468900 | \n",
- " 0 | \n",
- " 1.0 | \n",
- " -0.084203 | \n",
- " -0.998936 | \n",
- " 0.038287 | \n",
- " -0.766497 | \n",
- " -0.299085 | \n",
- " 0.450420 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1 | \n",
- " -2.290974 | \n",
- " -1.580341 | \n",
- " -0.710633 | \n",
- " 1 | \n",
- " 0.0 | \n",
- " -0.072053 | \n",
- " -0.549470 | \n",
- " -1.041654 | \n",
- " -0.865283 | \n",
- " -0.379514 | \n",
- " 0.900000 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 0 | \n",
- " 0.044335 | \n",
- " 0.216895 | \n",
- " 0.044335 | \n",
- " 0 | \n",
- " 0.0 | \n",
- " -0.130618 | \n",
- " 1.086328 | \n",
- " -0.431098 | \n",
- " 0.116885 | \n",
- " -0.314361 | \n",
- " 0.807708 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " treatment outcome true_effect base_outcome instrument random \\\n",
- "0 0 0.450543 1.289024 0.450543 1 0.0 \n",
- "1 0 0.156640 0.483619 0.156640 0 1.0 \n",
- "2 0 -0.468900 -1.123213 -0.468900 0 1.0 \n",
- "3 1 -2.290974 -1.580341 -0.710633 1 0.0 \n",
- "4 0 0.044335 0.216895 0.044335 0 0.0 \n",
- "\n",
- " X1 X2 X3 X4 X5 propensity \n",
- "0 -0.076146 -0.132621 0.419829 1.496246 0.094485 0.219328 \n",
- "1 -0.824938 0.618384 0.111048 1.294570 -0.694036 0.544131 \n",
- "2 -0.084203 -0.998936 0.038287 -0.766497 -0.299085 0.450420 \n",
- "3 -0.072053 -0.549470 -1.041654 -0.865283 -0.379514 0.900000 \n",
- "4 -0.130618 1.086328 -0.431098 0.116885 -0.314361 0.807708 "
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
- "cd_linear = generate_linear_synthetic_data(n_samples=n_samples, confounding=True, add_instrument=True)\n",
- "cd_linear.preprocess_dataset()\n",
- "data_sets['IV_linear'] = cd_linear\n",
- "cd_linear.data.head(5)"
+ "# cd = generate_linear_synthetic_data(n_samples=n_samples, confounding=True, known_propensity=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['Linear_KCKP'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/Linear_KCKP.pkl\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 237,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# cd = generate_linear_synthetic_data(n_samples=n_samples, confounding=True, add_instrument=True)\n",
+ "# cd.preprocess_dataset()\n",
+ "# data_sets['Linear_IV'] = cd\n",
+ "\n",
+ "# cd.data.head(5)\n",
+ "# save_dataset(cd, \"RunDatasets/Linear_IV.pkl\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
- "# 2. Model Fitting"
+ "### Data Loading\n",
+ "Instead of generating your own synthetic datasets above, you can load a pre-made data set for each scenario here (recommended e.g. for reproducibility)."
]
},
{
"cell_type": "code",
- "execution_count": 89,
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Initialize an empty dictionary to store the loaded datasets\n",
+ "data_sets = {}\n",
+ "\n",
+ "# Choose size of data set ('small' or 'large')\n",
+ "size = 'small'\n",
+ "\n",
+ "# List of dataset names and file paths\n",
+ "dataset_names = ['NonLinear_RCT']#, 'NonLinear_KC', 'NonLinear_KCKP', 'NonLinear_IV', \n",
+ " #'Linear_RCT', 'Linear_KC', 'Linear_KCKP', 'Linear_IV']\n",
+ "file_paths = [f\"RunDatasets/{size}/{name}.pkl\" for name in dataset_names]\n",
+ "\n",
+ "# Loop through dataset names and file paths to load each dataset\n",
+ "for name, file_path in zip(dataset_names, file_paths):\n",
+ " data_sets[name] = load_dataset(file_path)\n",
+ "\n",
+ "# Optionally, print the keys of the dictionary to verify successful loading\n",
+ "print(f\"Loaded datasets: {list(data_sets.keys())}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:51:47] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 17:51:47] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:52:27] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'frobenius_norm': 1.7061476082509759}, 'validation': {'frobenius_norm': 1.8133158981000745}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:52:47] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'frobenius_norm': 1.5240321859227073}, 'validation': {'frobenius_norm': 1.2537755378872513}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:53:07] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'frobenius_norm': 1.4503309515531349}, 'validation': {'frobenius_norm': 2.1334819838273797}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:53:48] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'frobenius_norm': 2.0273869220789993}, 'validation': {'frobenius_norm': 1.6487019570997452}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:54:49] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 17:54:49] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'frobenius_norm': 1.469078660688006}, 'validation': {'frobenius_norm': 1.2767739128957123}}\n",
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:55:29] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'energy_distance': 1.2342694730438208}, 'validation': {'energy_distance': 3.581697941996879}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:55:49] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'energy_distance': 0.26447111116414446}, 'validation': {'energy_distance': 1.8041461329277957}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:56:10] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'energy_distance': 0.28117313378506426}, 'validation': {'energy_distance': 0.873065452526324}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:56:50] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'energy_distance': 0.20387149159602824}, 'validation': {'energy_distance': 0.7661351736217683}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:57:51] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 17:57:51] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'energy_distance': 0.20716529061236866}, 'validation': {'energy_distance': 0.8863925741834082}}\n",
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:58:31] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'codec': 0.008658008658008658}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:58:51] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'codec': 0.08900523560209424}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:59:12] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'codec': 0.07894736842105264}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 17:59:52] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'codec': 0.05365853658536586}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:00:53] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 18:00:53] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'codec': 0.008695652173913044}, 'validation': {'codec': 0.0}}\n",
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:01:33] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'frobenius_norm': 1.7238523719841985}, 'validation': {'frobenius_norm': 1.2998893813992485}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:01:54] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'frobenius_norm': 1.5951272809656039}, 'validation': {'frobenius_norm': 1.0673157380063014}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:02:14] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'frobenius_norm': 1.5749917488367353}, 'validation': {'frobenius_norm': 1.1209231659854761}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:02:54] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'frobenius_norm': 1.7497389879147947}, 'validation': {'frobenius_norm': 1.4443528602451912}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:03:55] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 18:03:55] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'frobenius_norm': 1.615607024139133}, 'validation': {'frobenius_norm': 1.1343300656833482}}\n",
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:04:36] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'energy_distance': 0.23724020051138384}, 'validation': {'energy_distance': 1.2377427037908548}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:04:56] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'energy_distance': 0.252395428844979}, 'validation': {'energy_distance': 1.2199628927910995}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:05:16] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'energy_distance': 0.2526835825297922}, 'validation': {'energy_distance': 1.2201602220588965}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:05:56] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'energy_distance': 0.2677465290200698}, 'validation': {'energy_distance': 1.260878360107383}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:06:57] {493} WARNING - Using CFO for search. To use BlendSearch, run: pip install flaml[blendsearch]\n",
- "[flaml.tune.tune: 07-24 18:06:57] {636} INFO - trial 1 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'energy_distance': 0.2590631341798373}, 'validation': {'energy_distance': 1.2301493868146594}}\n",
- "Initial configs: [{'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'projection': True}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}, {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}]\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:07:38] {636} INFO - trial 2 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearDRIV', 'train': {'codec': 0.05142857142857143}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:07:58] {636} INFO - trial 3 config: {'estimator': {'estimator_name': 'iv.econml.iv.dml.DMLIV', 'mc_agg': 'mean'}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.OrthoIV', 'train': {'codec': 0.18991097922848665}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:08:18] {636} INFO - trial 4 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'projection': 0, 'opt_reweighted': 0, 'cov_clip': 0.1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dml.DMLIV', 'train': {'codec': -0.0033333333333333335}, 'validation': {'codec': 0.0}}\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "[flaml.tune.tune: 07-24 18:08:59] {636} INFO - trial 5 config: {'estimator': {'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'cov_clip': 0.1, 'opt_reweighted': 1}}\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.SparseLinearDRIV', 'train': {'codec': 0.01342281879194631}, 'validation': {'codec': 0.0}}\n",
- "after estimate\n",
- "after setting score dictionary\n",
- "{'estimator_name': 'iv.econml.iv.dr.LinearIntentToTreatDRIV', 'train': {'codec': 0.05654761904761905}, 'validation': {'codec': 0.0}}\n"
- ]
- }
- ],
+ "source": [
+ "# 2. Model Fitting (Run Experiments)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"for dataset_name, cd in data_sets.items():\n",
" \n",
@@ -860,24 +340,37 @@
" cd_i.data = train_df\n",
" \n",
" #for metric in metrics:\n",
- " for metric in iv_metrics:\n",
+ " for metric in metrics:\n",
+ " \n",
+ " # use the passthrough_model to pass your propensities in the case of\n",
+ " # known propensities (KCKP)\n",
+ " #propensity_model=passthrough_model(\n",
+ " # cd.propensity_modifiers, include_control=False\n",
+ " #)\n",
" ct = CausalTune(\n",
" metric=metric,\n",
- " metrics_to_report=[metric],\n",
+ " estimator_list=estimator_list,\n",
+ "\n",
+ " num_samples = num_samples,\n",
+ " time_budget=time_budget,\n",
+ " components_time_budget=components_time_budget, \n",
+ " \n",
+ " metrics_to_report=metrics,\n",
" verbose=1,\n",
" components_verbose=1,\n",
- " components_time_budget=components_time_budget,\n",
- " #estimator_list=estimator_list,\n",
- " estimator_list=iv_estimator_list,\n",
" store_all_estimators=True,\n",
- " )\n",
"\n",
+ " propensity_model=propensity_model,\n",
+ " #outcome_model=-1,\n",
+ " )\n",
+ " \n",
" ct.fit(\n",
" data=cd_i,\n",
" treatment=\"treatment\",\n",
" outcome=\"outcome\",\n",
" )\n",
"\n",
+ " \n",
" # compute relevant scores (skip newdummy)\n",
" datasets = {\"train\": ct.train_df, \"validation\": ct.test_df, \"test\": test_df}\n",
" # get scores on train,val,test for each trial, \n",
@@ -898,12 +391,14 @@
" df,\n",
" metrics_to_report=ct.metrics_to_report,\n",
" )\n",
- "\n",
+ " \n",
" # add cate:\n",
" scores[ds_name][\"CATE_estimate\"] = estimator.estimator.effect(df)\n",
" # add ground truth for convenience\n",
" scores[ds_name][\"CATE_groundtruth\"] = df[\"true_effect\"]\n",
" scores[ds_name][metric] = est_scores[metric]\n",
+ " scores['optimization_score'] = trial.last_result.get('optimization_score')\n",
+ "\n",
" estimator_scores[estimator_name].append(scores)\n",
"\n",
"\n",
@@ -912,7 +407,12 @@
" estimator_scores[k] = sorted(\n",
" estimator_scores[k],\n",
" key=lambda x: x[\"validation\"][metric],\n",
- " reverse=False if metric in [\"energy_distance\", \"psw_energy_distance\", \"codec\"] else True,\n",
+ " reverse=False if metric in [\"energy_distance\", \n",
+ " \"psw_energy_distance\", \n",
+ " \"codec\", \n",
+ " \"frobenius_norm\", \n",
+ " \"psw_frobenius_norm\",\n",
+ " \"policy_risk\"] else True,\n",
" )\n",
" results = {\n",
" \"best_estimator\": ct.best_estimator,\n",
@@ -923,91 +423,124 @@
" }\n",
"\n",
"\n",
- " with open(f\"{out_dir}{filename_out}_{metric}_run_{i_run}_{dataset_name}.pkl\", \"wb\") as f:\n",
+ " with open(f\"{out_dir}/{filename_out}_{metric}_run_{i_run}_{dataset_name}.pkl\", \"wb\") as f:\n",
" pickle.dump(results, f)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Create Outcome Plots"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Specifiy Plot Type and Metrics to Create Specific Results Plots"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 241,
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACUYAAAbqCAYAAAAHbTiuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd1gU1/s28HsBQaQJiAoW7BrFghVjAUti7zVfC9ZojFGjRo29GzXGkqiJUVFjNGpiNPaOXcQGil2xIQKKgKLUnfcPX+a3A1tml4Vd8P5c117XzuyZM8/uDst5Zs6coxAEQQAREREREREREREREREREREREVE+YmHqAIiIiIiIiIiIiIiIiIiIiIiIiIyNHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiIiIiIiIiIiIiIiIiIiIiCjfYccoIiIiIiIiIiIiIiIiIiIiIiLKd9gxioiIiIiIiIiIiIiIiIiIiIiI8h12jCIiIiIiIiIiIiIiIiIiIiIionyHHaOIiPK5wMBAKBQK8fHo0SNTh2Q2BgwYIH4ufn5+pg6HiIiIiChHPXr0SJIbBAYGmjok2TZs2CCJ3dhmzpwp1l2mTBmN5fT5DP38/MRyAwYMMHrMxsbckYiIiIhIPX3yEdVyGzZsyJ0AP1Kmyrn4HRPlPewYRUQfvcwNWn0fu3btMvVbIDJY5gs7CoUCBQsWxOPHj/WqR3X78ePH51C0RERERMYnJx+wtbVF8eLFUb9+fXz11VfYv38/lEqlqUMnUmvZsmWYOXMmZs6cmac6v+lDXR5jyOPatWumfitmZ8OGDeLxw/MdRERElFOYh+Vvqjela3rY29vDw8MDTZo0wejRo3Hy5EkIgmDq0IkonzL7jlHjx4/P8kNZokQJJCUlmSSeFy9eoFChQlli+uWXX0wSDxERkbElJydj2rRppg6DiCjH6JNjaDqRo200EUN17do1y37q16/Pk0JEZiApKQlRUVEIDg7Gr7/+inbt2qFy5cr5ttMJ5W3Lli3DrFmzMGvWLB6jpLcNGzaIxw87RhFlnzlc3wgJCYGFhUWWOPbu3ZtrMRARGYJ5WP6WmJiIyMhInDlzBitWrICfnx+8vb1x5coVU4dGRPmQlakD0ObmzZtYsWJFlvVTpkxBwYIFTRARULx4cXz99df48ccfJeunT5+O3r17o0iRIiaJi4iMp2jRonBwcJBd3t7ePgejITKNP//8E+PHj0eNGjVMHQoRkVGZY46RIeMCpGpHqODgYKxbtw5DhgwxYWREHxd1+cD79+8RHR2NtLQ0cd39+/fRokULbNmyBb169crtMIlIhYODA4oWLar3djY2NjkQDRHRB+aSe9SsWRPdunXD33//LVk/ZswYfPbZZ/wtJCKzwDwsf/P09ISVlbRbQmJiIqKjoyWjgIWEhKBx48Y4ePAgmjZtmtthElE+ZtYdo8aOHYvU1FTJOg8PD5NfFJgwYQJ++eUXyV0dr1+/xvTp07Fq1SoTRkZExrBw4cJcnYuYTGfDhg2c/1kDpVKJSZMmYf/+/aYOhYjIqMw1xwCA6tWro0uXLti5c6dk/ZQpU9C7d292xibKJZrygffv3+PYsWOYNm2aOP2WUqlE//79UbduXZQvXz53AyWjypg6zJjy2p3sfn5+eXaUwq5duzK3IyKzY065x7Rp07J0jHrw4AGWL1+OCRMm5Ho8RESZ5ac8LK+2qXNSYGCg2tHXExMTcfjwYUyfPh03btwA8OE779mzJ+7fv6/zXFhey7mIyHTMdiq9U6dO4dChQ1nWf/PNN7C2tjZBRP/Hzc0N/fr1y7J+7dq1ePjwoQkiIiIiMo7ixYuLzw8cOICTJ0+aMBoiIuMy5xwjw7hx47Ksi46OxtKlS00QDRGpsrW1Rfv27XHhwgX4+fmJ61NSUjBnzhzTBUZERERmx9xyjxo1auCzzz7Lsn7hwoWIj4/P9XiIiORiHpa/2dnZoUuXLrh48SLq168vro+KisLvv/9uwsiIKL8x2xGjpk2blmWdjY0NvvzySxNEk9Xo0aOz/CCnpqZizpw5CAgIMFFURGTOXr9+jdOnT+P58+eIjY2Fq6sr+vXrh0KFCqktr1QqERwcjFu3biE6OhpWVlYoVqwYateujU8++cRocV28eBG3b99GZGQkHB0dUaFCBfj5+aFAgQLZqjc8PBzBwcGIiopCYmIi3NzcULlyZTRs2BCWlpZGi/3WrVuIjIyEvb29GLupp0LKjpcvX+LSpUt48OAB4uPjoVAoYGdnhxIlSqBixYqoVq2a0T4/db7++mssXboUsbGxAICJEyfiwoULObY/4MP/z3PnzuHBgweIjo6Gra0tihUrBh8fH7V3kRjq0qVLuHPnDiIjIyEIAho3boyGDRvKiu/kyZMIDw9HTEwMnJ2d0aBBA9SuXVvjNoIg4OLFi7h69SpiY2Ph6OiIatWqoWnTpjn6/RGRduaeYwDAp59+irp16+LSpUuS9UuWLMHo0aPh6OhoosiIKIONjQ3Wrl2LypUrIz09HQCwd+9eKJVKWFjIu/8sMTERp06dwrNnzxATEwMnJyf07NkTbm5uGrcJDQ1FSEiIONVAsWLF4OXlBW9vbygUCqO8t+vXryM0NBQRERGwtbVF2bJl0bx5c405iy4RERG4fv06wsPDERcXB0tLS7i4uKBChQrw8fExWrtdqVTizJkzuH//PqKjo+Hi4oJPPvkEjRo1kv2dmIt3797hypUruHnzJuLi4pCamopChQqhaNGiKFeuHGrVqgVbW1tTh6lWWloagoKCcP/+fbx8+RIpKSlwcnJChQoVUKdOHbi6upo6RKMw5O83N2MLDAzE06dPER8fj+LFi6Nu3bqoVq2aqUMj+uiYY+4xevRoHDlyRLIuNjYWy5Ytw4wZM0wUFRGRPIbmYe/fv8fp06fx+PFjvHz5Eg4ODihevDiaNGmCYsWK5Vb4erl58yZCQkIQExODN2/ewN7eHp6enqhZsybKli1r6vByhK2tLX788UfJ9Hn79u3Dt99+a/R95eWci4iyQTBDQUFBAoAsjy+++MLUoUk0aNAgS4zW1tbC8+fPTR0aEekhICBA8nccEBBgcF2enp5iPTNmzBAEQRAePXokdO3aVbC2ts7ymxEeHp6ljsTERGHmzJmCm5ub2t9CAEL58uWFdevWCenp6TpjOnHihNp9bt26VahYsaLa+l1cXIQffvhBSEtL0+v9p6enC+vXrxeqVKmiMXZXV1dh1qxZwvv373XWl/m7ybB161ahUqVKauu3t7cX5s2bJyt2f39/cTtfX99sl8tM3fGgydWrV4W2bdsKlpaWGj87AIKdnZ3QuXNnITQ0VHYc2oSHh0vq//nnn4Uff/xRsm7Hjh0661EtP27cOFn7fvXqlTBq1CjB0dFR4/utWbOmsGvXLln1aTpeVq9eLZQrVy5L3f7+/mKZGTNmiOs9PT0FQfhwPM+bN08oWrSo2tjq1asnhISEZInjzz//FMqWLat2m5IlSwq7d++W9X6IyLgMzTFU/weoPjJ+K3LC6tWr1e7zxx9/zLF9En3MDM0H6tatK9nu4cOHktd9fX2ztDtevnwpDBw4ULCzs8vyN37ixIks+0hNTRVWrFghlCpVSmN7ycPDQ1i8eLGQnJysM+bMbb+MfR45ckTw9vbW2L4eP3688O7dO1mfS2BgoDBixAi17S/Vh42NjTBw4EDhwYMHsurV1NZbsWKFUKJECY2fzbp162TVr649qI6mz1AddceAJlFRUcKXX34p2Nvba/3crKyshMaNGws7d+6UbJ/585HzyHysa8oddQkPDxcGDRqktV1vYWEh1KtXT1i5cqWsOuXsU1Pb3hiy8/cr91iSs0911OWnb9++Fb7++muNx0/t2rWFs2fPaqwz83cv56ErxyX6mJnr9Y20tDTBw8MjS1xubm6yztMRERlTTuVhGZ4+fSr0799fsLW1VfubrFAohMaNGwunTp0yKF5tDHlfCQkJwuzZszXmNhmPcuXKCVOnThViY2PFbePi4oRChQqJZSZMmCBrn6rbq35O+m6vTubzaXJyi/T0dMn7cHd317lNbuZcqvT9joOCgoQiRYqI2xQuXFg4efKkzu2IyHjM8ra5ZcuWqV3v7+8vuw6lUomHDx/i2LFj2LRpE5YtW4YFCxZg/vz5+Pnnn/HHH38gODgYSUlJBsepLp6UlBSsXr3a4DqJKH85evQoatasiZ07dyIlJUVn+fv376N69eqYOXMmYmJiNJZ78OABBg8ejJYtWyIhIUHvuMaNG4cvvvgC9+7dU/t6bGwsJk2ahJYtW+L9+/ey6oyKikLDhg0xaNAg3L59W2O5V69eYcaMGahTpw6eP3+ud+zffPMNvvjiC9y9e1ft62/fvsWUKVPwv//9L8/M5f3nn3+ibt262L9/v3i3iyaJiYnYtWsXgoKCciyekSNHonTp0uLylClTkJaWZtR9XLx4EZUrV8aKFSu0HsMhISHo3LkzvvjiC6Smpuq1j7S0NHTp0gVfffWV3lPdJiUloVWrVpgyZQqio6PVlgkODkajRo3EUV0EQcDIkSPRp08fhIeHq93m2bNn6NKlC7Zs2aJXPESUfcbIMXS5ePEiNm7ciB9++AGrV6/G4cOHZf3/z+yLL75QO73Gzz//DKVSaYxQicgIypcvL1nW1n4HPrRratSogYCAACQmJuqsPyYmBj4+Phg1ahSePn2qsdzz58/x3XffoW7duga1r5cvX45WrVrh6tWral9/+/YtfvzxR9SvX1/newQAPz8/rFq1Smf7Kzk5GQEBAfD29saBAwf0jlupVKJnz54YNWoUIiIi1JZ5/vw5Bg8ejD59+pj17+f169fh5eWFNWvW4O3bt1rLpqWl4cyZM/jnn39yKTrtVq1ahcqVK2P9+vVa2/UZIyJ//fXXuRid8ej795ubXrx4gQYNGmDlypUaj58rV66gSZMmWLlyZS5HR/RxMnbuoVQqERoair/++gurVq3C/PnzsWjRIqxZswZHjx7Fy5cvZdVjaWmJvn37ZlkfExPD8xRElGfIycP27t2LypUrY9OmTRqvbwiCgDNnzqBp06YYP368Sa8lnD17FhUrVsT06dM15jYZHj58iLlz5yIkJERclzGCaYZNmzbpdT7/zz//lHxOQ4YM0SN647GwsEDhwoXF5VevXhmtblPmXAcPHkTz5s3F/9ceHh44deqUZHQsIsp5ZjeVXlxcHHbu3JllfeHChdG8eXOt2z58+BArVqzA+fPncf36dVkX862srPDZZ5/hyy+/ROfOnfWKtXPnzvj666+z/LPcuHEjZs6cmeeGayci4woPD8eKFSsQHx+PQoUKoUOHDmjQoAGcnJwQFRWFffv2Saa8ePr0KZo0aYIXL16I6zw8PNCrVy9UrlwZKSkpuHr1Kv7++2+8efMGAHDixAl89tlnOH36tNoLqOoEBATgp59+AgCULFkSvXr1QqVKlfD+/XsEBwdj586d4u9nYGAgunfvjr1792qdniMyMhKNGzeWXPxwd3dHx44dUa1aNdjZ2eHJkyfYvXs3rl27BuDDcLC+vr64fPmy7GmB5s+fj19++QUAUKtWLbRv3x6enp5ITk7GhQsXsG3bNrHzzPbt2+Hn54evvvpKVt2mEhYWhgEDBogdoiwsLNCiRQs0btwYHh4esLKyQnx8PB48eIDLly8jKChIZ+ep7LKxscHs2bMxYMAAAMDdu3exdu1aDB8+3Cj1X716FS1atJAkIBUqVED37t1Rrlw5vH37FkFBQdi1axeSk5MBAH/99ReSkpLw77//yt7P+PHjsWvXLgCAl5cXOnTogDJlyiAlJQW3bt2CjY2Nxm2/+uorHD16FAqFAq1bt0azZs3g6uqKyMhI7NixQ0w83759i969eyMsLAyLFy8WLzTUqlULHTt2RKlSpfDu3TscPnwY+/btA/DhhOawYcPg6+uLEiVK6PXZEZFhspNjyLF27VrMnz9fbadIZ2dnjBkzBt9//73saWqdnJzQvHlzHDx4ULL+8ePHOH78OFq2bJntmIko+zKfaNY2Xe7r16/RpUsXPH/+HFZWVmjbti0aN24MV1dXvHz5EoGBgZLt37x5g6ZNm0puOHBxcUGPHj1QvXp1WFhYICwsDNu3bxcvBFy/fh1NmjRBcHAwXFxcZL2HY8eOYf78+VAqlXB1dUWvXr3g5eUFpVKJkJAQ7NixA3FxcQCAGzduoFWrVjh37pysKfAsLS1Rv3591K9fH2XKlIGTkxPevXuHu3fvYu/evWLukJCQgG7duuHSpUuoWrWqrLgBYNasWdixYwcAoFKlSujRowfKlCmDN2/e4NSpU9i7d6/4HW3ZsgWOjo5meSNbUlISOnXqJLmgU7NmTXz++ecoV64cbG1t8fbtW0RERODatWs4efIk3r17l6UeR0dH8SLR48ePxffu7Oys8XjI7vSsM2bMwOzZsyXrKleujLZt26JcuXIoVKgQYmNjERISgsDAQDx79ixb+zMVff9+c5NSqcT//vc/hIWFAQCaNm2KNm3awM3NDS9evMDevXvFqdGVSiW++eYbuLq6onfv3pJ6bG1txeMnIiJCvJHUwcEBRYsWVbtvub8zRB8bY+YeFy9exNKlS3HgwAHEx8drLVu1alV07twZ8+bN01qua9euWLRoUZb169evx6BBg/SKj4jIFHTlYQcOHECXLl0k5WrWrInOnTujVKlSeP36NU6cOIFDhw6J59mXLFmCtLQ0jR1bc1JGvBnnwQGgaNGiaNeuHby8vODs7Iw3b97gzp07OHPmDEJDQ9XWM2zYMGzYsAEAxHag3Ovea9euFZ/7+vqiYsWKBr+f7EhPT8fr16/FZbnXvHQxVs5liE2bNmHw4MHi8Vi5cmUcOnQInp6eRqmfiPRg0vGq1FizZo3aYet69+6tc9sdO3boPeyz6qN9+/bCq1ev9IrXx8dHbV3Hjx839CMgolyWU1PpZTw+/fRT4cmTJ1q3UyqVQsuWLSXbDRo0SEhMTMxSNiIiQmjUqJGk7MSJEzXWnXlIfAsLCwGAMHDgQLXTYdy/f1+oXr26ZJu1a9dqrD89PV1o0aKFZAjaqVOnahyCe/Xq1ZLp4gYNGqSx7szfjYWFhVCwYEFh8+bNastfvnxZcHZ2lgy1qm1KPXOYSk+17iJFigjBwcFa64yJiREWLVok/Pfff7Lj0EbdVHqC8OF7VT0OihcvrvZ4zKBah7ap9JKSkoSqVatKyk+dOlVITU3NUvbWrVtZpmVcvXq1xrrVTR9iZWUlrFmzRlAqlVo/B9XpLhQKhQBAKFq0qHDu3LksZdPT04UhQ4ZI9jNmzBjByspKsLKyEn7//XdZ8Y0dO1ZrTERkPNnJMbRNpff+/Xuhffv2snKNevXqCa9fv5Yd86+//qq2nv79+2fjkyAidQzNB7y8vCTbZW7zqw7pn/GoXLmyEBYWprPuQYMGSbZr166d2vMVr1+/Fjp37iwp26tXL431Zm77ZeQGbdq0UVv/ixcvBD8/vyxtN23c3d2FJUuWCC9evNBYJj09XVi5cqVQoEABsd6mTZtqrVddbgBAmDx5sto2/6VLl4SSJUtKtjl69KjG+k01lZ7q+1IoFML69es11icIgvD+/Xth69atwqJFizSW0WdKb1X6TKW3Z88esd0MQHB0dBS2bNmisbxSqRSOHTsmtGjRQnY82uTmVHr6/v3m5lR6GX8Htra2Gqf62Lx5s+RvzcXFRYiOjs52HESkXnZyjwwvX74UOnXqJCvPyPzQRalUCu7u7mq3lTu9LRGRMeREHhYTEyMUK1ZM0lZatWqV2nrOnz+f5ffwwIEDsuPVRu77evz4seDi4iLJB6ZOnap1GvObN28KgwcPFs6cOZPltRo1aoh1tW/fXmuMGa5cuSKJ948//pC1nS6GTKUXGBgo2aZGjRo6tzFVziXnO164cKEkZ2rQoIHw8uVLne+JiHKG2Q1p9N9//6ldb4w7uXXZu3cvunTpotdUPc2aNVO7fs+ePcYKi4jysAoVKuDQoUMoVaqU1nIHDhzA0aNHxeUuXbpg7dq1KFSoUJayHh4e2Ldvn6TX/pIlS2RPm6FUKtG2bVusXbsWtra2WV4vX748Dh48CDc3N3HdlClTNP42bt68GceOHROXFy1ahDlz5mi8i3z48OFYsmSJuBwQEID79+/Ljn3z5s3o06eP2tdr166NH374QVyOjIzEiRMnZNVtKsePHxefT506FXXr1tVavkiRIvjuu+/QoUOHHI3LwsICCxYsEJdfvHghjjSWHevWrcPNmzfF5dGjR2POnDmwsso6iGWVKlVw+PBhuLq6iuumTJmi1zS4P//8M4YOHap1xLPMBEFAgQIFcPDgQTRs2DDL6xYWFlixYgWKFy8urlu2bBnS0tKwYsUKjUMNDxgwAO3btxeX//rrL9kxEVH25ESOkZaWhp49e2Lv3r2yygcHB6NVq1aSOwC10ZRn7N+/36yngyL6WFy9ehU3btwQlz08PHS2+Z2dnXH8+HGdoyKFhYVh/fr14nKDBg3wzz//qB2dpXDhwti2bRsaNWokrtu2bRsuXrwo630olUp4e3tj586dausvVqwY/vvvP1SpUkVct2jRIq1T6j18+BBjx45FsWLFNJaxsLDAiBEjsHz5cnHdqVOnNN79rCn24cOHY968eWpH66lTpw4OHDggGSX0u+++k11/blHNBzp16oSBAwdqLV+wYEH07t3bpO8lNTUVw4cPF0dQt7W1xYkTJ/DFF19o3EahUKB58+aSvDcvkfv3m9sy2gQBAQHo0qWL2jJ9+vTBqlWrxOXY2FhJrkdExpXd3OPu3buoVasWdu/ebcywRAqFAn5+fmpfk5vbEBGZiq48bNGiRYiKihKXlyxZonFGCR8fH+zfv18yKtG4ceNyIGrNvvvuO8TGxorLq1atwpw5c9Ret8nwySefYO3atZIcMMOXX34pPj9w4ICsa0aqo0U5Ozuje/fucsM3qvfv32fJcT777DOj1J3bOZcgCPj2228xceJEMWdq27Ytjh8/LrnWQUS5y6w6RqWmpkp+nFTl1jybp06dws8//yy7vKa4Dhw4YKyQiCiXDRw4EAqFQtYjY1o4TRYtWgR7e3ud+1Q9SWlra4uff/5Za0cOJycnLF26VFxOS0vDmjVrdL85fJhC9Oeff9Y63aeHhwdmzpwpLkdFRWk8saPaycnHxwfjx4/XGcOoUaPwySefAPjQSPz1119lxf7555+jW7duWsv07dtX0qEsKChIVt2mojp1YqVKlUwYSVbt2rWT/J9bvHhxtuf1Vj3W3d3ddQ7xXqpUKcyaNUtcjo2Nld2hqFatWhg2bJhBcQ4dOhTe3t4aX7e1tc1yLHp5eemcurF///7i8+fPn+fZ6USI8pKcyjEiIiL0vhni4sWLWaYc0qRSpUpqOxW8fPkSwcHBeu2XiIzr1atX8Pf3l6zT1UYFgGnTpsHDw0NnuczTva1atUrrFMDW1tZYvXq1JH9QbXPpsnz5cq1T4zk4OEja/CkpKdi0aZPG8nKm2cswbNgwlC1bVlzW51yKi4uL5KYIdby8vDBq1Chx+erVq7h8+bLsfeQGc84HNNm6dSsiIiLE5blz56J27domjAjYuHGj7Dw+45Exdbgccv9+TaF58+bo1auX1jJDhgxB/fr1xeVNmzbJ7qxNRPJlN/d4+fIl2rZtm+PnCnhNg4jyIl15WFJSkuQGk1q1aklyAXUyl7l58yYCAwONE7AO4eHh+Oeff8Tl9u3bY/jw4dmqU/XaSHp6uji1nibv37/Hli1bxOU+ffrolc8ZQ2JiIv7991/Ur19fcr6rYMGCGDlypFH2kZs5V0pKCv73v/9JpmXs378/du/erXYgBCLKPWbVMSo0NFTtnJ12dnZ6z2darVo1jBo1CuvWrcOhQ4dw4cIFBAUFYf/+/ViwYIHWO7x++ukncV5ZXWrWrKl2/e3btyXzoBLRx8fV1VXWqD7Jyck4cuSIuNypUyeUKFFC53Zt27aVXESQe1fXZ599hnLlyuks169fP8mdCeo6Rt24cUNyV/fYsWNlxaBQKCRJjOr710ZXT34AKFSoEGrUqCEu37p1S1bdpqLaGD537pwJI1Fv0aJF4vOEhATMnTvX4LrCw8MRFhYmLvv7+8POzk7ndgMGDJCUk3us+/v76zVSlCrVDkyaZL74069fP723uX37tn6BEZHejJljqGNlZYVvvvkGhw8fxvnz5/H7779LRlbJbNGiRXjy5ImsujXlGub4/4Iov0tKSsLdu3exfPly1KxZE9evXxdfc3R0xOTJk7Vub2FhIat9AUhHoPbx8ZHV4aR69eqSi5z79u2Tta9PPvkETZo00VmuTZs2kjuxNd00oS8LCwvJCHn6dPzs1asXnJycdJZTvWsaMF7sxqKaD5w/f96Ekci3fft28bmTk1O2L+CYO33+fk1B7s0gQ4cOFZ+/evWK7QmiHJDd3GP8+PF48OCBxtc9PT0xe/ZsHDp0CBcvXsSRI0fw008/oWXLlnqd/9CUZ1y4cEEc2YKIyBzok4edP39eclPv8OHDtd4cnmHEiBGS39DcGj3vn3/+kVyLnjRpUrbrdHJyknSYX79+vdbf9b///htxcXHismp70dj8/PxQoUIFycPDwwNOTk7o2rWrZCQwhUKBVatWoUyZMkbZd27lXG/evEG7du0kN3Z/99132LBhg9oZM4god5lVxyhNd+1VqVJF1j8va2trDB48GDdv3sSNGzewfPlyDBo0CJ9//jkaNGiA+vXro02bNpg0aRJCQkLQo0cPtfVERETIHr7d3d1d47B35nYXIhHJU7RoUZQvX17WQ9ud2/Xr15fV2Lly5QpSUlLE5TZt2siKU6FQoG3btuJyaGgo3r9/r3O7Vq1ayarfwcEBn376qbis7iLF6dOnxecWFhZo3bq1rLqBD1OCZAgLC0NiYqLObXx8fGTVrdqxTLVhb45UL3QtXLgQv/32m+R4MLUGDRqga9eu4vLq1avx+PFjg+q6cOGCZFnusW5nZycZ5j1zPZqoHr/6KFCggKwLkJlHclE9pjVRnX4PMP/jkyg/yG6OoY2FhQV2796NFStW4LPPPoOPjw+GDBmCy5cvo169emq30WeUx+rVq6tdzzyDKGepG0HW1tYWlStXxpgxYyQj5RQsWBD//vtvlv/xmVWuXFnWkPmRkZGSzpNy20sAJFP2vnz5UtZ01XJzA4VCgc8//1xcvnLlitGm9XR3dxefq362usiNvUKFCihfvry4bG6j7qm2O0+fPo0RI0Zke5TWnKRUKnH27FlxuXXr1mZx57ODg4PsPD7joW26R1Vy/35NRfVvU5vM+bq5/S0Q5QfZyT3u3LmDzZs3a3y9f//+uHPnDqZNm4bPP/8c9erVQ8uWLfHtt9/iyJEjuH79uuzp+ry8vNSuj4uL09oxi4goJ2U3DzP03HPZsmUlg2nIPfecXarXVooVK6Z2ajxDqN4Y8uDBA60jYK1bt058Xq9ePckN58b2+PFjPHjwQPKIjIzMMlBJuXLlsHfvXlk3ycuVGzlXVFQU/Pz8xKnDFQoFfvrpJyxatMjgm7eJyLjMqmOUppN2pUuXlrV9x44dsXbtWnF6Jm2srKy0Tt+jT49R1bsmVck5CUlE5mfhwoW4f/++rIe235sKFSrI2t/du3cly5ru2lJHtaGampqK8PBwndtousiqq+ydO3ey3F0QEhIiPi9dujQcHBxk1616Ejo9PR2RkZE6t9F1wSmD6vSFcjpcmZLq3dWpqakYPnw43N3d4e/vj40bN5rFCan58+eLnfySk5MxdepUg+ox1rEeERGh9g7MzOT+DWbm4uKCAgUK6CyXebQrORdWMm9j7scnUX6Q3RxDm759+0o6KWcoVKgQfvvtN43b7dixQ1b9zDOIzJuvry+uXLki6yJkbucG6upSx9Dc4O3btzqn+Xn48CEWLFiATp06oWLFimIbK/PFDtVzM/p0Gjc0dnMbsXPAgAGSG25Wr16NEiVKoH379li+fDmuXLkie1Tz3BAZGSn5nurWrWu6YFR07dpVdh6f8Vi4cKGsug3NK3JDqVKlULhwYVllS5YsKSlrbn8LRPlBdnKPzZs3a/y9b9KkCQICArTeoFmtWjUcO3ZMVpwODg4afzuYaxCRudOUh6nmP4ULF9brvI9qLiUnjzKGmzdvis+N2ab28fGRvJ+1a9eqLXf//n2cPHlSXM7J0aLkql+/Ps6fP6/2XFt25HTO9eDBAzRq1AhXrlwB8OHG6z///BPffvtttmMnIuMxq3Hbnj59qna9h4dHjuxP9Y7BzPS5S9HDwwPXrl3Lsl7uFBlElD85OjrKKpd52s2iRYvK3kfmjhhypvDUp343NzfxuVKpREJCgmS6CtVe9Y8ePcpWz3c5sRsyv7W5DwHes2dPBAYGYvXq1eK62NhYbNq0CZs2bQLw4QT2Z599hi+++ELv4dGNoXLlyhg0aJA4wsmWLVvw3Xff6X0Hiep3bG1tLWvqkwzqjnVdd6bL/RvMzNB51PPj8UmUH+RkjjFgwACNr3l7e6N69eqSYd4z3Lt3D7GxsXBxcdFav6YYmWcQ5ayiRYtm6fBvY2MDJycnlCpVCrVr10b79u1RrVo12XXmt9wgo351FxtevXqFsWPH4o8//tC7rZOUlCS7rKGxy/lcclPp0qWxbt06DBgwAGlpaQA+3Iywb98+cUpEJycn+Pr6okePHujatatJR2jKfGe16ohf+ZWheUVu0OfvAPjwt5DRsc3c/haI8oPs5B5HjhzR+Nq8efOyPdptZh4eHmo7JDPXICJTyW4eptq20beNpJpL5dYI/6rtamO3qb/88kuMHDkSALBz507ExcVl6RCr2mHKzs4OvXv3NmoMmYWHh0umxktMTMTjx49x/PhxLFmyBI8ePcLFixdRp04dHD16FJUrVzbavnM655o7d6743MrKCvv27cNnn31mtPiJyDjMasSohIQEtetVR/6QIyUlBYcPH8a4cePQqlUrlC9fHq6urihYsKDkrkRLS0uNdehzciDz6A8ZNL0fIvo4yJ0z+O3bt5JlfRpcmX9/Mteljq2trdHqN2aSIGcEoPxq1apV+OuvvzSOQPbs2TMEBATg888/R+3atXNtOF9VM2fOFI9NpVKJiRMn6l2H6vGj78UcQ451zttNRIDxcozMFAoF6tevr7WMpun0BEGQ3BmoCfMMItNQN4JsWFgYzp07h23btmHixIl6dYoCPo7cAABiYmLQtGlTbNq0KUunKEtLSxQtWhSlSpWSTGfm7OwsltGnI5Whscv5XHJbnz59cP78eY03QcTHx+O///5Dv379UK5cOWzcuNEEUX7w5s0byXJ2/5/mBeacV+jzdwCY/98CUV6XndxDdVR2VS4uLmjcuHG24lKHuQYRmZvs5mHGOvecmpqK5ORk/d+AnlTb1cZuU/ft21f8DJKSkrJM1ZqWlibJKXr37q3XbCDGYGdnh6pVq2LkyJEIDQ1Fw4YNAXy4FvLZZ58ZvRN/TuZcqjdMp6WlidPpEZF5MauOUZruDLS2tpZdx/r161GuXDm0atUKP/30Ew4fPoyHDx8iNjZWr39k79+/l11W0wgR+tRBRB+vzI1efToIZZ6GS04DWp/fJl31qyYYNjY2kgsc+j4MHaUnv+jVqxdu3ryJixcvYu7cufj888/V3pl87do1NG3aFIcPH87V+Nzd3SVDvx48eFDr/OTqqB4/+naEM+RYJyICjJNjqOPi4qLxYkIGTVPhAR9GB9SFeQbRxycv5wYAMGbMGEnHz4YNG2LTpk14+PAhkpOTERUVhSdPnkgudnzzzTeyYzBG7Obajqxbty6OHDmCBw8eYOXKlejZs6faEUaioqIwYMAAzJw5M/eDRNbPj51rTEvfNkFe+FsgyssMzT3evn2rcdtPPvkkR0YOZ65BRPmNsc49FyhQQOvUpcaiGq+x29ROTk7o1auXuLxu3TrJ6/v27cOLFy/E5SFDhhh1//pycHDAP//8I45q9fTp0xyZ2i+ncq758+dLpkNctGgRxo8fb6ywichIzKpjlKZ/NCkpKbK2HzNmDAYPHqzXNHia6HOXoqakRd+7tojo46R6hzQAREdHy942c9nMdcnZRpuYmBjxuYWFRZaOOkWKFBGfly1bNssdHfo8GjRoIDuu3GboCShDRsGqV68epkyZgkOHDiE2Nhbnz5/HxIkTJcP/pqamYvDgwbly54qqCRMmSL5zfUeNUj0+U1JSEB8fL3tbQ451IiIg+zmGJnLa+trKZB5xQx3mGUQfn7ySG6ir/8WLF9i6dau43LdvX5w5cwb9+vVD2bJlNY7abegotIbGbu7tyLJly2LEiBHYtm0bIiIicOfOHSxZsiTL3fGzZ89WO11rTnN1dZUsR0ZG5noM5i4380d9/g6AvPW3QJQXGZp7aDs/klOdGJlrEFF+o9q20beNpFo+85RzOUW1XZ0Tbeovv/xSfH7t2jVcvnxZXFadRs/Lyws+Pj5G37++3N3dMXv2bHH5n3/+wfHjx3NkX8bOuZydnXH06FHJyPJLliyR3GhORKZnVh2j1I2MAcjrKfvff/9h+fLlxg5Jlsx3TWbI7WEHiShvqlSpkmRZ09DZ6oSGhorPCxQogLJly+rcRp+T5zdu3BCfV6pUKcsJ3ipVqojPnz9/DqVSKbvuvER1ZCy5J6tTUlKyPdyrpaUlfHx88MMPP+DBgwdo2rSp+NqzZ8/0HrEpuxwdHTFlyhRx+eLFi9ixY4fs7Y11rJcoUULv4ZCJ6OOVnRxDGzl3UmsrIydXYJ5B9PExVntJXV3qGJob2NnZoUSJEpLXjx8/Lt5kplAosHDhQlhY6D7t9PDhQ9kxqDI09sqVKxu0P1OpVKkSxo4di+vXr2PcuHHiekEQsGXLllyPp0SJEpKLTpcuXcr1GMydIfkj8OHOdH09ffpUdufCiIgISdm89rdAlBcYmns4OTlpfC2nRuZjrkFE+Y1q/hMXF4cnT57I3lY1l5KTRxmDl5eX+Dwn2tQ+Pj6oUaOGuJwxatTz589x4MABcb2pR4tSNWzYMJQuXVpcHjdunF4DmRjKGDmXk5MTjhw5Ik4JCADLli0zeIRkIjI+s+oYpWmqCTk9ZVesWKHxtS5duiAwMBCxsbFIT0+HIAgQBMFoF/CfP3+udr22qTOIiDLUrl1bMqS2aqNUl3379onPa9SoIeuurkOHDsmq++3btzh79qy4XK9evSxlmjVrJj5PSEjAlStXZNWd16jeJSJ3VMLLly8jLS3NaDHY29tn6QCsOk1JbhkxYgTKlCkjLk+ZMkX2+8x854ncY/3du3eSTmDmcAcLEeUd2ckxtImNjdV4MSGDtpNwLi4uOvfBPIPo4+Pu7i45EaxPbrB3717xeZEiRVChQgWd28idnlkQBEnZ2rVrZxkBSrWd7ObmpnZKgsySk5Nx5swZWTFkJjevefDgAe7fvy8uq8tr8oKMzmaqd5ZrygcKFCggPjf2zSsKhQKNGzcWlw8ePGjQSEf5mWr+GBsbq3FUFlWRkZF6XbxTJffv+ODBg5JlTX8LOXn8EOV3huYe9vb2Gqe2u3XrVo5cFGauQUT5jaHnnh89eoSwsDCN9eQU1Zugo6KiJNdijEV11KgtW7bg/fv32LBhA9LT0wF8GOmwX79+Rt+voaytrTFhwgRx+dq1a/j7779zbf/65FzqODo64tChQ5J86ZdffsGIESNypYMXEWlnVh2jNJ2003ViQKlU4uTJk2pfa968OXbu3AlfX184OztL7lY01tCET58+Vbu+fPnyRqmfiPI3GxsbfPbZZ+Ly7t27Zf0+HThwAOHh4eJy+/btZe3v6NGjePTokc5yf/zxh2Ski06dOmUpU7t2bVSsWFFcXrZsmawY8prMI2Np+t1XFRAQYPQ4Mt/Rm5qaavR96GJtbY05c+aIy/fu3cPvv/8ua9uyZctKhqPdtGmTrIsoGzdulNwhKfdYJyICDM8xdBEEARcvXtRaJjg4WO16hUKBqlWr6twH8wyij1OHDh3E5xcuXMC1a9d0bhMWFoZTp06Jy+3atZO1r5s3b8o6AX/w4EHJ76a63ED1RK/cKZ83btxo8FR627dvR0JCgs5ya9askSyriz2vsLS0lPwP0JQPqE67pM/01XL17t1bUv+vv/5q9H3kZar5Y3p6usb2gKrs5I9y8zHVcq6urmjUqJHacjl9/BDlZ9nJPWrWrKl2fWxsrMGdiDV58+aNxv+/zDWIKK/69NNPJR1afvvtN1mdUVavXi0pl1vnnrt16wYrKytxeeHChUbfR9++fcXRTOPj47Fjxw6sX79efL1r166ybtzLTYMGDULRokXF5VmzZuVqZ325OZcmDg4OOHjwIHx9fcV1q1evxrBhw9g5isjEzKpjVO3atdWu13VXxMuXLzWOVlGnTh2N223fvl2/ANWIjIzEq1ev9N43EZGqESNGiM/fv3+PUaNGaf3dS0hIkMxPbGVlJen9r01qaqrO+l+8eIGZM2eKy0WLFkXHjh2zlLOwsMCkSZPE5S1bthg0nYOcO2hNqUGDBpJlXSeeL1y4IOvE9rt37xATEyM7jsxTqaiO3JSb+vTpIzlhpzr3ty6qx/rz588xffp0reWfPXsmKePi4iK5EENEpIuhOYYcGzZs0PjalStXJFM3qapYsaKsE0+apolinkGUv3311VeS5a+//hopKSkay6empmLEiBGSk8WqbS5dRo8erbUjU2JiIsaPHy8uW1tbo3///lnKeXp6is/j4+Nx+vRprfsNDw/HxIkTZceZ2atXrzB58mStZW7evCkZYdzb29vsfkPl3LSS4f3797h79664rCkfUF2v6X9RdvTs2VMystm0adPy7ejBhvD29paMCq0rf3z48CF++OEHg/d39OhRnXfSBwQEICgoSFzu378/bGxs1JbN6eOHKD/LTu6hetNkZtOmTTPqRWFNf9uOjo6SGyCJiPISGxsbDBo0SFy+evUqVq5cqXWb0NBQySwNVatWhZ+fX06FKOHp6YkePXqIy3v27DH6DQdOTk7o1auXuDxhwgQ8ePBAXB46dKhR92cMtra2kmtfYWFh+Ouvv7JVZ07kXNrY2dlh//79aN68ubju999/x5AhQzgiK5EJmVXHqJo1a6qdBioxMVEy7HlmmYdvV3X8+HG1naYuXLiAadOmGRaoiswXqTNUqFABRYoUyXb9RPRxaNOmDVq2bCku//333xg+fLhkxKYMkZGRaN++Pe7cuSOuGz9+vKypKoAPnZn27NmDoUOHqu2Q9PDhQ7Ru3RrR0dHiuvnz50uG01fl7+8vxi4IAvr164epU6fqvHv7zZs32LZtG/z8/LJMEWduKlWqJLmAsnjxYhw5ckRt2SNHjqBt27ZIS0uDQqHQWm90dDQ8PT0xYsQInaOOPHnyRJKo2NraolWrVnq8C+NRKBSSE/cvXryQve3gwYMlo0YtWbIEs2bNEofvVXXnzh20atUKL1++FNfNnz9f4/DyRETqGJpjyLF582bs378/y/p3795h+PDhGrfr2bOnrPo15RoNGzaUFyAR5UnVqlXD4MGDxeVz586hR48eeP36dZay8fHx6N27t2S0qN69e6N+/fqy9mVhYYHLly+je/fuauuPiYlBp06dJNMHTJgwAW5ublnKNm/eXHLH86BBgzSegD579iyaNm2KuLg4ycje+rCwsMDKlSsxY8YMtW3Jq1evok2bNpKcZ/HixQbtKyc1b94cHTt2xN69e7Xejfzu3TsMGjRIMsJH586d1ZZVnf4jMDAQ27ZtM+rdyVZWVvjtt9/EfOfdu3do3ry51gsWgiAgMDBQ64X//MLe3l4y8tvmzZuxceNGtWWvXLmC5s2b482bNzrzR3Uy/n78/f2xe/dutWW2bt0qaZe4uLjg+++/11in6vHz8OFDLF261KjTxBPlZ9nJPfr06aPxOsfJkycxdOhQrR2l79+/j88//1xWnJryjPr16xv8f5mIyBxMmDABxYoVE5fHjBmjsZN6UFAQ2rRpI7lJZMmSJTkeo6rFixdLRrkaMWIEpk+frva6UIY7d+5g6NChOHfunKx9qN5QHxUVJT6vUKFCrnUC09eIESPg5OQkLs+ePVttzidXTuRcuhQqVAh79+6V5D/r16/HoEGD2DmKyESsdBfJPdbW1mjevDn27duX5bXTp09rvFvBxcUFzs7Oak/iXb58GS1btsSIESPg6emJ+Ph47N27F2vWrJE9tLs2qicfVbVu3TrbdRPRx0OhUGD9+vWoX7++2MlkzZo12LdvH3r16oXKlSsjNTUVV65cwd9//y3pdFS/fn3MmjVL9r6mTp2K2bNnY926dTh8+DB69eqFSpUqISkpCcHBwfjnn38k05u1bdtWcqdFZpaWlvjrr7/QpEkT3Lp1C0qlEvPmzcOKFSvQqlUr1KlTB0WKFIFCoUB8fDzCw8MREhKCoKAg8YROXvjNnDlzpnhyOykpCa1atULnzp3h5+cHe3t7PH/+HIcPHxbvjB88eDCOHj2Kx48fa633/fv3WL16NVavXo3SpUvj008/RfXq1VGkSBFYW1sjJiYGwcHB2LNnj+SizsyZMyXJQW5r3bo1mjVrhhMnTui1nY2NDf744w80bdpUnB5v5syZ+PPPP9GjRw+ULVsWiYmJuHDhAnbt2iV5z507d8awYcOM+j6IKP8zNMeQQ6lUolOnThgxYgQ6dOgABwcH3LhxAz/++CNu376tdhu5ozzevXtXcsIqQ+HChbOMZEhE+c/SpUtx9uxZ8bfkv//+Q8WKFdGzZ09Ur14dCoUCYWFh2LZtm2QE0nLlyum8K1rV5MmTMX/+fOzduxeVKlVCr1694OXlBUEQEBISgm3btklOCnt7e2PKlClq63Jzc8PQoUOxevVqAB8u0FarVg09e/ZEvXr1ULBgQURGRuLo0aMIDAwEAJQsWRIdOnQQt9FHRl4ze/ZsbNu2DT169ECZMmXw5s0bnD59Gnv27JGc9B4+fDhatGih935ymlKpxJ49e7Bnzx4ULlwYn376KerUqYNixYrB3t4eCQkJuHHjBnbt2iW5eaVt27YaL4D36dMHM2bMQHJyMpRKJXr37o1hw4ahZMmSks5rs2fPVjsysBytW7fGjBkzxJGG4+Pj8cUXX2DmzJlo164dypUrh0KFCiE2NhY3btzA8ePHsz2NrTY7d+40aKqpUaNGYdSoUUaPZ+rUqdi9ezfS0tIgCAIGDBiAzZs3o02bNnB2dkZMTAwCAwNx6NAhKJVKfP7553j37p3e76FRo0awsrLCiRMn0LlzZ/j6+qJNmzZwc3NDVFQU9u7dK7loplAosHLlSrWdGzN07NgRRYoUEW9QGTt2LKZOnQpPT0/JSFjDhw/X2hGc6GOUndyjSpUq6Nu3r8aOlOvXr8fx48cxePBgNGjQAM7OzoiPj8etW7dw6NAh7N+/X/aFVl7TIKL8qkiRIggICEDHjh2RlpaG9PR0fPnll1i9ejU6d+6MEiVKIC4uDoGBgThw4ICks83o0aNz/XewRIkS2LJlCzp27Ijk5GQIgoA5c+bgt99+Q/v27eHl5QVnZ2e8efMG9+7dw5kzZ3D16lUAH9r8cvj4+KBGjRoIDQ2VrB88eLBBHfNzg6OjI77++mvMnz8fwIfOYH/++afakYvlyImcSw5bW1v8999/6Nq1Kw4cOADgw3Ty6enp2LBhg9aBX4goBwhm5rfffhMAZHn07dtX63YDBgxQu522R6FChTS+5u/vLyteHx8ftdsfOnTICJ8GEeWGgIAAyd9vQECAwXV5enqK9cyYMUPv7e/duyeULVtW9u+Yn5+fEB8fr7XOEydOSLYJDw8Xxo4dK7v+xMREWbHHxcUJ7du31/u3GICwaNEitXVm/m7k8vf3F7fx9fXNdrkM3377raz307FjRyE5OVnn8RAeHm7Q5zVhwgTZn4UumWP4+eefZW978eJFQaFQZIlv3LhxOrcNCgoSihQpIvs99+7dW0hJSdFap6HHiyAIwowZM8TtPD09ZW2j7m9LDmP93hCRfIbmGIIg/V9hjMfkyZNlxfzrr7+q3f6LL77I7sdBRJkYMx9Q5evrK9Yp9xyDqujoaKF27dqyf1+8vLyEiIgIrXVmbvudOHFCWLp0qWBhYaGz/mrVqgnR0dFa609MTBQaNGggK14PDw/h8uXLstthmb+ntLQ0oUePHrLbkmlpaVpjlxuHus9QEznHgGrOIPfRokULISEhQev7CQgIEAoUKKC1nszHuiHt259//lnnfjI/jMHQXCrzQ1Pent2/X0EQhGXLlsmKwcfHR3j9+rXsfWbOYyMjI4Vq1arp3I+FhYXsfO/AgQOCvb29QZ8d0ccuO7lHTEyMUL58+Wz9rumiVCoFd3d3tdveuXPHGB8BEZEsOZWHCYIg7NmzR+s14MyPsWPHCkqlUq94tdH3fZ0+fVpwc3PT6/deWx6S2S+//CLZ1srKSoiMjJS9vSEyn0+Te+48Q3R0tOQ7rFChgpCampqlnKlyLn2+46SkJKFdu3aSbb744gudOSoRGZfZjYvao0cPtXPc79+/X+uwzdOmTUOhQoX02tfPP/+sd3yqXrx4oXbqIw8PD7O8C5GIzF+FChVw48YNzJgxQ+sdnOXLl8fatWtx7NgxODo66r2fJUuWYMuWLVpH4luwYAGOHj0q+7fVyckJe/bswaFDh9CsWTPJncjqeHh4wN/fHwcPHsTYsWP1fg+m8NNPP+HXX39F0aJF1b7u4eGBZcuWYdeuXZI7aTVxd3fH77//jk6dOsHZ2VlrWQsLC7Rs2RInT57EwoULDYrf2OrVqyeZB10f9evXx507dzBq1Citx3CNGjWwc+dObN26VeN0jkREuhiaY2hTokQJtG/fXq9t6tevj+nTp8squ2vXLrXr+/Xrp9c+iSjvcnNzQ1BQEJYvX45SpUppLOfu7o5Fixbh8uXLsqfXVjVmzBgcOnQItWrVUvu6nZ0dxo8fj+DgYK05CvBhuoDAwECMHz9eYx5hZ2eHgQMHIjQ0FLVr19Y73gyWlpbYvn07li9fjhIlSqgt4+Hhgd9//x1bt24127txV61ahUGDBqF06dI6y1avXh1r167FkSNH4ODgoLXsgAEDEBISgm+//Rb16tWDi4tLjrSnR44ciVu3bqFPnz5ac0dLS0s0atQIa9euNXoM5mr06NH4559/UKZMGbWvu7i4YNq0aTh9+jQKFy5s8H6KFy+OoKAgfP3117C3t1dbxtvbG6dOncLIkSNl1dm6dWuEhYVh6tSpaNSoEdzc3GTluESUvdyjSJEi2L9/P0qWLJlT4eHixYuIjIzMsr5+/fqoVKlSju2XiCg3tW/fHrdv30a/fv3UTnEKfBhJs1GjRjh58iSWLFli0tGTGjdujHv37mHy5Mkarz1kqFSpEmbPng1vb2/Z9fft21eSD7Vv3x7Fixc3ON7c4ObmhiFDhojL9+/fx6ZNmwyqK6dyLrlsbGywc+dOdOrUSVy3detW/O9//+OU1US5SCEIgmDqIDLr3bs3tm3blmX94cOHJXNxZrZnzx707NlTMu2OJgsWLMCkSZM0/qPz9/fHhg0btNaxevVqjBgxIsv6SZMmYcGCBTpjICLSRqlU4uLFi7h16xaio6NhZWWFYsWKoXbt2qhatarR9hMUFITbt28jMjISjo6OqFChApo1a5btk+YJCQk4e/Ysnj17hlevXgH4MASqp6cnqlatirJlyxojfJNIS0vD2bNnERYWhri4OLi5uaFChQpo2rSpwRdcBEHA3bt3cefOHTx58gQJCQlQKBRwdHRE+fLlUbduXRQpUsTI78Q8pKam4uzZs7h//z5evnyJggULolixYmjYsKHGiwhERPoyNMcYMGCA2uksPD09cfv2bXTv3l3tVBmZ1a1bF4cPH9bZERb4MB1R0aJFxSlnM5QsWRKPHj0y24v7RJSzrl27hpCQEHFofzc3N1SvXh21a9c22kn869evIyQkBM+fP0fBggVRpkwZtGzZUu8b0YAP+cDp06dx7949vHv3Dm5ubihZsiR8fX0Nqk8bpVKJ06dP4/79+4iOjoaLiwuqVKmCJk2awMLC7O4J1Oj58+e4ceMGHj16hNevXyM1NRUODg4oUaIEateujXLlypk6RK2Sk5Nx9uxZhIeHi1M8Fi5cGBUqVECdOnVk/Q/Mj5RKJYKDg3Ht2jXExsaicOHCKFu2LJo1a6a284Quqm0TX19fcWpKAHj79i0CAwPx9OlTxMfHo3jx4qhXrx6qVatmrLdDRDIYmntkePXqFQYNGoT//vtP733rutwzceJELFq0KMv6X3/9FcOGDdN7f0RE5u79+/c4deoUHj16hFevXsHe3h7u7u5o0qSJWXYOEgQBV65cQVhYGGJiYpCcnAwHBwd4enqiVq1asjr3ZHbhwgU0bNhQXN67dy/atWtnzLDzjLyecxGR4cyyY1RQUBB8fHyyrO/Tpw82b96sdduMu+FOnDih9vW6deti9uzZaNOmDQBkq2OUj48PgoKCJOsKFCiA8PBwjXcrEhERERFR7jM0x9DWMerRo0cAgN9++w3z58/HkydPspRzdnbGmDFj8P3338vudPzrr7/iq6++yrJ+4cKFmDBhgqw6iIiIKH/S1jGKiMxDdq5vZK5n6dKlOHDgABISErSW/eSTT9ClSxfMmzdPY5n09HSULl0az58/l6x3dXXF06dPNY6qQkREedvQoUPFkVt50x0RfazMsmMU8CGxP3XqlGRdwYIF8fz5c1l3mIWHh+PMmTOIjIyEpaUlPDw84O3tjSpVqhglvrCwMHh5eWVZ379/f7UXToiIiIiIyLSym2NoIwgCgoKCcOvWLURFRYkj/jVr1kzvqWfq1auHS5cuSdY5OjriyZMncHJyylacRERElLexYxRR3mDM3EOpVCI0NBS3bt1CbGws4uLiYGVlBWdnZ5QrVw61atWSNcr4vn371E4HPn36dMyaNUuvmIiIKG+Ii4tDyZIlkZiYCACYOXMmZsyYYeKoiIhyn5WpA9Bk9uzZ8PPzk6xLSkrCmjVrMHHiRJ3bly1bNkenaVq+fHmWdQUKFMD06dNzbJ9ERERERGS47OYY2igUCvj4+Ki9M1wf586dy9IpCgDGjRvHTlFERERERHmEMXMPCwsL1KpVC7Vq1cpWTOquaTg7O+Pbb7/NVr1ERGS+lixZInaKKlCgAIYOHWriiIiITMPC1AFo4uvri1atWmVZv2LFCqSkpJggov8THR2NP/74I8v6wYMHo3z58iaIiIiIiIiIdDHnHCPDkiVLsqxzc3PjxQoiIiIiojzE3HKP0NBQHDlyJMv6iRMnonDhwrkeDxER5bwtW7Zg0aJF4vKgQYPg4eFhwoiIiEzHbDtGAcBPP/0EKyvpoFbPnz/HunXrTBTRB4sXL0ZSUpJkXeHChTF79mwTRURERERERHKYa44BANevX8e///6bZf38+fPh4OBggoiIiIiIiMhQ5pR7zJkzJ8u68uXLY8yYMbkeCxER5Yz//vsPtWrVQo0aNeDs7Iw+ffqInXGdnZ0xc+ZM0wZIRGRCZt0xqmrVqhg9enSW9fPmzcvSMSm3vHjxAitXrsyyfs6cOXBzczNBREREREREJJc55hgZZsyYAUEQJOvq1auHwYMHmygiIiIiIiIylLnkHiEhIfjnn3+yrF+2bBlsbGxyLQ4iIspZsbGxCAkJwfXr1xEXFyeut7a2xp9//onixYubLjgiIhNTCJnPvBMRERERERERERGR2RkwYAA2btwI4MNUXYGBgaYNiIiIiIjMwoYNGzBw4EAAgKWlJYoVK4ZmzZph4sSJqF69uomjIyIyLXaMIiIiIiIiIiIiIiIiIiIiIiKifMesp9IjIiIiIiIiIiIiIiIiIiIiIiIyBDtGERERERERERERERERERERERFRvsOOUURERERERERERERERERERERElO+wYxQREREREREREREREREREREREeU77BhFRERERERERERERERERERERET5DjtGERHlQ8OHD4dCoYBCocCmTZtMHQ6R3gRBQO3ataFQKGBtbY3bt2+bOiQiIiLKh4zRbo6KisL+/fuxceNGLFmyBAsWLMDq1avx999/4/79+0aOmLJj5syZ4vddpkwZU4dDlGfs3r1b/Nvp16+fqcMhIiIya4bmGPfv38eOHTvwyy+/YN68eVi4cCFWrlyJXbt2ITQ0FKmpqTkYNeV1gYGB4nGnUCjw6NEjU4dEpBdeE6Kcxo5RRET5zOXLl/H7778DAGrWrIm+fftmKdOtWzdJI/m///7Tax9KpRK+vr7i9paWljh79qzasqr78fPz0/v90MdJoVDghx9+AACkpqZi1KhRJo6IiIiI8hs57WZNXr16henTp6NWrVpwd3dHu3btMGDAAIwfPx6TJ0/GiBEj0KNHD1SsWBGurq4YMmQITp06lVNvhXKAah6j76Nz586mDj/f2bBhA2bOnImZM2di165dem2r6/uysbFB4cKFUaFCBTRt2hRDhgzBqlWrEBYWZlCsjx49Uruf8ePHG1RfgwYNstSlq2NfmTJljNoJsFOnTmjYsCEAYPPmzRrzfyIioo+dvjlGfHw8Zs2ahdKlS6NixYro2bMnvvnmG0ydOhWTJk3CyJEj0aVLF9SsWRMODg7w8fHB1KlTceXKldx4O5SDeN0kf1G9CUfdw8rKCnZ2dnB3d0fNmjXRpUsXTJkyBXv37sWbN28M2ueAAQPU5javXr3Su64DBw6ojXvDhg0at9mwYYPssnLwmhDlNHaMIiLKZ8aMGQOlUgkAmD17Niwssv7U//rrr3BzcxOXv/zyS70aS8uWLZNc2Bk7diwaNWqUjaiJsvr888/RuHFjAMCRI0ewd+9eE0dERERE+YmcdnNmaWlpmDVrFsqWLYs5c+YgJCQEgiBo3SY2Nhbr1q2Dr68vmjZtiqCgIKPET/Qx2bBhA2bNmoVZs2bp3TFKl5SUFMTHx+PBgwc4ffo01q1bh6+//hpeXl6oXLkylixZYvDFClWbN29GWlqaXtuEhYXh4sWL2d63McyZM0d8PmbMGNMFQkREZMb0yTGOHz+OqlWrYubMmXj69KnOupOTkxEUFIR58+Zh8uTJRouZiHJeeno63r17hxcvXiA0NBS7du3C/Pnz0aFDBxQtWhS9evXChQsXsr2flJQU/Pnnn3pvt27dumzv2xh4TYhykpWpAyAiIuM5cOAAzpw5AwCoVq0aOnTooLacm5sbVq9eje7duwP4MP3H119/jb/++kvnPm7fvo0pU6aIy1WrVsXcuXONED1RVhMnThSP6WnTpqFdu3ZQKBQmjoqIiIjyOrntZlVxcXHo0aMHjh49KllfqFAh+Pn5oU6dOnBzc4OdnR2io6MRERGB48eP4+bNm2LZ06dPY9iwYbh27ZpR3w/lrIIFC6JEiRKyy7u7u+dgNJQd6r7L1NRUxMfH482bN+KFzAx3797F+PHj8eOPP+KXX35Bt27dDN53VFQU9u3bh06dOsnexlwuUABAixYtULduXVy6dAmXLl3Cv//+iy5dupg6LCIiIrOhT45x4sQJtGvXDklJSeI6e3t7tG7dGt7e3nBzc4OlpSViY2Nx584dBAcHIzQ0VOdNGURkHjw8PGBraytZ9/btW8TFxSE5OVmyPikpCdu3b8f27dvRq1cvrFq1Ci4uLgbvOyAgQK/Rll6+fIk9e/YYvD9j4zUhyinsGEVElI/MnDlTfD527FitjYVu3brhiy++wNatWwEA27ZtQ7du3dCjRw+N26SlpaF///5iwmZlZYWNGzfCxsbGOG+AKJN27dqhcuXKuHPnDq5du4Zdu3bx5DsRERFlmz7tZgBITExE06ZNcf36dXGdq6srpkyZgq+++goFCxbUuG14eDh+/PFHrF27FikpKdmOnXJfgwYNEBgYaOowyAi0fZdKpRJ3795FUFAQ9u3bh3///Vcc4enFixfo3r07FixYgEmTJum1z2LFiiEqKgoAsH79etkdo1JTU7F582ZxuXjx4njx4oVe+za2sWPH4n//+x+AD7+jzM2IiIj+j9wc4927d/D395d0ivrmm28wd+5cODo6aqz/+fPn2LlzJ9asWWO0mCn/8PPzY8c5M/Lnn39qnCIxPj4ewcHBOH/+PAICAhAeHi6+tm3bNly8eBFnz57V64YbOzs7AB/OXVy7dg1Xr16Ft7e3rG03b94snqswh5yD14Qop3AqPSKifOL06dPiEPtOTk7o3bu3zm1++eUXFC9eXFweMWIEoqOjNZZfsGABgoODxeXvv/8edevWzUbURNopFAoMHTpUXF6yZIkJoyEiIqL8wJB287BhwySdory8vBASEoJvv/1Wa6coAChbtixWrlyJO3fucPppIjNmYWGBKlWqwN/fH9u3b8ejR4+yjBD1/fff6z01Rd++fcULo/v37xc7SemyZ88exMTEAADKly+PTz/9VK/95oSuXbvC1dUVABAaGpplBD0iIqKPlT45xpYtWyRT540cORIrVqzQ2ikK+DACzciRIxEaGoqVK1caJ3AiynVOTk5o2bIlpk2bhvv372Pr1q1wdnYWXw8PD0e7du3w9u1b2XUWLFgQPXv2FJcDAgJkb6tatl+/frK3yym8JkQ5hSNGERHlEytWrBCf9+rVC4UKFdK5jYuLC9asWYOOHTsC+DBk5rBhw/Dvv/9mKXvt2jXMmTNHXK5VqxamTZtmhMizLzk5GWfPnsWjR48QHR0NW1tbuLu7o2nTppKOX/pISUnB9evXcfv2bURFReH9+/dwdHRE0aJF0aBBA5QpU8Zo8b9+/RqnT5/G8+fPERsbC1dXV/Tr10/WdxgREYHz58/j6dOnSE9Ph7u7O3x9fVGyZMlsxRQZGYlz587hxYsXSEhIgKurK8qVK4cmTZoYbYSwsLAwXL9+HZGRkUhOTkbt2rXx+eefZynXv39/TJw4Eenp6Th79iyuXLmC2rVrGyUGIiIi+vjo227++++/JR0hSpUqhZMnT+o9tH2ZMmVw4sQJrF+/XmfZ9PR0hIWF4datW4iMjERiYiLs7e1RpEgR1KlTB1WqVNFr37np1q1buHr1KqKiopCYmAgbGxs4OTnB09MT1atXh4eHh+y6BEHAnTt3cPPmTTx79gxv3ryBra0tXF1dUbNmTdSoUQMWFnn3nr/Q0FCEhIQgOjoaSqUSxYoVg5eXF7y9vY02VcDDhw9x+fJlREZG4u3bt6hUqZI4pbom4eHhCA4OFr9DNzc3VK5cGQ0bNoSlpaXeMaSkpODatWu4ceMGYmNjkZSUBFtbWxQpUgRly5ZFrVq1dF4INIUSJUrg77//xty5cyW57+DBg9G0aVOUKlVKVj1lypRB8+bNcezYMaSlpeGPP/7A+PHjdW6n+lsxYMAAs5iC08bGBv/73//w888/A/jwe9qyZUsTR0VERGR6+uQY+/btE58rFApMmTJF7/2VL19e720yXL9+HaGhoYiIiICtrS3Kli2L5s2byzoXrU5ERASuX7+O8PBwxMXFwdLSEi4uLqhQoQJ8fHx03kiij0uXLuHOnTuIjIyEIAho3LgxGjZsqDGuS5cu4cmTJ0hISIClpSUcHBxQsmRJVKlSBZUqVTKozZ0b581NKS9db4iJiUFoaCgePHiA169fQxAEuLi4oEyZMmjYsCEcHByyFbMqudcy9GVhYYHevXvj008/hZ+fnzh61NWrVzFhwgSsWrVKdl2DBg0SOzlt2bIFP/74I6ytrbVuc+nSJYSGhgIAHB0d0b17dyxevNjAd2M8vCZEOUIgIqI8LzY2VrC2thYACACEw4cP67X9gAEDxG0BCH/88Yfk9eTkZKF69eri69bW1kJoaKisulXr9fX11SsuXR4+fCj06dNHKFSokGQ/GQ+FQiH4+voKFy9elFVfTEyMsHLlSqFly5aCra2t2jozHlWqVBECAgIEpVIpq25PT09x2xkzZgiCIAiPHj0SunbtKvnuMh7h4eHitqrrAwICxPfevn17wdLSUm18HTt2lNQh165du4S6desKCoVCbb329vbC6NGjhdevX+us68SJE2rf099//y05nuQcH82aNRPLffPNN3q/LyIiIiJBMKzd7O3tLWmzHDt2LEdiS0hIEDZs2CB06NBBcHR01NoWLVWqlLB06VIhOTlZVt3q2pO6aGrLqaNUKoXffvtNqFixota4AQhlypQRxowZo7EdnZSUJOzYsUPo2bOnUKRIEa11ubq6CjNnzhTi4+NlvacZM2aI23p6emotm1N5TGpqqrBixQqhVKlSGt+Xh4eHsHjxYlnfb3h4uGTbEydOCIIgCIGBgYKPj0+WujW97/T0dGH9+vVClSpVtH7es2bNEt6/fy/rvSYkJAgTJkwQXF1dtX6PFhYWQu3atYU1a9ZIts98DMp5ZORaqozxXfbu3VtSz/DhwzWWzfyd/Pzzz8Kff/4pLletWlXn/iIiIsRcz8LCQnj69KnQrVs32cevav6pq6y+Tp48KdZtZWUlREVFGbV+IiKivEbfHKNWrVpi2WLFihk9Hk3twyNHjmTJbVTP+Y4fP1549+6drH0EBgYKI0aMEMqVK6e1bWZjYyMMHDhQePDggax6AwICJNtnWL16tdp9+fv7Z6njxIkTQpMmTXS2G52dnYU+ffoIT548kRWbMc+bC4Lx8w198jd1+WFeuN4gCIJw+fJl4bvvvhOqVq2q9fu1tLQUunTpIly7dk1Wvdm9lqGaa6r+3enj6tWrQsGCBcU6rK2ttR6f/v7+klxNEAShUqVK4rrt27fr3Ofw4cPF8kOHDhWuX7+u9vhQJ/Pfq9xzDXLxmhAZGztGERHlA2vWrBEbCE5OTkJqaqpe28fFxQklS5aUJAURERHi65MmTZI0cObPny+7bmM38DP8+uuvajsUqXsoFArhp59+0lln5sarnEenTp2Et2/f6qw7c8eoI0eOCE5OThrr1dYx6siRI0LhwoV1xubh4SHcvXtX1uf55s0boV27drLft4eHhxAWFqa1TnXJxMiRIzXWqe34WLFihVjOzc1NSE9Pl/W+iIiIiFTp224+evRojrVnM8t8UlHO49NPPxWio6N11m3IyUq5J9aTk5OFjh076h27ps/ekM4wVapUEe7fv6/zPZm6Y1R0dLRQp04d2e+revXqkrxMHXUXvhYuXChYWFiorVPd+37x4oVQv3592XFVrVpVZ1xPnz4VKlSooNf32KhRI0kd5tQx6vnz55L809raWoiJiVFbVl3HqPfv30tyuAsXLmjd3/z588WyrVq1EgRBMJuOUenp6ZJOiytWrDBq/URERHmNvjmGaseFwoULGz0ede3DZcuWaWwfqj68vLz0zi/kPBwdHYX9+/frrDdzTpSamip07txZY72ZO0YtWLBA79iOHDmiNaacOG+e+TM0dceovHK9QRCk7Vw5D2tra2H9+vUGfX76XMswRscoQRCy7PPbb7/VWFZdxyjVv4HWrVtr3VfmHOX8+fNm1TGK14TI2DiVHhFRPrB3717xeZMmTWBlpd/Pu5OTE9atW4dWrVoB+DC129ChQ7Fv3z6cP39eMnRmgwYNMGHCBOMEbqCFCxdi0qRJ4rJCoUCzZs3QrFkzuLu74927d7h06RL++ecfJCYmQhAEjB07FjY2NhgxYoSsfbi7u6NRo0aoVasWihQpggIFCiAqKgrnz5/HgQMHkJaWBgDYvXs3RowYgY0bN8qOPzw8HCtWrEB8fDwKFSqEDh06oEGDBnByckJUVBT27duncRjf27dvY/To0eJws126dEGNGjVQqFAh3L9/H1u2bMGTJ08AAM+fP0f//v1x9uxZrVOMJCYmolmzZrh06ZK4ztnZGR06dIC3tzccHR0RFRWFAwcO4PTp02Ldvr6+uHz5MkqXLi3rfS9btgy//PILAKBcuXLo3LkzKlSoAIVCgfv37+P58+cat23evLn4PCYmBkFBQRqHSSYiIiLSRN92s2p5ABg2bFiOxJWZi4sLGjduDG9vbxQtWhS2trZ49eoVLl26hP/++w/v378HAJw7dw69evXC0aNHTTal3IwZM/Dff/+Jy66urujQoQOqV68OFxcXpKam4tWrVwgLC8OZM2fw6NEj2XXb29ujUaNGqFOnDtzd3WFvb4/Xr18jJCQEu3fvRlxcHIAPbeQOHTrg0qVLBk8BktPevHmDpk2b4vbt2+I6FxcX9OjRA9WrV4eFhQXCwsKwfft2xMTEAPgwzUmTJk0QHBwse+rGXbt2YcWKFRAEAcWLF0fXrl1RtWpVWFtb49GjRwgKCpKUj4yMROPGjfHw4UNxnbu7Ozp27Ihq1arBzs4OT548we7du8Wp3G7evCnmAuqmwBMEAb169cL9+/fFdRUqVEC7du1QsWJF2Nvb4927d3jx4gVCQ0MRGBgofpeqbG1txWliIiIikJSUBABwcHBA0aJF1b5/fae4lMvd3R29evXCH3/8AeDD9IAnTpxAjx49ZG1fsGBBfPHFF1i9ejUAICAgAA0aNNBYPmMKDODDlBjmxMLCAn5+fvj7778BfPid/Oabb0wcFRERkenom2O4ubnh7t27AIC4uDgEBQVpbRdk17FjxzB//nwolUq4urqiV69e8PLyglKpREhICHbs2CG2xW7cuIFWrVrh3LlzsqbAs7S0RP369VG/fn2UKVMGTk5OePfuHe7evYu9e/eKbcyEhAR069YNly5dQtWqVWXHPn78eOzatQsA4OXlhQ4dOqBMmTJISUnBrVu3JFOwHTp0CN9//724bG1tjbZt26JevXooVqwYFAoF4uLicPfuXQQHB+PKlSs6959b581NKa9eb1AoFKhVqxYaNGiAihUrwtnZGUlJSQgPD8fBgwdx/fp1AB/a7UOGDEHp0qXRokUL2Z9Ldq5lZMeYMWPE/QIfjmt9+Pv7Y+rUqUhPT8fhw4cRERGBEiVKqC37zz//iH/7VatWhY+PD27cuGFw7MbGa0JkdCbumEVERNmUmpoq2Nvbiz2nFy5caHBdw4YNk/TwXrFiheQOFltbW+H27dt61QktvegNcfz4ccndLZUqVRKuXLmituzTp08ldz7b2toKd+7c0Vj3rFmzhE6dOgknTpzQ2vs8PDxcaNiwoeS9HT9+XGvc6u5k+PTTT2UN1au6TcZ779OnjxAXF5elbGJiotC6dWvJNvv27dNaf+apFIcMGaK2bkEQhH///VcydWGLFi001qvpDu9Zs2bpPaqZIAiSKTjU3QlOREREpI0h7ebMU03k5JRRAQEBgq+vr7B3714hJSVFY7no6GihQ4cOkrh03QGrWtaYI0YlJiZKpqDu0KGD8ObNG631Xr58Wejfv7+Qlpamcb/e3t7C1q1btU7l8ebNG2HIkCGSGKdPn65136YcMWrQoEGSOtu1aye8evUqS7nXr19nuSu+V69eGuvNPCJAxmPYsGFCYmKi1pjS09OFFi1aiNsoFAph6tSpGqfKW716tWRqjUGDBqktl/nYmT17ttb8KjU1Vdi7d6/w/fffayzj6+sr1qduyhRtjPVdbt68WVLXiBEj1JZTN2KUIAhCcHCwuM7JyUnj8X3q1CmxnIuLi5CUlCQIgvmMGCUI0ru3bWxsZE+vSERElN8YkmOMGzdO0lb45JNPZI1+KlfmtkjG+eQ2bdqobX++ePFC8PPzk2wzdepUrftwd3cXlixZIrx48UJjmfT0dGHlypVCgQIFxHqbNm2qtV51o+haWVkJa9as0TgVdwbV9mL58uV1fqZPnz4VpkyZIgQFBWksk1PnzQXBfEaMykvXGwThw1SU06dPFx49eqS13Pbt2wUHBwex3rJly2rNSbJ7LcNYI0YJgpBl5F1No7ipGzFKEATJSF3z5s3TuJ/mzZuL5RYvXiwIgmBWI0YJAq8JkXGxYxQRUR539epVSePj0KFDBtf15s0boWzZsmobgACEpUuX6l2nMRv46enpQvny5SUneDVNX5AhLi5OclK4b9++GsvqczI3Pj5e0kDt0qWL1vKZO0ZVqFBB50WjDJm/hw4dOmhNBGNiYgRHR0exfJ8+fTSWDQwMlNT99ddf64zn33//lWxz9OhRteXUJRMTJ07U/YY1UG2oZ0wnQURERCSXvu3mpKQkSYf8nOhcoEqftmhKSorQqFEjMTZvb2+t5Q05WSnnxPqxY8ckFyx0tc3l0LeDRc+ePcUYihUrprVTmak6Rt24cUNSX4MGDcTOLuokJydLvl8AGi/YqOsY1bt3b1lxbdy4UbJdxslwbZYtWyaWVygUwr1797KUmTZtmlimVq1asmLRxRw6Rj18+FBSl4+Pj9pymjpGCYIg1KhRQ1y/efNmtdurXkgaOXKkuN6cOkapdt4CPky7QURE9DEy5Nx8WFhYlmntrK2thV69egl//fWX8OzZs2zFpK596O3trbWdnZCQIFSpUkUSj7Yp9fRps69atUoSS0hIiMay6jpGrV69Wuc+kpOTJR34d+3aJTs+TXLyvLkgmE/HqLx0vUEQ9Dv29u/fL6l39+7dGstm91qGMTtG9e/fX1LXwYMH1ZbT1DHqn3/+EddXrFhR7bbh4eGCQqEQc/mMTo7m1jGK14TImEwzzjoRERlN5iFfq1WrZnBd9vb2CAgIUDuNm6+vL0aPHm1w3cawa9cuPHjwQFz+9ddfUaRIEa3bODk5YeHCheLyjh078OrVK7Vl5QwPnMHR0RGTJ08Wl48cOQKlUil7+0WLFsHe3l52+QxWVlZYuXKlxqn2AKBIkSLo2rWruJx5ugxVS5YsEZ+XLl0aP/30k84YOnfujNatW4vLGdNB6FKsWDHMnDlTVll1qlevLj5XHYaXiIiISA59280vX76UtO/Kli2bI3Fl0KctWqBAAcyZM0dcvnr1KqKionIiLK1evHghPndxcdHZNpdDn88BAH744QfxeVRUlKwpMfR18uRJKBQKWY8xY8Zk2T5ze3nVqlWSaT8ys7a2xurVqyVt/lWrVsmK1draGsuWLZNVVjUX8PHxwfjx43VuM2rUKHzyyScAAEEQ8Ouvv2Ypo3pcVKpUSVYseYGnp6fkO3n58qXedQwcOFB8vn79+iyvv3nzBjt27BCXzW0avQyquRnA/IyIiD5ehpybr1q1qmTKN+DDdF/btm1D7969UbJkSXh4eKBjx46YN28eTp06heTk5GzFuXz5cq3tbAcHB0nbMCUlBZs2bdJYXp82+7BhwyS51IEDB2RvW6tWLVnTmb98+RLp6enisjHaoLl53tyU8tr1Bn2OvTZt2qBp06bisj7HXnavZWRHmTJlJMv65h0dOnSAm5sbAODevXvidIWqAgICIAgCAKBt27YoVqyYYcHmMF4TImNixygiojzu/v374vMCBQrA3d09W/X5+vqiS5cuknXaOkzlpi1btojPq1atKmksa9OtWzc4ODgAAJKTk3Hq1CmjxNOyZUvx+du3b3Hz5k1Z27m6uqJDhw4G7bNFixYoVaqUznI+Pj7i8wcPHiA1NTVLmfj4eOzbt09cHjlyJKytrWXFMWDAAPH5sWPHxEa0Nr1799b7Qpcq1ff96tUrcf5rIiIiIjn0bTdn7kxfuHDhnAjLYE2aNJF0rgkODs71GAoVKiQ+j46OltzEkFvKli2LcuXKicum+Bx02bNnj/jcx8cHtWvX1rlN9erVJSfxVdvt2rRp00bWSe0bN24gNDRUXB47dqys+hUKBfz9/cXlI0eOZCmjelxcunRJbS6SF1lYWMDR0VFcjo2N1buOvn37ijnXiRMn8OjRI8nr27ZtQ2JiIoAPFwK9vb0NDzgHFS5cWHKjj+rvKxER0cfE0HPzc+bMwZw5c2BlZaX29cjISOzZswdTp06Fr68vihUrhmHDhuHevXt6x/jJJ5+gSZMmOsu1adNGcv71v//+03tf6lhYWKBZs2bisj7tdX9/f1nXJFTbnwBw7tw5+QGqkdvnzU0pL19vkEP1Go4+x152r2Vkh7Ozs2RZ37yjQIEC6Nu3r7gcEBAgeV2pVGLDhg3isrnejAHwmhAZFztGERHlcU+ePBGfFytWDBYW2ftpv3v3bpae82lpaUhJSclWvcZw5swZ8Xm7du1kb2dlZSW5+KDtjgZ9ZE50IyIiZG1Xv359jUmvLqoJiDYlSpQQnwuCgPj4+Cxlzp07JxkFQZ/PtEGDBuLzuLg43LlzR+c2n376qez61VF9T4D02CciIiLSRd9285s3byTLhoz2mZOsrKwkIzTJbYsaU+ZOG506dTJJxyTVdnlOfA4FCxZE+fLlZT0y7szNEBkZKTn22rRpI3u/7du3F5+/fPlSVucTuW1u1buGLSwsZN90AkhzgbCwMLEjTwbV3Ovhw4fo3bs3nj17Jrt+c6b6O5CQkKD39kWKFBFvkhEEQXJBApCOImXOFygAaX7G3IyIiD5Whp6bVygUmDp1Km7evInBgweLN/VqEh8fjzVr1qBatWqYPn26Xp1GWrVqJTumzz//XFy+cuWKXjMkaGNoe11u27Zw4cKSUanGjh2LHTt2GBx/bp83N6W8fL1Bjpw+9nJC5nMPhuQdqrnEjh078PbtW3H56NGj4m9XsWLF9PqechuvCZExsWMUEVEep9pDWlcCpUt6ejr8/f3x/v17yfqkpCQMHDjQaImQIV68eCGZHkTfKQNV75rWdVI+JSUFe/bswbBhw9CwYUMUL14cdnZ2WabJKFCggGQ7ub3VK1SooFfsqooXLy6rXObGc+aLFQAQEhIiPi9QoIBeQwxnvgtdzoWO7LxvIOt74t0BREREpA99282Zy6ieSMxJSqUSx48fx6hRo9C0aVOUKFECDg4OsLCwyNIeVT2xa4q2kaenp6SjT1hYGOrXr48aNWrg+++/x8GDB9WeMJcrKCgIEyZMQMuWLVG6dGk4Ojqq/RzOnj0rbpMTn0ODBg1w//59WY8pU6ZItr17965kuWbNmrL3W6NGDa11qSO3za2aC5QuXVqvXFI1F0hPT0dkZKTk9a5du0o6iO3cuRNlypRBixYtsHDhQpw/f94sbrwxhGqHSScnJ4PqUL1IsXHjRvHC5u3bt3H+/HkAgI2NDfr06ZONSHOean7G3IyIiD5W2T03X7FiRaxduxZRUVHYv38/Jk2aBD8/vywjxmRITU3FnDlzMHjwYNn7yDwFrtyyb9++1XnO9+HDh1iwYAE6deqEihUrwsXFBQUKFMjSXp83b564jT7tBn3OJw8fPlx8npCQgJ49e6JUqVIYPnw4tm3bpldH/dw+b25KefV6Q2RkJJYvX44ePXrgk08+gaurK6ytrbMce0OHDhW3yaljz9gy36RlSN7h5eWFevXqAfjwt6w6XbfqzRj9+vUz+Cb+3MBrQmRM5nukExGRLKqdmLI7tOfixYtx4cIFcblKlSq4ffs2AOD8+fP46aefMH78+Gztw1CZpzIZMGCAZHhVfbx+/Vrja//++y9Gjx6Np0+f6l1vUlKSrHKq0y/oy9DvWN1dRKqfaWpqapaOXvrQ9plmyM77BrIOifzu3bts1UdEREQfF33bza6urpLl3DgBd+rUKXz11Veyp2hWJbctamxr166Fr6+vZDSj69ev4/r16/jhhx9gYWGBOnXqoF27dujXr59k2jtNrl+/juHDhxs0BYapPgdNMreTixYtKnvbzBcHjNnmVs0FHj16lK1p0zPHZW9vj7/++gudOnUSOxSmp6fj+PHjOH78OIAPbfvGjRujS5cu6N27t9lNVamOUqmUXKRwcXExqJ5WrVqhRIkSiIiIwKNHj3D8+HG0aNFCcoGiU6dOBtefW1TzM+ZmRET0sTLWuXlbW1u0adNGctPBgwcPcPz4cWzduhUnTpyQlA8ICECLFi1kdaTWp/2ZefTT169fo3Tp0lnKvXr1CmPHjsUff/yh95Rn+rTX9TmfPG7cOJw5c0YyjfXz58/x22+/4bfffgPwobNLq1at0LdvX60jJeX2eXNTymvXG969e4epU6fi559/Rlpaml515tSxZ2yZzz0YmhcMGjRIHNF5/fr1GDhwIF6/fo1du3ZJypgzXhMiY+KIUUREeZxqb259G4Kqbty4gRkzZojLtWvXxqVLlyQjM02bNs1kQ78a80KUpsbTypUr0bVrV7WdohwcHODh4YFy5cpJpspQJTcJNJce+LnxmarK7vvOPG95dhIrIiIi+vjo224uUqSIZCqMR48e5URYol27dqFly5ZqO0UVKlQI7u7uKFu2rKQtqvqe9L0gYSweHh64dOkSxo0bp/YueaVSieDgYMycOROVKlXCkCFDtE4FcOHCBTRu3Fhtp6iCBQuiePHiKFOmjORzUD2Zb6rPQZPMI41lPrGrjZ2dnda61JHb5s7pXKB58+a4fPkyunXrBktLS7XbHD58GF999RU8PT2xePFis/vuMgsPD5fEqDqVpT4sLS3Rv39/cTkgIABpaWn4448/xHXmfoECkOZnzM2IiOhjZaxz8+qUL18eQ4cOxfHjx3Hq1CmULFlS8vqcOXNk1WNrayt7n3LanzExMWjatCk2bdqUpf1maWmJokWLolSpUpL2uuoIWPq0+fQ5n2xpaYldu3Zh5cqVajtzAcD9+/excuVKNGzYEH5+fhqvdeT2efP8Iqc/t/fv36NNmzZYunRplr83CwsLFClSJMuxp0/HQFWmvIbz8OFDybKheccXX3wh/v2fOXMG9+7dw59//onk5GQAH6ZR/OSTT7IXbA7jNSEyJvO4MktERAZTHUoy8xR4cqWlpcHf31+czsDGxgabNm2CnZ0dNmzYAB8fH6SnpyMpKQkDBgzA2bNnZc+XbiyZLyC4u7vrdVFBlYeHR5Z1N2/exLfffisu29vbY8SIEWjfvj1q1aql9iKPIAi5/jkYk+rnZ2FhIZmHXV/ZncZRjszHd+ZEnYiIiEgbfdvNNjY2qFmzJq5evQrgQ8eomJiYLHdRG0NMTAwGDhwonvSzsrLCkCFD0L17d9SuXVvjVBqenp548uSJ0ePRl5OTE3788UfMmjULhw8fxvHjx3H27FmEhIRIpuNOT0/HunXrcPHiRZw5cybLXbhJSUno27ev2HFKoVCgd+/e6NOnD+rVq6fxpLavry9OnTqVc28wGzIP/a/PhZHM01Nkris7VHMBGxubLBfa9KHpLvNKlSrh77//xosXL7B//34EBgbi7NmzWU70JyQkYMKECQgLC8OGDRsMjiOnZUxzl6Fu3boG1zVo0CAsWLAAwIepBj///HO8ePECAFCyZEl89tlnhgeaS1R/R5mbERHRx8oY5+blaNKkCQ4cOABvb2+xQ8idO3fw4MGDLDfvZqZPXHLan2PGjJHczNGwYUN89dVXaNy4MUqXLq22U/yMGTMwe/Zs2XEYysLCAiNGjMDw4cNx+vRpHD16FGfOnEFQUFCWz+HkyZOoX78+Tp8+nWUK67x23txc5PTnNnfuXEneV61aNXzzzTfw8/NDuXLl1HaaCQgIyBM3HahSzTsUCgXq1KljUD1OTk7o1q0bNm/eDODDZ3HgwAHx9bzwufCaEBkTO0YREeVxqnNAx8TEGFTHvHnzcOXKFXF55syZ4khRdevWxcSJEzF//nwAH+7gXrJkCb777rtsRK2/zL3ily5dil69ehmt/p9//lm8EGVra4szZ86gZs2aWrfJ6/MZq36m1tbWkulPzFF0dLRk2d3d3USREBERUV5kSLvZ19dX7BgFAMeOHUPv3r2NHtv69evFtqWFhQX27t2LVq1a6dwuJ9ujhtzZbGdnhy5duqBLly4APsR39OhR/PXXX9i1axfS09MBfJgqb86cOVi8eLFk+927d+PBgwfi8m+//YahQ4fq3K85t8szd2rL3KbVJnNZTR3kDKGaC5QtWxa3bt0yWt2ZFS9eHIMGDRJPvD99+hT79u3Dxo0bJVO5b9y4ET169EC7du1yLJbsOHjwoGTZz8/P4LoqVKiApk2b4tSpU3j//j1Gjhwpvubv758nbsBRPT6ZmxER0cfKGOfm5fLy8kLr1q2xd+9ecd3t27d1dozSp/2Z+T1kbn++ePECW7duFZf79u2LjRs36my75HZ73cLCAr6+vvD19QUApKSk4OzZs/jnn3/wxx9/iDdiJCQkYPDgweJ0Yxny2nlzc5GTn1tqaipWrlwpLjdv3hz79++HjY2N1u3MOVdU5969e5Kc2MvLC66urgbXN2jQILFj1C+//CJODV6oUCGjXl/LKbwmRMZk/lk2ERFppdrrPj4+Xtb0CqquXLmCefPmicsNGjTI0ulpxowZ8PLyEpenT5+O27dvGxixYTw8PCR3lD979syo9R87dkx83r9/f52dooCsQ5rmNVWqVBGfJyUlSeYAN0cRERHicysrK5QoUcKE0RAREVFeY0i7uX379pLlNWvWGD0uQNoW/eyzz2R1inr58qXWKelUqd65K7fDU1RUlKxy2hQuXBjdu3fH33//jbNnz0qm8cg4OatK9XOoXLmyrE5RSqUyx6c5zI5KlSpJlkNCQmRvGxoaqrWu7FDNBZ4/fy4Z2SunlSpVCsOHD8f58+exfPlyyWvqjgtz8Pz5c2zfvl1ctrGxyVbHKEB6h3bGBQqFQoGBAwdmq97ckJ6eLvmN8PT0NGE0REREppPdc/P6yriZWXWfuly/fl12/Tdu3BCf29nZZTn/evz4cXEqPIVCgYULF8rq0G3q8+jW1tZo1qwZfvnlF9y7dw+VK1cWX7t06VKWKfXy2nlzc5GTn1twcLDkeJ83b57OTlGA6Y89fS1btkyyLOfcgDYZo2kB/5dzAEC3bt2yjOBsjnhNiIyJHaOIiPI41Q5LwIce5XKlpKTA399fHCmpYMGC2LhxY5bhbq2trbFhwwZxXuWMKfUy7vjODZaWlmjSpIm4fOLECaPWr9rAktMpCpBeuMmL/Pz8oFAoxGVjf6bGdvfuXfF5lSpVTDrPNxEREeU9hrSbW7RoAW9vb3H5xIkTOHnypNFjM6Qtevz4cdn1Fy5cWO2+tFEdyccYGjRogC+//FJcfvHiBV6/fi0pY8jncOnSJdkdxEzB3d0dpUuXFpdVpy7QRXU0gCJFiqBChQpGi6tZs2bi84SEBMkIwrlp1KhRku9adVoWVarTYuRmJ64M48aNE/NmABgyZAhcXFyyVWePHj2yTBHStGlTnaM+mIP79+9Lvofq1aubMBoiIiLTyc65eUMkJSVJluW0Rw4fPiyrbkEQJGVr166d5TqBanvdzc0NHh4eOutNTk7GmTNnZMWQG4oWLYoffvhBsi5zGzSvnTc3Fzn5uWXOY/PjNZxr165h/fr14rKNjQ3GjBmTrToVCgUGDBiQZX1emEYP4DUhMi52jCIiyuPq1q0rWc58V7E2M2bMkNwFMn/+fMndEqrq1KmDSZMmictBQUFYsmSJntFmj+q0JQcPHsxyJ0d2ZNzpAmRNMNVJSUnB6tWrjbZ/U3Bzc0Pz5s3F5cx3I5gb1WO7Xr16JoyEiIiI8iJD282TJ0+WLPv7+xs8HH9qaqraUaf0bYsCyDLSjjaqd+7K6fCUmJiIHTt2yK5frsy5hmpHE8Cwz8Hc27AA0KFDB/H5hQsXcO3aNZ3bhIWF4dSpU+KysaeXq127NipWrCgum/JzVD0uMh8TGezt7cXnckZGMKa5c+fir7/+EpcLFiyI77//Ptv1FipUCN988w1q1qwpPlSn1DNnmX8/mZ8REdHHKjvn5g1x9uxZybKcjvM3b97Msp06Bw8exJMnT8TlTp06ZSmj2l5PTk7WWSfwYbpkc5vOTFdektfOm5uLnPzcVI89QF6+ePjw4RydMtyYnjx5gq5du0re19ChQ40yQtKAAQNQq1YtMedo2bKlOM2kueM1ITImdowiIsrjihQpIhlC9+LFi7K2CwoKwuLFi8Xlxo0bY/To0Vq3mT59OmrUqCFZzs2GZe/evcXhidPT0/G///1P7+GJNTWYVYf+V70zW5MJEyaY9ZQdcqle6Dt79iwWLFigdx1yL1plR0JCgqQjXHanrSAiIqKPj6Ht5u7du6NPnz7i8uPHj+Hr64vIyEi99v/o0SM0a9YMq1atyvKaalv0wIEDOkdmXbZsGc6dOyd73w0aNBCfnzx5Uued7BMnTswympM6z54902sUWdVp5Ozs7ODm5iZ5XfVzOHXqlM6RoHbt2oWtW7fK3r+pfPXVV5Llr7/+GikpKRrLp6amYsSIEZIReUaMGGHUmCwsLCQ3vmzZsgVbtmzRux51uYA+eZIgCJLpXcqUKaO2nOp61Zt7clJERAS6d++OadOmiesUCgXWr19vtCkc5s2bh2vXromP7t27G6XenBYcHCw+L1u2rGRUNCIioo+JITnGxIkT9Rr9NcO2bdtw6dIlcbly5cqyRxQdPXq01o5MiYmJGD9+vLhsbW2N/v37Zymn2l6Pj4/H6dOnte43PDwcEydOlBVjdsTGxkqmCdMl8/TW6tqgeeW8ubnJqc8t89TNuq7hvH79GsOHD9d737lNqVRi27ZtqFWrFsLDw8X1derUyTKymaFKlSqFq1evijnHkSNHJCN7mSteEyJjY8coIqJ8oG3btuJzOcOTvn//Hv7+/uJFDDs7O2zYsEHnfOAFChSQTKmXnJyMgQMH5tqUelZWVli7dq04hO+VK1fQoEEDWReFQkNDMWnSJI3TEqjO1Xz8+HHMnz9fbbnExER88803WL58uaz5081d8+bNJUOpTp48GV9++SWio6O1bpeUlIS9e/eiY8eOGDduXA5HCZw+fVo8zhQKRbbn1iYiIqKPk77t5gy//fabZKqo0NBQ1KxZEytWrNB5p3R4eDhGjhyJypUra7xTW7Vtc+/ePXzzzTdIS0vLUi41NRXz5s3D2LFjAUB2e/R///uf+DzjBoPY2Ngs5ZKTk/Hdd99h5cqVsk6Url27FpUrV8by5cvx4sULrWW3b9+OdevWicsdO3bMsg/VzyEuLg79+/fHu3fvstQlCALWrl2LXr16AZD/OZhKtWrVMHjwYHH53Llz6NGjh9rOZ/Hx8ejdu7dktKjevXujfv36Ro/L398fLVu2BPDhM+3Xrx+mTp2qs0PamzdvsG3bNvj5+akduWzgwIHw9fXFtm3b1H5/GdLS0jB+/HjJzTadO3dWW9bHx0d8/vDhQyxdulTt30h2KJVK3LlzB5s2bUKvXr1QpkwZ/PPPP5IyCxcuxBdffGHU/eZFqr+fbdq0MWEkREREpqdvjnH27Fm0aNECDRs2xJo1a3SOppSamoqlS5eiX79+kvVyR7C0sLDA5cuX0b17d7Xtz5iYGHTq1EkyndyECROy3MQAfDiXrDqV1aBBgzR2ij979iyaNm2KuLi4HG+vh4aGonTp0pg0aRLCwsK0lr1+/bqkE1iJEiWyjPwF5J3z5uYmpz63OnXqwNXVVVweN26cxpF4w8LC0LRpU4SHh5tlrhgfH49jx45hzpw5qFixInr37i352yxfvjz27t0LOzs7E0ZperwmRMbGiRiJiPKBbt26iaM/3bp1C0+ePNF6x+bkyZMlPa0XLlyoscNQZt7e3pg8eTJmz54N4MPIUz/++KOsOz+CgoJk38Wi6v79++Lz5s2bY9myZRg1ahQEQcDNmzfRqFEj1KpVC82aNUO5cuXg4OCAxMREvHz5Ejdu3EBQUJA4DLCNjY3afXz77bf47bffxLsRpkyZgh07dqBLly4oVaoU3r17hxs3bmDnzp1iI37u3LlZplbJi1avXo0HDx6Id/j8/vvv2LRpEz777DM0aNAARYsWRYECBRAfH4+nT58iJCQEFy5cQGJiIgBg2LBhOR7joUOHxOeNGzdGsWLFcnyfRERElP/o227OYGdnh1OnTqFHjx44evQogA8XEEaPHo3JkyejWbNmqFOnDooUKYJChQohOjoaEREROHHihM4T8wAwePBgLFiwQGxnrl69GkePHkWPHj1Qvnx5JCcn4+7du/j333/x+PFjAMCXX36JQ4cOicvaeHl5oVu3bmInj0uXLqFKlSro27cvPvnkE6SlpeHOnTv4559/8OzZM1hZWUna/No8ePAAY8aMwdixY1G3bl3Ur18f5cqVg7OzM1JTU/Ho0SMcPnxYcne7nZ0d5s6dm6Wujh07olq1auJntnv3bvFE8SeffAKlUonw8HDs3r1b7EzTunVrJCYm6rxb3dSWLl2Ks2fP4vbt2wCA//77DxUrVkTPnj1RvXp1KBQKhIWFYdu2bYiJiRG3K1euHFauXJkjMVlaWuKvv/5CkyZNcOvWLSiVSsybNw8rVqxAq1atxGNaoVAgPj4e4eHhCAkJQVBQkDjiVevWrbPUKwgCTp06hVOnTsHOzg4NGzZE3bp14eHhAUdHRyQmJuL27dv477//JMdvzZo1MXDgQLWxduzYEUWKFMHLly8BAGPHjsXUqVPh6ekJa2trsdzw4cO13hmuLidNS0tDfHw8EhISJKN0qXJ3d8fKlSvRpUsXjXWbq4iICIPy8JMnT6odGSsmJgZXr14Vl7t165at+IiIiPI6Q3OMCxcu4MKFCxg5ciRq1qyJBg0awNPTEy4uLgCAV69e4fr16zhw4ABevXol2bZHjx7w9/eXFd/kyZMxf/587N27F5UqVUKvXr3g5eUFQRAQEhKCbdu2STpneXt7Y8qUKWrrcnNzw9ChQ7F69WoAH87bV6tWDT179kS9evVQsGBBREZG4ujRowgMDAQAlCxZEh06dBC3ySlxcXFYuHAhFi5ciEqVKsHHxwfVqlWDi4sLLCws8OLFC5w7dw4HDx6U3Oj9008/aew8k1vnzY1x3cSc5MTnZmVlhQkTJojXoWJiYlC/fn107twZjRs3hoODA2JiYnDq1CnxO3Z0dMRXX32FhQsX5t6b///69OkDW1tbybrExETExcVpHUmsd+/eWLVqFZydnXM6RKObOHGi2jxfm27dumn8fnhNiIxOICKifKFSpUoCAAGAsHTpUo3lTp48KSgUCrFs8+bNBaVSqde+UlJShJo1a4p12NjYCDdv3lRbNqNMdh7q7Ny5U3B0dNS7rkKFCml8X3/99ZdgZWUlq57hw4dneX8BAQEa6/b09BTLzZgxQ/Znrc8+VJ04cUKyXXh4uNbyycnJwuDBgw36fkaMGGGUGDRRKpVCiRIlxHrWrFljUD1EREREgiC/3axOamqqMGPGDMHBwcGgdlOLFi2EK1euqK371KlTQqFChWTV07FjRyE5OVmvNuaLFy+EKlWq6Kzb2tpa2Lhxo6y23IwZM/T+DFxcXITTp09rjPPWrVuCm5ubrLoaNmwoxMbGCr6+vuI6f39/jXWrxuvp6an181Ldj6+vr9ayckVHRwu1a9eW/Vl5eXkJERERWusMDw+XbHPixAm944qLixPat29v0DG9aNGiLPWpfh9yHzVr1hSeP3+uNc4DBw4I9vb2WutR93dgyPvKeFSqVEn48ccfhTdv3sj+PDN/Jz///LPsbbXp1q2b7ONX9bfB0Iem/O23334Ty5QqVUpIT083yvsjIiLKy/TJMT777DOD/z9bWFgI33zzjZCamqqxfnXtw6VLlwoWFhY6669WrZoQHR2tNf7ExEShQYMGsuL18PAQLl++LLsdHhAQINlersy5i5yHpaWlsGLFCp1158R5c0Ew/nUTfc7Fq5bLS9cb0tLShE6dOsmqw8nJSTh48KDsYyq71zIMyY0zHgULFhR69uwpXLhwQa99+vv7i3W4urrqta0m169fl318ZP5sDXloyt95TYhygvmNH0dERAYZOnSo+Hzr1q1qyyQmJmLgwIEQBAEA4ODggPXr1+s9n3CBAgWwceNGFChQAMCHKTdUp+bLDV26dMHDhw/x/fffo3jx4lrLFihQAI0aNcLChQtx9+5djeV69eqFEydOoE6dOhrLVK9eHTt27MjxO1xym7W1NdauXYugoCB07NhR48haGVxdXdGjRw/8/fffWLp0aY7GdurUKURERAAAHB0dxSlTiIiIiAwhp92siZWVFWbOnInw8HBMnToVNWrU0NmWdnV1xZdffolz587h6NGj8Pb2VluuSZMmuHjxIpo1a6axrvLly2P16tXYvXu3ZJQcOYoVK4bTp0/D399f4x3RjRs3xvnz59G/f39Zdfbr1w/Tp09HvXr1JFNqqOPs7IyRI0fi9u3baNy4scZyVapUwZUrV9ClSxeNn627uzvmzJmDU6dO5ak7ad3c3BAUFITly5ejVKlSGsu5u7tj0aJFuHz5Mjw8PHI8LicnJ+zZsweHDh1Cs2bNdH6XHh4e8Pf3x8GDB8VpHVXNnTsXX3/9NSpVqqRz3+XKlcPixYsRHBwMd3d3rWVbt26NsLAwTJ06FY0aNYKbm5vefwfqFChQAI6OjihbtiwaN26MQYMG4ZdffsGNGzdw584djBs3Dvb29tneT36h+rs5ePBgs5yehIiIKLfpk2McOHAAgYGBGDduHOrUqQNLS0ud9Ts5OWHQoEG4dOkSVqxYobO9ltmYMWNw6NAh1KpVS+3rdnZ2GD9+PIKDg9VOoaeqUKFCCAwMxPjx41GoUCGN9Q0cOBChoaGoXbu2XrEawtvbG8uXL0erVq10ttusra3RpUsXXLlyBd98843Ous35vLk5y4nPzdLSEjt37sSCBQvEkdXU7bdr164ICQkxq6nXLCwsULBgQRQrVgzVq1dHx44d8f3332PPnj2IiYnBtm3b0KBBA1OHaTZ4TYhygkLIuDpORER5Wnx8PEqWLIm3b98CAK5du4aaNWuaOKrcc+PGDYSGhiImJgZv3ryBnZ0dihQpgkqVKsHLy0vv+ZjDwsIQFBSE6Oho2NjYwN3dHTVq1EDVqlVz6B2Yl/fv3+PcuXN4/PgxXr58ifT0dDg4OKBkyZL45JNPUKlSJb071Bmqb9+++PPPPwF8mPLwp59+ypX9EhERUf5k7HZzVFQULl++jOjoaLx8+RKpqakoXLgwihYtilq1asmeslrVgwcPcPbsWURGRsLS0hLu7u6oUqWK1g78+nj58iVOnDiBp0+fIi0tDSVLlkS9evVQsWJFg+t8//49QkJC8ODBA0RFReHdu3coWLAgXF1d4eXlhZo1a+rdiSUiIgKnT5/Gs2fPoFQqUaxYMZQvXx6ffvppvuiMce3aNYSEhIhTKLq5uaF69eqoXbt2rrW11UlISMDZs2fx7NkzcdoWR0dHeHp6omrVqihbtqzsul6+fInr16/j4cOHiI2NRXJyMuzs7FC8eHF4e3ujSpUqOfU2KAfcu3dP7PBWsGBBPH78GEWLFjVxVERERKaXnRwjY5rh+/fvIyoqCm/fvoWFhQUcHBzE9mGlSpVkdaACgEePHknaaydOnICfn5+4fP36dYSEhOD58+coWLAgypQpg5YtW2rs5KRNQkICTp8+jXv37uHdu3dwc3NDyZIl4evra1B9xpCeno6bN2/i7t27iIiIED/PwoULo1KlSqhTpw6cnJwMrt+czpvnJcb+3N6/f4+zZ8/i1q1bSEhIgKurKzw8PNC0aVMULlw4594I5QpeE6KcwI5RRET5yIQJE8T5zIcOHYo1a9aYOCKi7ImOjoanpyeSkpJgY2ODe/fuab27noiIiEgOtpuJiPQ3duxY8Q7+r776CqtWrTJxRERERObDXHIMXR2jiIjMGa8JUU7J+7fXERGRaMKECXBwcAAAbNq0CZGRkSaOiCh7li1bhqSkJADAsGHD2AAmIiIio2C7mYhIP7Gxsfj9998BfBgtaurUqSaOiIiIyLwwxyAiyj5eE6Kcwo5RRET5SJEiRTBhwgQAQHJyMn788UcTR0RkuNevX4t3IDs6OmLy5MkmjoiIiIjyC7abiYj0s3z5cnF6oNGjR8PDw8PEEREREZkX5hhERNnDa0KUk9gxiogonxk/fjzKlSsHAFi5ciUeP35s4oiIDLNgwQLEx8cDAGbNmoVixYqZOCIiIiLKT9huJiKSJzo6Gj/99BMAoESJEhwtioiISAPmGEREhuM1IcpJVqYOgIiIjKtgwYLYvHkzDh06BAAIDw+Hp6eniaMi0o8gCHB1dcWMGTNgbW2NkSNHmjokIiIiymfYbiYikufhw4cYN24cAKBZs2awt7c3cURERETmiTkGEZFheE2IcppCEATB1EEQEREREREREREREREREZHhHj16hLJly4rLJ06cgJ+fn+kCIiIiMgOcSo+IiIiIiIiIiIiIiIiIiIiIiPIdjhhFRERERERERERERERERERERET5DkeMIiIiIiIiIiIiIiIiIiIiIiKifIcdo4iIiIiIiIiIiIiIiIiIiIiIKN9hxygiIiIiIiIiIiIiIiIiIiIiIsp32DGKiIiIiIiIiIiIiIiIiIiIiIjyHXaMIiIiIiIiIiIiIiIiIiIiIiKifIcdo4iIiIiIiIiIiIiIiIiIiIiIKN9hxygiIiIiIiIiIiIiIiIiIiIiIsp32DGKiIiIiIiIiIiIiIiIiIiIiIjyHXaMIiIiIiIiIiIiIiIiIiIiIiKifIcdo4iIiIiIiIiIiIiIiIiIiIiIKN9hxygiIiIiIiIiIiIiIiIiIiIiIsp32DGKiIiIiIiIiIiIiIiIiIiIiIjyHXaMIiIiIiIiIiIiIiIiIiIiIiKifIcdo4iIiIiIiIiIiIiIiIiIiIiIKN+xMnUARNmRlJSEBw8eiMvly5dHwYIFTRgRERERERHlB8w1iIiIiIjI2JhnEBEREeU+doyiPO3Bgwfw8vISl2/cuIFq1aqZMCIiIiIiIsoPmGsQEREREZGxMc8gIiIiyn2cSo+IiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiIiIiIiIiIiIiIiIgo32HHKCIiIiIiIiIiIiIiIiIiIiIiynfYMYqIiIiIiIiIiIiIiIiIiIiIiPIddowiIiIiIiIiIiIiIiIiIiIiIqJ8hx2jiIiIiIiMRKlUYtmyZXj//r2pQyEiIiIionwkMTERy5cvh1KpNHUoRERERESUjzx//hwBAQGmDiNHsWMUEREREZERCIKAUaNG4dtvv0XHjh0hCIKpQyIiIiIionwgJSUF3bt3x5gxYzB69GhTh0NERERERPnEq1ev8Pnnn2PQoEFYuXKlqcPJMewYRURERERkBNOnT8fKlSuhUCgwaNAgKBQKU4dERERERER5XHp6Ovr164eDBw+iUKFC+N///mfqkIiIiIiIKB948+YN2rRpg7CwMHh4eKBt27amDinHsGMUEREREVE2/fTTT5g7dy4AYOXKlfjiiy9MHBEREREREeV1giBgxIgR2L59OwoUKIB///0XDRs2NHVYRERERESUx71//x4dO3ZEcHAwXF1dceTIEZQtW9bUYeUYK1MHQPQxSElJQXBwMJ49e4aXL18iLi4O9vb2cHZ2RuXKlVGzZk0ULFjQ1GF+VBITE3Hq1Ck8ffoUsbGxcHNzQ5kyZdC0aVMUKFAgV2N59+4drly5gtu3b+P169dIS0uDk5MTypQpg7p166Jo0aLZqj8+Ph6XL1/GvXv3EBcXB0EQULhwYVSoUAF16tSBs7Ozkd4JEdHHKSAgAOPGjQMAzJs3D1999ZWJIyKijwXzDPNjTnlGUlISzp07hwcPHuDly5dwcHCAh4cHfHx84OHhka26nzx5ghs3biA8PBzx8fGwsbGBs7MzqlWrBm9vb1hbWxvpXRARfdwmT56MNWvWwMLCAlu2bMHnn39u6pCI6CPBXMP8fCy5BhER5bzU1FT06tULgYGBcHBwwMGDB1G1alVTh5Wj2DGKKIcIgoDt27djw4YNOHXqFN69e6exrJWVFRo3box+/fqhZ8+esLe3z8VIPy4vX77ExIkTsW3bNiQmJmZ53cXFBQMGDMCcOXNQqFChHI3lzp07mDt3Lv7++28kJSVpLOfr64vx48ejffv2etV/8eJFzJ8/H/v27UNaWpraMpaWlmjdujW+//57NGrUSK/6iYgI+PfffzFkyBAAwLhx4/D999+bOCIiyu+YZ5gnc8oznjx5gjlz5mDz5s1q8wwLCws0adIE8+bNk50DJCcn4+DBg9i1axeOHTuGp0+faixbqFAh9OnTB9999x0qVqxo8PsgIvrYLVq0CD/88AMA4LfffkP37t1NHBER5XfMNcxTfs81AKBMmTJ4/Pix3vF8/fXX+OWXX/TejojoY6ZUKjFgwADs2bMHBQsWxJ49e1C3bl1Th5XzBKI87MaNGwIA8XHjxg1ThyQIgiAcPXpUqF69uiQ2uY+iRYsKv/zyi5Cammrqt5HvnD17VihevLis76FixYrCnTt3ciyWNWvWCDY2NnodG/3795d9XMycOVOwsLCQXbdCoRAmTZqUY++XiCg/OnLkiGBtbS0AEAYPHiwolUpTh0RERmSOuQbzDPNkTnnGrl27BAcHB1mxWFhYCFOnTpVVb4kSJfQ+5mxtbYXVq1fn2HslIsrP1qxZI/6eLl682NThEJERmWOeIQjMNczVx5BrCIIgeHp6GnTsff311zn2fomI8iOlUil89dVXAgDByspK2Lt3r6lDyjUcMYrIyFasWIGxY8ciPT1dXKdQKFCjRg00a9YMHh4ecHV1RUJCAqKionD16lUEBgYiOTkZABAdHY2RI0eiUaNGqFWrloneRf5z7949dOzYEa9evRLX1a5dG127dkWxYsXw5MkTbN26Fffv3xfLt23bFhcuXECRIkWMGsu2bdswbNgwCIIgrqtSpQo6duyI8uXLw8rKCs+ePcPRo0dx+vRpscymTZtQoEABrF27Vmv9ixYtwsyZMyXr6tatizZt2qB06dIQBAGPHz/GgQMHcOXKFQCAIAj44Ycf/h979x0eVZX+Afx765SEBJAiNkDsDdcOoq4rQYogSLOgIMq6dv2ha8OCq6uuCq4FRQVRRECQIkUg6OpiQWwri4orIKIgHVKm3Hp+f9yZSyaNSWMS8v08Dw+54d4z7wTLOXPe877IysrCqFGjau/NEhHtpz7//HP07dsXpmmif//+GD9+PCRJynRYRLQf4zqjfqpP64z33nsPl1xyCVzX9b93wgknoF+/fmjbti0ikQg+//xzvPPOOzAMA67r4pFHHkE4HN5rxcPi4uKU64MPPhjnnHMOTjrpJLRs2RKWZeHHH3/ErFmz/GpSsVgM119/PSzLws0331yr75WIaH/29ttv47rrrgMA3HPPPbjjjjsyHBER7e+41qifGstao7RmzZqhefPmad3bsmXLKo1NRNTY3XfffXjxxRchSRImT56MXr16ZTqkfSfDiVlENVLfTlc8/PDDZarwXH755WLt2rWVPldcXCwmTJggDjvsMP/Zb775Zt8E3UicfvrpKX8vTz31VJl7HMcRt9xyS8rf4cCBA2s1juLiYtGqVauUWJ5++ukKq4wsWbJE5OTkpMT08ccfVzj+hg0bRDAY9O/VdV1MnTq1wvsnT54sNE1LuX/dunU1fp9ERPuz//73v6JZs2YCgOjatauIx+OZDomI6kB9WmtwnVF/1Zd1xtatW0XTpk1TYhkzZky564w1a9aIY489NuXeTz/9tNLxc3NzRSAQENdcc02l6xHTNMWDDz6Y8l41TRM//PBDjd8jEVFjsGjRIv9zmuuuu45VaYn2Q/VpnSEE1xr1WWNZawiRWjHqwQcfrNX4iYjI8/jjj/v/rR0/fnymw9nnmBhFDVp9WkQsXrw4pXWZruvi7bffrtIYhmGIBx98UMiyzEVELZoxY0bKPyd/+ctfKr3/wgsvTJm4f/HFF7UWy9tvv50Sy80331zlZ6677roK7/3HP/6Rcu/TTz+91/FLP/PYY49V6T0RETUm69atE23atBEAxJlnnimKiooyHRIR1ZH6stbgOqP+qk/rjL/+9a8pseytbcWvv/6asrlx9tln73X8X3/9Ne147rnnnpR4rr766rSfJSJqrD755BMRDocFADF48GBh23amQyKiOlBf1hlCcK1RnzWmtYYQTIwiIqprL730kv/f2X/84x+ZDicjJCFK9HIiamC+++47nHDCCf71qlWrcPzxx+/zOKLRKNq3b4+tW7f635sxYwYGDBhQrfEWLVqEI488Eh06dNjrvZZl4dNPP8XatWuxdetWhEIhtG7dGmeddRbatWtXrdcvz5dffokff/wRv//+O4QQ6NKlCzp16rTX51zXxaeffop169bh999/h6Zp6NatW8rfW107++yz8emnnwIAQqEQNm7ciGbNmlV4/w8//IDjjjvOvx4yZAgmT55cK7HcfffdeOKJJ/zr7777LuW1yiOEQOvWrbFt2zYAwJlnnonly5eXe++ll16K6dOnAwAURcHOnTuRk5NT6fgFBQU44IAD/FLJgwcPxrRp09J+T0REjcXvv/+OLl26YN26dTjhhBPw0UcfpV3am4ganvqw1uA6o2JcZ6Q66KCD8PvvvwPwWk9s3LgRoVCo0mcefvhhPPjgg/71J598gs6dO9dKPPF4HAceeCAKCgoAeC0uSv5zTEREqVauXInzzjsPu3fvRo8ePTBnzhzoup7psIioDtSHdQbAtUZluNZItS/WGu3atcMvv/wCAHjwwQfx0EMP1TxwIiICAEydOhVXXHEFhBC499578eijj2Y6pMzIYFIWUY3Vl9MVzzzzTEocV155ZZ2/5o4dO8Qtt9xSps1ayV8dO3YUc+bMSWu81157LeXZpBdffFEcfvjhZcYeOnSof0/JVglt27YVQghhWZZ45JFH/KoaJX/ty4z/33//PeXUS7p/N126dPGfadq0qTBNs1biufbaa1N+FoZhpPXcWWed5T9z5JFHVnhf165d/fvatGmTdlwHHnig/1xeXl7azxERNRY7duwQJ554ogAgDj/8cLFp06ZMh0REdaw+rDW4zuA6Ix0//PBDys9hyJAh1Xru//7v/2ocS0k9e/ZMGb+wsLBWxyci2l/89NNPonXr1n5VjUgkkumQiKgO1Yd1hhBca3CtkZ59tdZgxSgioroxb948oaqqACBuuOGGRt2qWwYR1YjruhgzZox/LUlSnWezr1ixAkcffTSeffZZFBYWVnjft99+i759++Kyyy6DZVlVeg3bttGvXz9cf/31WLduXZWeLSwsxLnnnotRo0b5JwkqM2zYMEiS5P/68MMPq/R6lXnvvffguq5/3a1bt7Sey8vL87/evXs3Pvnkk1qJp3RlkUgkktZzJe9r1apVWuOnO3ZVxiciaowikQh69eqF//73v2jTpg3y8/PRpk2bTIdFlLbvvvsOU6dOxdNPP41nnnkGM2bMwM8//5yxeIqKirB48WK89tpreOyxx/CPf/wDEydOxLJly6o0f9nfcZ1RFtcZ5Sv97/NJJ52U1nNHH300AoGAf/3uu+/WOJaSsrOzU6757zcRUVkbN25EXl4etmzZgo4dO2L+/PkIh8OZDouI9nNca5TFtUb56utag4iI9u7DDz/EwIEDYds2hgwZgueeew6SJGU6rIxRMx0AUUP33//+Fxs2bPCv8/LycPjhh9fZ633zzTe44IILUFxc7H/viCOOwIABA3D44YejuLgYn3/+OebMmQPDMAAA06ZNQzwex+zZs9N+nTvuuANz5swBAJxwwgno3bs32rVrB9M08cMPP6RMaksbNmwYPvvsMwBe27cePXrg4IMPRiQSwX/+8x9kZWVV451Xz7fffptyfdZZZ6X1XOmyritXrsQf//jHGsdTetz3339/r+WJN2/ejO+//96/Pvfccysd/+233wbgLea+/PJLnHbaaZWO/8UXX6CoqCit8YmIGhvDMNCvXz8sX74czZo1w5IlS+r0//NEtWnmzJn429/+hpUrV5b75507d8ajjz5aK3OcdCxfvhyPPfYYlixZgng8Xu49iqLgrLPOwqOPPorzzjtvn8RVX3GdURbXGeXbtWtXynVlLTZKkiQJubm5fvuUtWvXori4uExCU3WV3ESRZRktW7aslXGJiPYXO3bsQLdu3bB+/XocccQRWLx4MZo2bZrpsIioEeBaoyyuNcpXX9caRERUuS+++AK9e/dGPB5Hnz59MHHiRMhy466ZxMQoohr66KOPUq4vuOCCOnstwzAwZMiQlAXEqFGj8OCDD0JVU/91Xr16Nfr164fVq1cDAObMmYOXXnoJf/nLX9J6rX/+859QVRXjxo3Dtddem3YG6S+//IJffvkF2dnZmDJlCvr06ZPmu6sbP/zwg/+1oiho3759Ws+V7oVeMjGpJnr16oX27dv7mwSjRo3CBRdcUOGCwnVd3HzzzXAcBwCQlZWF66+/vsLxr7zySjz44IMoKCgAAPzf//0f8vPzK1z0xeNx3Hbbbf71QQcdhCuuuKI6b42IaL/jOA6GDBmC/Px8ZGVlYeHChTjhhBMyHRbRXjmOg2uvvRaTJk2q9L5PP/0UF1xwAe677z48/PDDdRZPcr7x8ssvQwhR6b2O4+CTTz7BF1980egTo7jOSMV1RsVCoVDKdSwWS/vZkvcKIfDDDz/g9NNPr3FMGzZswFdffeVfn3HGGVAUpcbjEhHtL4qKitCzZ098//33OPjgg7F06VK0bt0602ERUSPBtUYqrjUqlom1xuLFi/HJJ59g1apV2LlzJ4LBIA444ACceOKJOO+88zBkyBB2vSAiqsR3332H7t27o7i4GOeffz6mT58OTdMyHVbGNe60MKJasGLFipTrM844o85ea8KECSmT2VtvvRV/+9vfyiwgAOCYY47BkiVLcMABB/jfu++++yo8nV+e5557DiNGjKhWWb0ZM2ZkfAEBIKVk7kEHHZT2h/GHHHJISuZsVUvvVkRVVUyePNlfUPz44484/fTT8fbbb6e0lrBtGx999BEuuOACzJw5E4B3yvrVV1/FoYceWuH4zZs3x6uvvurHvmzZMnTu3Bnvvfeef9oG8DYoFyxYgE6dOuHTTz8F4C1ypk6duk9PvxAR1VdCCFx33XWYOXMmdF3HnDlz0j6hR5Rpt99+e0pSVDgcxogRI/DCCy9g7NixuPTSS/3FsOu6+Nvf/oaxY8fWSSzxeBx9+/bF+PHj/aSoJk2aoH///vj73/+OV199FS+++CJGjRqFnj17ch5SAtcZ5eM6o6zSlZjSbZW5ffv2lMqxgHeSuzY89dRTKe0/Bg0aVCvjEhHtD5LzoxUrVuCAAw5Afn4+2rZtm+mwiKgR4VqjfFxrlJWJtcby5cuxdOlSbN68GaZporCwED///DPeffddjBw5Em3btsXIkSNT9juIiMizbt065OXlYefOnTjjjDMwd+5cBIPBTIdVL7BiFFENbdmyJeU63ez96hg3bpz/dZs2bfDoo49Wev+hhx6K0aNH46abbgIA7Ny5E9OmTcOwYcP2+lonn3wyrrvuumrF2adPH3Tv3r1az9a2kv3KmzdvnvZzmqYhKyvLn7yXnsTXxNlnn40PPvgAQ4cOxf/+9z+sXbsWgwcPhqIoaN26NRRFwdatW1Mm9kcddRReeOEFdO3ada/jDxgwAHPnzsV1112HTZs24euvv0bPnj2h67p/kmLLli0pPdpPO+00jB8/HqecckqtvU8iooZKCIG//vWvmDBhAmRZxtSpU9P67y9RfbBgwQI899xz/vVxxx2HRYsWlUms/vbbb9GzZ09s2rQJgNdyoGvXrjjxxBNrNZ6rrroKixcvBuCV0r/tttvw0EMPIScnp9z7DcPAvHnzWF4fXGeUh+uM8nXs2BGqqsK2bQDA0qVL03quvPtKvq/q+vjjj/HCCy/41wcddBBGjBhR43GJiPYHtm3jsssuwwcffIDs7GwsWrQIxx57bKbDIqJGhmuNsrjWKF+m1hqhUMh/79u3by9z6HvMmDH417/+hcWLF7NlNxFRwqZNm9C1a1f8/vvvOOGEE/Dee++hSZMmmQ6r3mDFKKIa2rFjR8p106ZN6+R1fv75Z3z33Xf+9dChQ9M6UT9s2LCU++bPn5/W6w0dOrRapyoA4Oqrr67S/ZMmTYIQwv9V077XJZUs0VvVjNiSZWJLjlMbzjrrLHz//fcYO3asv/HnOA42bdqEX3/91Z/oS5KE4cOHY8WKFVXalL/ooouwdu1a3HvvvdB1HQBgmiZ+++03/Pbbb35SlKqq+Otf/4qPP/6YSVFERAlPPPEEnnrqKQDAK6+8gksuuSTDERGlx3Vd3HPPPf51OBzGvHnzyq022bFjR8yYMcM/Teq6Lu69995ajeftt9/GjBkz/OsXX3wRY8aMqTApCgACgQAGDBhQbz6QziSuM8riOqN8TZo0QadOnfzr//73v35CYkUcx8HTTz9d5vs13Tz5/fffMXjw4JRqUS+88AKTHYmI4M23RowYgTlz5iAQCODdd9/FaaedlumwiKgR4lqjLK41yrev1hqKoqBXr1549dVXsWbNGkQiEX8vIxKJ4Msvv8SNN97o73UAwDfffIOLL76YlaOIiOD9vz0vLw8///wzDj/8cCxZsqRKybWNAROjiGqo9GSurj7wXb58ecp1jx490nouKysrZVJeepyKdO7cOe3YavPZ2layzG7JSXM6AoGA/3VVemenY/Xq1ejduzduv/32ShcoQghMnDgRhx9+OJ599lm/Bc3eLF++HBdccAH+/ve/wzTNCu+zbRv/+Mc/0KFDB0ybNq3K74OIaH8zfvx4P7HkqaeewvDhwzMcEVH63n//ffz3v//1r2+55RYcfvjhFd7fuXNnDBw40L+eP38+1qxZUyuxGIaBW2+91b++9NJLq31yt7HiOqN2n61t9W2dcfvtt6dcX3PNNZW2qrjjjjvw5Zdflvl+TeIpLi5G7969/Up0AHDTTTehb9++1R6TiGh/IYTAyJEjMWnSJCiKgunTp+P888/PdFhE1EhxrVG7z9a2xrjWWL58OebPn49rrrkGHTp0SElwUxQFp556Kp5//nl88sknflcMAPjss8/w7LPPVuXtEBHtdwoLC9G9e3d8//33OOigg7B06VK0adMm02HVO0yMIqqh0iXoaruyUNL//ve/lOuOHTum/exJJ53kf71x40ZEo9G9PnPEEUekH1wJTZo0SZmYZlrJExWVJQiVp+RJg5InLWpq0aJFOOWUU/Dee+8BAJo1a4aHH34Y//nPf1BUVIR4PI61a9fi5ZdfxtFHHw3AKxl86623Yvjw4XtNjpo4cSK6dOmCTz/9FABw8MEHY+zYsfjhhx8QjUYRjUbxww8/YOzYsTj44IMBeP9cXHbZZXjwwQdr7X0SETU006dPx/XXXw8AuPfeezFy5MgMR0RUNbNnz065vvbaa/f6TOn2VnPmzKmVWGbOnInNmzcD8CpgPvbYY7UybmPCdUYqrjMq17dvX/Ts2dO/3rhxI04//XQ88cQT+Omnn2AYBnbt2oVFixYhLy8PzzzzDICy/5xVt8R6PB7HxRdfjK+++sr/Xs+ePTF27NhqjUdEtL955JFH/P/2Tpw4ERdffHFmAyKqonbt2kGSpBr9qq2KOuvXr692DDNnzqyVGBo6rjVSca1RuX2x1ki3Hd5pp52GOXPmpCROPf74436HDCKixiYWi6FPnz748ssvccABByA/P79OW+Q2ZEyMIqqhAw44IOV69+7ddfI6u3bt8r/WdR25ublpP9u6desKx6pIZS1O6uK5ulLytEvJkxbpKHmCobZOzaxZswYDBgzwxz7iiCPw7bff4v7770fHjh2RnZ2NQCCAww8/HCNGjMA333yDPn36+M9PmjQJzz//fIXjf/zxxxgxYgQcxwHgtexbuXIlbrvtNhxzzDEIhUIIhUI45phjcNttt2HlypU488wz/ecffvhhzJs3r1beKxFRQ/Lee+9hyJAhEELg+uuvxyOPPJLpkIiqbMGCBf7XHTp0QIcOHfb6zDnnnJPyoWu6LQr25pVXXkl5jXbt2tXKuI0J1xm181xdqW/rDEmSMHnyZJx66qn+93bt2oW7774bRx11FILBIJo3b44ePXpg6dKlAIATTjgBd999d8o4zZo1q/JrW5aFgQMH4oMPPvC/d/7552PmzJlQVbWa74iIaP/x/PPP44EHHgAA/POf/8RVV12V4YiIMqOu2rVR1XGtUTvP1RWuNSrXqVOnlOrXO3fuxCeffFIrYxMRNSSWZWHQoEH46KOP0KRJEyxevBjHHXdcpsOqt5gYRVRDpSfo69evr5PXKXlqIxwOV+nZ0n270zkBUt0PsOvbB98lFzXpLJ6SLMtCJBLxr6t7crq0UaNG+eNKkoRp06bh0EMPrfD+UCiEt956CwceeKD/vYcffrjCBdEdd9wB13X9Z2fOnFlpD9nmzZvjnXfeSTk9cu+991bpPRERNXQff/wx+vfvD9u2cdlll+H5559POXlG1BDs3r0bGzZs8K/POuustJ7TdT3lw82VK1fWOJZYLJbyoSTbxFQP1xm181xdqW/rDMCb2//73//G9ddfD03TKr134MCB+PDDD8v8/65FixZVek3btnHppZemJFV26dIF8+bNq9Wqu0REDdWUKVNw8803AwAeeugh3HLLLRmOiKh62rVr5x++SPdX6bnAZZddViexHXTQQWnHVFct4xoarjVq57m6wrXG3l1yySUp15999lmtjU1E1BA4joOhQ4di/vz5CAaDmD9/fspnvFRW/fq/PVEDdMYZZ2DKlCn+9YoVK3DeeefV+uuUXLSlUza2pJKT4dJj7e/at2+PNWvWAAA2bdoEx3GgKMpen/vtt9/8BCMAOPzww2scSzweT2lP06lTp7T+J5WVlYXhw4fj73//OwBg+/btWLZsGfLy8lLuW79+PT7//HP/ul+/fn6rvMocfPDB6NevH9566y0AwKpVq/DTTz/hyCOPTOdtERE1aP/5z39w0UUXIRaLoWfPnnj99dchyzw7QA3PDz/8kHJdlRYCHTp08BOZdu3ahc2bN6ckZVfV119/Ddu2/etkC4SioiJMmTIF06ZNw08//YTt27ejWbNmaNu2Lf70pz/hyiuv5KmmErjOqN/q0zqjpHA4jHHjxuGuu+7CrFmz8O9//xsbN25EJBLBgQceiJNOOglXXHEFTjvtNADAr7/+mvL8H/7wh7Rfy3EcDBkyBLNmzfK/d+aZZ2LBggVlNrKIiBqjefPmYejQoQCAW265xa8aRdQQffjhh1W63zAMHHzwwX71mgMOOAD9+vWrg8i8BMTaatPXWHCtUb9xrbF3Rx99dMr11q1ba21sIqL6TgiBm266CVOnToWqqnjnnXdw7rnnZjqseo+7PkQ1VHrB8P7779fJ65QsM2qaJgoKCtJ+tvSksLZKljYEJTfXbNtO+/TL2rVrKxynun788ceUHt/JBUI6St/73Xfflbnn22+/rfSZmo5PRFXjugIRw8bOiIntxQa2FRnYXmxgZ8RExLDhuiLTITZ6P/30Ey688EIUFBTgnHPOwYwZM/Z66o2ovlq3bl3K9WGHHZb2s6XvLT1WVf3nP/9JuT7kkEPwr3/9C8cffzyuv/56fPTRR9i0aRNM08SWLVuwYsUKPP744zjxxBNx7bXXppT+b8y4zqjf6tM6ozxt27bF7bffjtmzZ2PFihX47rvv8P7772Ps2LEpc/+SVeIOOeQQtGnTJq3xXdfFsGHDMH36dP97p5xyChYtWlTvWpEQEWXCRx99hEGDBsFxHFx11VUYO3Ysq9JSozJnzhzs2LHDv77yyiuh63oGI6KSuNao3xr7WiMdpSvSVTXxjoioIbv33nvx0ksvQZIkvPnmm+jZs2emQ2oQmBhFVEMnnnhiymZSfn5+nZSePeqoo1KuSyfBVKbkBPTggw+uctnahqxjx44p1+mWVP30009Trk888cQax1KTUy6lT1yXt2FY1+MTUXosx0VB1ML2YgPFhg3LceG4Aq4QcFwBy3FRbNjYXmygIGrBcty9D0q17rfffkPXrl2xdetWnHzyyZg3b16j+v8j7X8KCwtTritrpVta6Q+Yi4qKahTLtm3bUq6/+OILdO/e3T8tKkkSWrZsiTZt2qScenVdFxMmTMAf//jHtNokVMXWrVvx3XffVelX8oRupnCdUb/Vp3VGdRUWFuKrr77yr7t27ZrWc0IIXHvttXjzzTf973Xs2BH5+flo2rRpbYdJRNTgfPXVV+jduzfi8Tj69OmDCRMmsCotNTqvvvpqyvU111yToUioPFxr1G+Nea2Rri1btqRc12abPiKi+uzxxx/H448/DgAYP348Bg8enOGIGg6uyIhqSJZl/N///Z9/7bouRo8eXeuvc9ZZZ6Vcv/fee2k9F41GU0odlx5nf9ejR4+UE3lLlixJ67n8/Hz/66ZNm6JLly41jqX0puPmzZvTfvb3339PuT7ggAP2+fhEtHfFiQpRcduBAGDaLgrjFnZHTeyKmNgdNVEYt2DaLgSAuO1gZ8REsWHvbWiqRdu3b0deXh42bNiAo446CosXL0Zubm6mwyKqkdKJRMFgMO1nS5+0rGlS0u7du1Oub7/9dpimiUAggIceeggbN27E1q1bsWnTJuzYsQPjxo1LSeRasWIF/vznP9cohtLGjRuHE044oUq/+vbtW6sxVBXXGfVbfVpnVNfMmTMRj8f963T+vRNC4C9/+Qtee+01/3vHH388li5dWqWETCKi/dXq1avRvXt3FBUV4fzzz8f06dOhqmqmwyLap9avX59SgejMM8/ECSeckMGIqDSuNeq3xrrWqIqPP/445bp9+/a1Oj4RUX300ksv4Z577gEAPPnkkxgxYkSGI2pYmBhFVAtGjBiBVq1a+deTJk3CnDlzqj3eokWLypQ9bd++PY4//nj/+o033kirPOjrr7+esrl10UUXVTuuhujAAw9MWTjNnDkTu3btqvSZ1atXp0yse/XqVSutlQ477LCUcd5///2Unt+VKb34KX3aBgCOOOKIlOuSC6HaGJ+IKlcQsxBJJDjFTQe7IiYKYhYMy4XlCNiugOUIGJaLgpiFXRETcdMBAEQMG4VxK5PhNxqFhYXo0aMHVq9ejUMOOQRLlixJ+X84UUNV8gNHAFVqUxEIBFKua1o5snRilWVZ0DQNCxcuxIMPPphSPj83NxfXX389Pv7445TE7KlTp2L58uU1imN/wHVG/VWf1hnVEY1G8fDDD/vXp5xyCjp16rTX52699Va8/PLL/vWxxx6LDz74gCe0iYgAbNiwAXl5edi+fTtOO+00zJ07t0rJ6kT7i4kTJ0II4V9fe+21GYyGKsK1Rv3VWNca6TJNE+PHj0/5Xl5eXq2NT0RUH7311lu44YYbAAD33Xcf7rjjjgxH1PAwMYqoFoTDYUyePDmlLPall16KWbNmVWkc0zTx0EMPoVevXuW2MEn+Bw8ANm3ahAceeKDS8X777beUe5o3b45LL720SjHtC8OGDYMkSf6vkqdBasNtt93mfx2LxXDfffdVev/tt9+ecn3rrbdWen+68WdlZeGcc87xr3/55ZcyE/jyfPXVV5g+fbp/nZ2djc6dO5e578gjj8Thhx/uXy9btiytUzhz585NKbN71FFHoV27dnt9joj2KDZsxC0vyakwbqHIsGG7ApIEBDUZTYIqckMamgRVBDUZkgTYrkBRiYSomOns08pRrisQSVS42l5sYFuRge3FBnZGTEQMG64r9j5IAxOPx3HxxRfjyy+/RIsWLZCfn4+2bdtmOiyiWlF60800zbSfNQwj5bp0BamaxgIAI0eOxJ/+9KcKnzn22GMxZsyYlO/985//rFEc+wOuM2qmsawzqspxHFx77bX45ZdfAHgVA8aNG7fX5+68804899xz/vXRRx+NDz74gAnGRETw2vbm5eXht99+w7HHHov33nsPTZo0yXRYRPuc67qYNGmSf52VlcUWL/UU1xo1w7VG+aqz1qjq4aybbroJGzZs8K//+Mc/8vM9ItqvzZs3D1dddRWEELjxxhvxt7/9LdMhNUhMjCKqJd26dcNDDz3kXxuGgYEDB+Kqq67Czz//XOmzkUgEEydOxFFHHYXRo0dXWEXommuuSTlh8fTTT2P06NFwHKfMvT/++CMuvPBCbN++3f/e3//+90Z5Um3gwIE49dRT/euXXnqpzMYb4C3cb7vtNixatMj/Xv/+/XH66afXWiwlSxQD3gLl1VdfTTlFVdJHH32EXr16pfwd33LLLRVWgSg9/mWXXYZ33323wnjeeecdDBkyJOV7zDImqhrLcf1KUYVxr0IUAIR1Bc2zdDQJaghqCnRVRlBT0CSooXmWjrCuAAAMy/WToyKGDctJr5JcTeItiFrYXmygOPF6jivgCgHHFbAcF8WGje3FBgqiVp3Hs6/Yto3Bgwfjww8/RJMmTbBo0SIcc8wxmQ6LqNZkZ2enXJeuIFWZ0h9Clh6rqkpvAkqShFtuuWWvz11++eVo3bq1f12y/UZN3XDDDVi1alWVftXktHRt4jqj/qpP6wwAePPNN7F48eJy/96Sfv75Z/Tu3RtTp071v3fHHXfgzDPPrHTs+++/H0899ZR/feSRR+KDDz7AgQceWPPAiYgauIKCAnTv3h3/+9//0LZtWyxZsoSV9KjRWrJkCX799Vf/evDgwXWeJPjMM8/gzDPPRIsWLaBpGlq0aIFjjz0WQ4cOxeTJk8scBKE9uNaovxrTWuPwww/Hk08+id9//73S+zZt2oQBAwbglVde8b+nKAqeeOKJNN8FEVHD8+GHH2LgwIFwHAdDhgzBs88+m9JuldLHBudEtej+++9HTk4ORo4cCcdx4LouJk+ejDfffBMnn3wy/vjHP+Kggw7CAQccgMLCQmzZsgVff/01Pvzww7QWaIFAAJMnT8a5557rl5J96KGHMGXKFAwcOBDt27dHJBLB8uXLMWfOnJQNsb59++K6666rs/den0mShClTpqBTp07YtWsXhBAYOXIk3nrrLVxyySVo3bo1NmzYgKlTp+Knn37yn2vfvn1aJ6erolevXrjiiiswZcoUAF5rmREjRmDMmDHo3bs3OnToAFVVsXHjRixduhT//ve/U54/6aSTcPfdd1c4/p///GfMmDEDH330EQDvw7mLL74Yp512Gnr06IHDDjsMgFetauHChfj6669Tnu/atSuGDx9em2+ZaL8XNbwPBOKm4ydF5YRUBFSlwmdkSUJWQIWqSCiM2TAsF3HFQVBTEDUc5IbrJne92LD9JC4AMG0XcduB6woIAUgSIMsSgqqXyBW3HcRtB1kBFdmBhjttdF0Xw4cPx7vvvotAIIB58+alfLhEtD/IyclJud5bmf2Sdu/enXJd042L0rEcc8wxKe3zKqKqKrp06YJ33nkHALBt2zb8+uuvOPTQQ2sUDwC0atWqQVe14TqjfqpP6wwA+PjjjzF+/Hg0b94cf/rTn9CxY0c/2XDz5s1YtmwZPvzwQ1jWnva9V199NR577LFKx/3111/xyCOPpHxv9+7dOPfcc6sU35QpU/a6KUJE1NBEo1H07t0b33zzDVq1aoX8/HwccsghmQ6LKGNeffXVlOt90UZv7ty5Kdc7duzAjh07sHr1arzxxhu488478cgjj9RJLFu3bsW2bduq9MyaNWtqPY6a4Fqjfmosa43k83/9619x99134/TTT8cf/vAHHHHEEWjatCkAYMuWLVi+fDkWL15cpjr2Cy+8gDPOOKP23igRUT3yxRdfoHfv3jAMAxdffDFee+21lEqPVDUNd4eLqJ669dZbcfzxx+P222/HqlWrAABCCHzzzTf45ptv9vp8mzZtMHr0aJx44onl/vkf/vAHvP/+++jVq5d/cuKnn37C3//+9wrHvPTSS/HGG29U493sP44++mi8++676N+/P7Zu3QrAa1H31VdflXt/hw4dMH/+/DrZQHvttdegaVpKWekffvgBP/zwQ6XPderUCe+8806lm5WapuHdd9/FpZdemtJG78svv8SXX35Z6fgXXXQR3nrrLShKxckcRJTKdQUM20uMiiVa6YV1pdKkqJICqoKwLhA1HcRMLzHKsB24rgpZrt2s/4KY5bf7i5sOYpYDu7x2eY6AYblQZQkhTUFQV7zWekIgJ6jVakz7ghACt912GyZPngxFUTBjxgycd955mQ6LqNa1b98+5bpkWfm9SZa4TyrZmrc6Sj+fTMxOR+ny99u3b6+VxKj9AdcZ9VN9Wmck7dy5EzNnzsTMmTMrvEfTNNx1110YPXr0Xj9UK+9U+LZt26q8CVjVFhlERPWdZVkYOHAgli1bhtzcXCxevBhHHnlkpsMiypht27alVK4/7rjj0KlTp33y2jk5OWjatCni8Th27NiRMn/ZsmULRowYgWXLltX6huK4ceMwevToWhsvU7jWqJ8aw1qjJNd18fnnn+Pzzz/f6725ubkYN24cLr/88rTHJyJqSL777jt0794dxcXF+NOf/oRp06ZBVZnaUxNMKSOqA127dsXKlSsxdepUXHjhhQiHw5Xer2kaLrjgArz++utYu3YtRowYUWlyyhlnnIEff/wRt9xyS5kT+SWddNJJmDVrFqZOnQpNa3ib2bWtS5cuWLVqFYYNG1bh30mzZs1w++2349tvv62zFkuapuG1117DokWL0K1bt72WPDzppJPw0ksvYdmyZWlVW8jJycHChQsxderUtD586Ny5M6ZNm4Z58+bVeWlrov1NzHIg4FVesl0BSQJCetWSC0O6AkkCbFfAtF0I7Emyqi3Fhu0nRRXGLRQZth9vUJPRJKgiN6ShSVBFUJP9eIoM22/zFzMdFJeoNtVQPPzww3juuecAAJMmTULv3r0zHBFR3TjuuONSrqtyCnnt2rX+182aNatxa6ySbRIAVKntQel7q9ISsDHgOqN+qi/rjAsuuACdO3eu9O8kOzsbl156Kb799lv87W9/40lDIqJqcl0XQ4cOxcKFCxEKhTB//nycfPLJmQ6LKKPeeOONlGox11xzTZ29VnZ2NoYPH445c+Zg8+bNKCgowC+//IItW7agsLAQixcvRq9evcrEd8cdd9RZTA0d1xr1U2NYa4wcORKnnnpqWhv+Bx10EO677z788MMPTIoiov3WunXrkJeXh507d+LMM8/EnDlzGmVb2domCSHKKRVA1DB89913OOGEE/zrVatWldmIqQ9M08SKFSvw22+/Yfv27SgoKEB2djaaNWuGo48+GieffDICgUC1xrYsC5988gnWrFmD7du3IxgMonXr1ujUqRPatWtXu29kPxKJRPDRRx9hw4YN2LVrF1q2bIl27drh3HPPha7r+zSWgoICfPHFF1i7di12794Nx3GQm5uLgw8+GKeffjoOPvjgGo2/bds2fPHFF/jll19QUFAAwDtR0bZtW5x++ulo2bJlbbwNokZpZ8SE5bgojFswLDeRZFT1D20KYxYM20VAk5ET1KApMppn1c5/iyzHxc6IV2Y6GSfgVbYK6QrkcpIzXSEQMx1ETS+ZKhkXADTP0qEpDWMT9dlnn8Wtt94KAHjuuedw0003ZTgiorrVtm1bv1JUhw4d0kqOMk0Tubm5fgLSueee67fkrS7LspCbm+tXhznnnHPKtAeuyPXXX4+XXnrJv/7xxx9x1FFH1Sie6moIaw2uM+qf+rDOKC4uxooVK7BmzRrs3LkTAHDggQfi0EMPxdlnn80P04iIakgIgZtuugnjxo2Dqqp499130aNHj0yHRZRxxx13nF8RX9d1bNy4ES1atKj11zEMA4ZhVJpckzRp0iRcc801cF3X/97nn39ea623HnrooRpXjKqP6wyAa436aH9faxiGge+++w7r1q3Dpk2b/NaLubm5aNmyJU499VR06NChVt4HEVF9tXHjRpxzzjn4+eefccIJJ+Cjjz5C8+bNMx3WfoGJUdSgNYTNCiIi2n9tLzbguAK7oyYsRyQqLlW9HWXcclAUt6EpEpqGdSiyhBbZ1ftwqbSCqIW47SBuOihKVHzKCalptfszbAeFMe+Z5HsLqgpyw/X/xN4bb7yBoUOHAvCqRt1///0Zjoio7pVOKlq7du1e2+K9//776Nq1q3/9j3/8A3feeWeNY+nXrx/mzJkDwPsQc+fOnWmdFj3rrLP8svmapmH37t17PalcV7jWICIiovKMGjUKjz76KCRJwtSpUzF48OBMh0SUcZ999hk6d+7sXw8cOBBvv/12BiPa44knnsDdd9/tX1900UWYN29erYy9devWKrcXXrNmDfr27etfc51BREREALB9+3acd955+P7779GhQ4e0OwlRetiIkIiIiKiakunlyd/Lq76UjuRjpcerKdcVMGyv6lOyPV9YV9JKigKAgKogrAtETQcx00FQU2DYDlxXhSxX773uC3PnzsXw4cMBALfddhtGjRqV4YiI9o1+/fqlJEa98soreOyxxyp95pVXXkm5LvkBfU0MGDDAT4wqKCjAkiVL0L1790qf+fnnn/HFF1/412eddVbGkqKIiIiIyvP000/j0UcfBQC8+OKLTIoiSnj11VdTrq+99toMRVLW7bffjueffx6//fYbAGDp0qWIxWIIhUI1HrtVq1Zo1apVjcchIiKixq2wsBA9evTA999/j4MPPhhLly5lUlQtaxh9UIiIiIjqoWRCU/J3t5oZTcnHSo9XUzHLgQBg2i5sV0CSgJBetYpWIV2BJAG2K2DaLgT2JFnVR//6178wePBgOI6DoUOH4umnn4ZUWz9Qonqua9euKRWOnnvuOfz8888V3v/pp59ixowZ/nWvXr1w5JFHlnvv+vXrIUmS/+uPf/xjpbEMGDAAbdu29a/vvvtumKZZ6TMjR45MaXGRrPpGREREVB9MnDgRd9xxBwDgsccew3XXXZfhiIjqh+Li4pTqUG3btk2pSptpuq7joosu8q/j8Tj+85//ZC4gIiIiohJisRj69OmDL7/8Ei1atEB+fj5by9YBJkYRERERVVOyQlSyepLluJXdXiHTdlPGqW7lqdKMxLjxRNWogCpXeWxZkqArcso4yXHrmy+//BJ9+vSBYRjo27cvXn311bRadxHtL2RZxt///nf/OhKJoHfv3vj111/L3Lty5UoMGjTIT0SSZdmvflAbAoFAynjffvstLrnkEuzatavMvYZh4MYbb8Ts2bP97x111FG46qqrai0eIiIiopqYNWsWRowYAQC48847cdddd2U4IqL6Y9q0aSguLvavr7766nq3Fj/66KNTrrdu3ZqhSIiIiIj2sCwLAwcOxEcffYScnBwsXrwYxx57bKbD2i+xlR4RERFRNQVUGZbjIqgqMCwXhu0iS4gqJR+5QsBMJFQFEy3uAmrtfICYrGDlut7vmlK9cXVVhmG7/jjVrYxVl3744Qd0794dxcXF+NOf/oSpU6dCVTnVpcand+/euOGGGzBu3DgAwHfffYdjjz0WV1xxBU4++WRYloXly5dj5syZsCzLf+6JJ55Ax44dazWWK664Av/6178wYcIEAMCCBQtwxBFHYNCgQTjppJOgqip++uknvP322/jll1/857KzszFr1ixomlar8RARERFVx9KlS3HZZZfBdV1ce+21eOKJJ1iVlqiE5Hwf8A5cJFvb1yel2+ZFo9EMRUJERETkcRwHV111FRYsWIBgMIj58+fjlFNOyXRY+y3uFhERERFVU0hTEDFs6KoMVZZguwIx00FWIP0pVsx0IASgyhJ0VYaUGLc2JPOXkr9XtxJV8rHS49UX69evR15eHnbs2IHTTz8dc+bMQTAYzHRYRBnz7LPPoqioCJMnTwbgVY56+eWXy71XkiTcfffdfluY2vbSSy/Btm28/vrrAICdO3fipZdeqvD+gw46CHPmzMHxxx9fJ/EQERERVcXy5cvRt29fmKaJgQMH4qWXXmJSFFEJ3333HZYvX+5fd+vWDYceemgGIyrfli1bUq5btGiRoUiIiIiIACEEbrzxRkybNg2qqmLWrFk455xzMh3Wfq1+1TOleuvbb7+FpmmQJMn/9cc//jHTYREREWWULEsIJKo8JZOZoqYDI9Fybm8M20HU9O4N6d7zmiIjZjnYGTGxvdjAtiID24sN7IyYiBi2X7UpHcnP65O/V7fSU/Kx0uPVB1u2bEFeXh42btyI4447Du+99x6aNGmS6bCIMkpRFLzxxhuYPn06TjjhhArvO+uss7B06dKU9nu1TVVVTJo0CXPnzsWpp55a4X05OTm48847sXLlSpx++ul1Fg8RERFRulatWoWePXsiEomgW7dumDx5MhSldg6xEO0vSlaLAoBrrrkmQ5FU7uOPP065bt++fYYiISIiIgLuuecejB8/HpIkYcqUKejRo0emQ9rvsWIU7ZXjOLj22mth23amQyEiIqp3wgEFcdtBUFdgui4My0VhzEZYFwjpSrlVmlzhVZZKJkUFNBmKLKEwZiFLV2A6pXLXBeBAwHJcRAwbAVVBOKDstTWeLElwICDLEuB4zwerUY3KtL1Wf7Is+ePWB7t378aFF16INWvWoG3btliyZAkOOOCATIdFVG8MGjQIgwYNwqpVq7By5Ups2rQJiqLgoIMOwumnn47DDz887bHatWsHUYNycX369EGfPn2wdu1afPXVV9i0aRPi8ThatGiBY445BmeddRbbXxIREVG9sW7dOnTr1g27du1Cp06dMGvWLAQCgUyHRVSvmKbpV6kFgJYtW+Liiy/OYETl+/777/H+++/71+3bt8cRRxyRwYiIiIioMXv88cfxxBNPAABefvllDBo0KMMRNQ785Jn2auzYsfjyyy8zHQYREVG9pCkysgIqIoaNnKCGQlgwLBdR00HMcqArstciT/IqL5m2C9Nx/SpMAU2GIknYHbUQ1hUoigzTdhG3HbiugBBehSZZlhBUFeiqjLjtIG57LfuyK2nbF1BlLxlKVWBYLgzbRZYQVUpscoWA6XiJUcFEdayAmvmio9FoFBdddBG+/fZbtG7dGkuXLsXBBx+c6bCI6qUTTjih0spR+1KHDh3QoUOHTIdBREREVKHff/8deXl5+P3333HiiSdiwYIFyMrKynRYRPXO3LlzsX37dv/6qquugqZp1RqrZIvKtm3bYv369eXeF4/HEQgE0m5pWVxcjCFDhsB1Xf97Q4cOrVaMRERERDX14osv4p577gEAPPXUU7j22mszHFHjkfldLarX1q1bhwcffBCAd+KDVRiIiIjKyg6ofiWmnKCGJkEVqixBCMCwXRTFbRTGbBTFbRi2lxSlyhKaBL2kpqjpIKQpUCQJuyImCmJecpXlCNiugOUIGJaLgpiFXRET8USlqYhhozBuVRhXSFMgAdBV2Y8nZqbX5i8pZjp+vLoqQ8KetoGZYpom+vfvj08++QRNmzbFkiVLMn7a03UFIoZdKy0QiYiIiIgoM3bu3Ilu3bph3bp16NChAxYvXoxmzZplOiyieql0G719sbG3fPly/OEPf8Bbb72FSCRS6b1fffUVOnXqhG+++cb/Xps2bTBy5Mi6DpOIiIiojClTpuDGG28EAIwaNYpzkn2MFaOoUn/+858RjUYBAGPGjMGoUaOwY8eODEdFRERU/+SGNCiyhIhhI6gpCGrKXis/RQwbhuUirCtwhECR4SUtSZJXlUlTZMiSBFd4bfAM24XtChQZNkzXRU5QQ8x0IEtSuZWjZFlCQPVa/YU0BUWGjajpQFW87++NYe9p9xfSk9WiFL+lXiY4joOrrroKixYtQigUwoIFC3DSSSdlLB7LcRE1HBi2gzKpT9VsgUhERERERPtecXExevXqhVWrVqFNmzbIz89HmzZtMh0WUb20YcMG5Ofn+9edO3fGMcccs09e+9tvv8UVV1yBcDiMs88+Gx07dsQhhxyCnJwcGIaBX3/9FR9++CE+/fTTlOeys7Px7rvvIjs7e5/ESURERJQ0b948DB06FEII3HTTTXj44YczHVKjw8QoqtDEiRP93ttdu3bFkCFDMGrUqAxHRUREVH9lB1QEVNlPlNFVr41eeWzHheMKNAtriFoODMsr6x7WFYR0pUy7u6CmIEsIxEwvWcmwXBTCQk5QSyTdyOUm3IQDXmJUUFdguq73XMxGWBflvg7gtc9Lvg7gtftLVsQKBzJXLUoIgRtvvBHTp0+HpmmYPXs2OnfunLF4ig0bEcP2r2urBSIREREREe1bhmHgkksuwfLly9G8eXPk5+ejffv2mQ6LqN567bXXUtrTZaINTDQaRX5+fkqCVkWOOeYYTJkyBaeccso+iIyIiIhoj3/9618YOHAgHMfBlVdeiX/+859ptwWm2sMdGSrXli1bcMcddwAAgsEgXnrppQxHRERE1DBoiozcsAzXVRGzHBi2C1eUSJSRJARUGabtQlVkxM09SVE5IbXSSk6yJCEroEJVJBTGvGpTccVBUFMQNRzkhssmRmmKjKyAiohhIyeooRBem76o6SBmOdAVL3lLkgAhvOQe0/Ha/QFeUlROUAMAZAXUjFY7uu+++zB+/HhIkoQ333wTF154YcZiKYhZiFte4lg88bO0y2uXl2iDqMoSQpqCoK54rfWE8H+uRERERESUOY7j4IorrkB+fj6ysrKwcOFCHH/88ZkOi6jeEkLgtdde86+bNGmCQYMG7ZPX7tChA4YPH45///vfWLNmzV7vP+mkk/CXv/wFw4YNQygU2gcREhEREe2xYsUK9OnTB4ZhoG/fvpg4cSJkmR0lMoGJUVSum266Cbt27QIA3H///ejQoUOGIyIiImpYZNlLYsoKlP0z1xV+paFYIrkmrCtptbcDvHZ2YV14yU2mlxhl2A5cVy23zV12QIXjCsQtBzlBDXHFe852BQzba9FXmipLCOmKXykqpCsZrXL05JNP4rHHHgMAjB8/fp996FqeYsP2k6IK45af2FZbLRCJiIiIiGjfEELguuuuwzvvvANd1zF37lyceeaZmQ6LqF6TJAnr16+v1TGFKOegUTkOPfRQTJgwAQCwe/durFq1Cr/88gu2bt2KaDQKVVXRtGlTHHLIITjjjDPQsmXLWo2TiIiIKF2rVq1C9+7dUVxcjAsuuABTp06FqnI/IFP4k6cy5s6di5kzZwIAjj/+eNx5550ZjoiIiGj/ErMcCHjVmWxXQJK8xKOqCOmKX6XItF3oqoyY5bVpK09uSIMiS4gYNoKal/C0t9ZvSZlu/fbqq6/ir3/9KwDgiSeewIgRIzIWi+W4flJbyaSo2m6BSEREREREdUsIgTvvvBMTJkyALMuYNm0aLrjggkyHRURpatq0Kbp06YIuXbpkOhQiIiKiFGvXrkVeXh527dqFM888E3PmzEEwGMx0WI0aE6MoRUFBAW644QYA3smP8ePHQ9PY5oWIiKg2JSs0xW2v6lBAlcsk1OyNLEnQFRlGIrlJV72vy6tQlZQdUBFQZUQNB0bimZIJUCVJSFSmCigZTdyZMWMG/vznPwMA7rrrLj9BKlOixp72eXXZApGIiIiIiOrW448/jqeffhqAdxijX79+GY6IiIiIiIgauo0bN6Jr167YvHkzTjzxRCxcuBDZ2dmZDqvRY2IUpfjrX/+KTZs2AQBGjBiBs88+O8MRERER7X/cRIl41/V+r27iUTIZKjmOm0bpeU2RkRuW4boqYpbjPS9KVIySJARUGSFNKbct3760ZMkSXHHFFRBCYMSIEX4rvUxxXQEjkcy2L1ogEhERERFR3XjppZdw7733AgDGjBmDq6++OsMRERERERFRQ7d9+3bk5eVh/fr16NChA5YsWYLmzZtnOiwCE6OohH//+9945ZVXAACtW7fGE088sU9ff+vWrdi2bVuVnlmzZk0dRUNERFR3kvlLyd+rWi0qKflY6fHSIcteFaPKKkxl0meffYZ+/frBsiwMGjQIL774IqRq/pxqSyZaIBIRERERUe2aNm2aXzF/1KhRuP322zMcERERERERNXSFhYXo3r07fvjhBxxyyCFYunQpDjzwwEyHRQncgSEAQDwex4gRIyASO6rPPPMMmjZtuk9jGDduHEaPHr1PX5OIiCgTJAmA2JPYlE6lp/IkH0uOk+G8oVqzcuVK9OzZE9FoFN27d8fkyZOhKFVLQKoLmWqBSEREREREtWPhwoW48sorIYTAjTfeiIcffjjTIRERERERUQMXi8XQu3dvfPXVV2jRogXy8/PRrl27TIdFJTAxigAAo0ePxv/+9z8AQPfu3XHppZdmOCIiIqL0uK6o9y3hSpMlCQ6EF5cjYDkuglrVE3/MRKJO8v1Vt/JUfbJmzRp069YNu3fvRufOnTFz5kzoup7psABktgUiERERERHVzLJly9C/f3/Yto3LL78czz77bMar0hIRERERUcNmmiYGDBiAf//738jJycHixYtxzDHHZDosKoWJUYRvv/0WTz31FAAgHA5j3LhxGY6IiIho7yzHRdRwYNhee7MUAnDgJRxFDBsBVUE4oFQ7kaW2BVTZS4ZSFRiW61UMEqJKiU2uEDAdLzEqqCr+uA3Zxo0bkZeXhy1btuCkk07C/PnzkZWVlemwfPWhBSIREREREVXdN998g4suugjxeBy9evXCpEmTIMsNe/1ERERERESZ5TgOrrrqKixcuBChUAjz58/HKaeckumwqBxMjGrkHMfBNddcA9u2AQAPPPAA2rdvn5FYbrjhBgwcOLBKz6xZswZ9+/atm4CIiKjeKjZsRAzbvzYTbclct0TFKFlCUFWgqzLitoO47SAroCI7kPnpT0hTEDFs6KoMVZZguwIx04svXTHTgRCAKkvQVRlSYtyGaseOHejWrRvWr1+PI444AosXL0azZs0yHVYKtkAkIiIiImp4/ve//+HCCy9EYWEhzj33XMyYMQOapmU6LCIiIiIiasCEELjhhhswffp0aJqGWbNm4Zxzzsl0WFSBzO8MUkaNHTsWX331FQDgxBNPxMiRIzMWS6tWrdCqVauMvT4RETUMBTELccsBAMRNBzHLge2Wk6DiCBiWC1WWENIUBHUvGckVAjnBzH4ILssSAqqCuO0gpCkoMmxETQeq4n1/bwzbQdT0fgYhPVktqv61DExXcXExevbsie+//x4HHXQQ8vPzceCBB2Y6rDLYApGIiIiIqGH59ddfkZeXh23btuGUU07Bu+++i1AolOmwiIiIiIioARNC4K677sLLL78MWZYxZcoUdO/ePdNhUSVYL7gR27x5Mx588EEAgCzLePnll6GqzJUjIqL6q9iw/aSowriFIsOG7QpIEhDUZDQJqsgNaWgSVBHUZEgSYLsCRYaNwrgFwKu0VFyi2lSmhANeQk1QVxDQvClZYcz2k7fK4wqBiGGjMObFH9BkPzEnOV5DE4/H0bdvX6xYsQLNmzdHfn4+2rVrl+mwypVsVZhsXWjYbpWrRu2PLRCJiIiIiOqjbdu2oVu3btiwYQOOPvpoLFq0CLm5uZkOi4iIiIiIGrjHH38cTz75JADg5ZdfrnJXLNr3mAXTiG3evBnRaBQAoCgKhgwZstdnNm7c6H/9+eef44gjjvCv8/Ly8OKLL9Z+oERERAAsx/Xb5xXGLRiWl1wS1hWEdKVM1Z2gpiBLeC3qoqYDw3JRCAs5QQ0Rw0ZAlaEpmUtI0RQZWQEVEcNGTlBDIbz3FE1UwdIV2WuRJ3mt10zbhem4fhu2gCb7la+yAmpG30t12baNyy67DO+//z6ys7Px3nvv4bjjjst0WBViC0QiIiIiooahsLAQPXr0wOrVq3HooYdiyZIlaNmyZabDIiIiIiKiBm7cuHG49957AQBPP/00rrnmmgxHROlgYhQBACzLwtq1a6v0TDweT3nmhBNOqO2wiIiIfFFjT/u8ZFJUTkittPWcLEnICqhQFQmFMRuG5SKuOAhqCqKGg9xwZpOJsgMqHFcgbjnICWqIKw5iptca0LBdGImWayWpsoSQrviVokK6guwqJObUF67rYsSIEZgzZw50XcfcuXNxxhlnZDqsSrEFIhERERFR/ReLxdCnTx989dVXaNGiBfLz83HYYYdlOiwiIiIiImrg3nzzTdx4440AgPvvvx//93//l+GIKF0NbxeNiIiIGh3XFTBsL6EklmilF9aVtJJRAC/5JKwLrxqT6SVGGbYD11UznpSSG9KgyBIiho2g5iU8mbaLuO3AdQWEACTJS8oJqgr0Em3XsgJqg0yKEkLgjjvuwKRJk6AoCqZPn44//elPmQ4rLeGAlxgV1BWYrutVIovZCOui3MplgNc+L1m5DNg/WiASEREREdVHlmVh8ODB+Oijj5CTk4PFixfj6KOPznRYRERERETUwL377rsYNmwYAODmm2/G6NGjMxsQVUnD20mjWnPyySdDJPvxpKldu3b45ZdfAADnnXcePvzwwzqIjIiIKFXMciDgtZOzXQFJ2lNxJ10hXUHM8qoxmbYLXZURs6rWBq2uZAdUBFQZUcOBYTvQVTklAaokCYlEr4DSINvnAcCjjz6KsWPHAgAmTJiAvn37ZjagKmALRCIiIiKi+sl1XQwfPhzz5s1DMBjEvHnzcMopp2Q6LCIiIiIiauA++OADDBo0CI7j4KqrrsIzzzwDqZxD0lR/ZX4nkIiIiGgvki3l4omqUQFVLrcyT2VkSYKuyDAS1Zh01fs6K1Dr4ZbhugIxy4Fhu3BFiSpQkoSAKiOkeUlOuWEZrqvu9d5MV7mqiRdeeAH3338/AOCZZ57B0KFDMxxR1TXmFohERERERPWREAK33XYb3nzzTaiqipkzZ+Lcc8/NdFhERERERNTAff755+jTpw8Mw0Dfvn0xYcIEyDIPPDc03I0hIiKies9NlNtxXe/36lbZSSZDJcdxq1g5saosx/WrQJV5JQE4ELAcFxHDTqkClRVQ90nC1r42ZcoU3HTTTQCABx54ALfeemuGI6q+xtgCkYiIiIiovho9ejSee+45SJKE119/Hb169cp0SERERERE1MD997//RY8ePRCJRNC1a1dMmzYNqsrP9hsi/q0RERFRvZfMX0r+XtVqUUnJx0qPVxeKDRsRw/av95Y0E7cdxG1nv02amT9/vl8d6uabb8ZDDz2U2YBqQWNrgUhEREREVB/985//xOjRowEAzz//PC6//PIMR0RERERERA3dmjVr0K1bN+zatQtnnXUWZs+ejUBgPzzR3kjsf7tuREREtN+RJABiT2JTdSs9JR9LjlNXLaALYhbiltf2L246iFlem7UyHAHDcr02a5qCoK4gYthwhUBOUKub4DLg3//+NwYOHAjHcTBkyJD9qv92Y2mBSERERERUH73++uu47bbbAACPPPIIbrjhhswGREREREREDd5vv/2Grl27YvPmzTjxxBOxcOFCZGdnZzosqgEmRhEREVG9J0sSHAgvscTx2s8FNaXK45i2642XSFCpbuWpyhQbtp8UVRi3YFjea0oSEFBlaIoMWZLgCu99GLYL2xUoMmyYroucoIaY6UCWpP2ictTXX3+N3r17Ix6Po3fv3pg4ceJ+2X9blqX9tgUiEREREVF9NGfOHFxzzTUAgP/7v//Dvffem+GIiIiIiIioodu2bRvy8vLwyy+/4IgjjsCSJUvQrFmzTIdFNdTwd9ton1q/fn2mQyAiokYooMpeMpSqwLC8ZKIsIaqU2OQKAdPxkpSCquKPW5ssx/Xb55VMigrrCkK6UibeoKYgSwjETAdR04FhuSiEhZyghohh+4lUDdXq1atx4YUXorCwEOeddx6mT58OTdt/KmEREREREVFmfPDBBxg8eDAcx8HVV1+Np556ar+pSktERERERJlRUFCA7t27Y/Xq1TjkkEOwdOlSHHjggZkOi2pBw91pIyIiokYjpCmQAOiqDFWWIAQQM50qjREzHQgBqLIEXZUhJcatTVFjT/u8ZFJUTkhFVkCtMIlLlrxKQzkhL1/dsFy/4lRyvIZow4YN6NatG7Zv345TTjkF7777LkKhUKbDIiIiIiKiBu6LL77AxRdfDNM00a9fP7z88stMiiIiIiIiohqJRqPo3bs3vv76a7Rs2RL5+flo27ZtpsOiWsLEKCIiIqr3ZFlCIFHlKZnMFDUdGHZ6iUOG7VVkAoCQnqwWpfgt9WqD6wo/nlgisSmsK37cexNQFYQTsSWTvgzbgeuKWotxX9m6dSvy8vLw66+/4phjjsGiRYuQk5OT6bCIiIiIiKiB+/7779GjRw8UFxfjggsuwFtvvQVVZVMEIiIiIiKqPtM0MWDAACxbtgw5OTlYvHgxjjnmmEyHRbWIiVFERETUIIQDXtJQUFcQ0LwpTGHMRsSw4Yryk4dcIRAxbBTGvPZ2AU1GMJFYlRyvtsQsBwKAabuwXQFJ2pOEla6QrkCSANsVMG0XAnuSrBqKZKnZ//3vfzjssMOwZMkStGzZMtNhERERERFRA7d+/Xp069YNO3bswJlnnok5c+YgGAxmOiwiIiIiImrAHMfBVVddhffeew+hUAgLFizAH/7wh0yHRbWMx2mIiIioQdAUGVkBFRHDRk5QQyEsGJaLqOkgZjnQFdlrkScBQngJSqbjIpkzFdBk5AQ1AEBWQIWm1G5+uGF7rfPiiapRAVWusH1eRWRJgq7IMGwXcduBrnpfZwVqNdQ6E4vF0Lt3b3zzzTd+qdlDDz0002EREREREVEDt3nzZuTl5WHjxo04/vjjsWDBAmRnZ2c6LCIiIiIiasCEELj++usxffp0aJqGWbNmoUuXLpkOi+oAE6OIiIiowcgOqHBcgbjlICeoIa44iJkObFfAsF0/OakkVZYQ0hW/UlRIV5AdqP0pULJqVbL1XXUTr5LJUMlxKqqGVd9YloWBAwemlJo96qijMh0WERERERE1cLt378aFF16INWvWoF27dliyZAkOOOCATIdFREREREQNmBACf/3rX/HKK69AlmVMmTIF3bt3z3RYVEeYGEVEREQNSm5IgyJLiBg2gpqX8GQmKiy5roAQgCQBsiwhqCrQ1T0JSlkBtU6SogD4lamSv1e1WlRS8rHS49Vnruti2LBhWLBgAYLBIObPn89Ss0REREREVGORSAS9evXCypUrceCBB2Lp0qU46KCDMh0WERERERE1cI899hieeuopAMArr7yCgQMHZjgiqktMjCIiIqIGJzugIqDKiBoOjETLuZIJUCVJAAKqgnBAqfX2eSmvIwEQexKbqlvpKflYcpxq5lftM0II3HLLLXjrrbegqireeecdnHPOOZkOi4iIiIiIGjjTNDFgwAB8+umnaNq0KZYsWYIOHTpkOiwiIiIiImrgXnjhBdx3330AgDFjxmD48OEZjojqGhOjiIiIqEHSFBm5YRmuqyJmOV77OVGiYpQkIaDKCGkKZLnus4tkSYID4b2WI2A5rt++ryrMRDvAZMzVrTy1rzzwwAN44YUXIEkS3njjDfTs2TPTIRERERERUQPnOA6uvPJKLFq0COFwGAsXLsSJJ56Y6bCIiIiIiKiBe/PNN3HTTTcB8PY3br/99gxHlBmuK+rF3tq+wsQoIiIiatBkWUJWQEVWILNxBFTZS4ZSFRiWC8N2kSVEWolNrhCIWw7iloOdEROuAHKDGlxXoFlYh+uKejkBHTNmDB555BEA3gmLyy67LMMRERERERFRQyeEwA033IC3334bmqZh9uzZ6NSpU6bDIiIiIiKiBm7u3LkYNmwYAOCWW27BQw89lNF4MsFyXL8bS5m+JwJw4B38jxj2PunGsq8wMYqIiIioFoQ0BRHDhq7KUGUJtisQMx1kBSqebtmOi6jpwHRcCAFETRu2I6DKEmRZgu0IOK7A9mLDn4AqklQvsvhfe+01jBw5EgDw6KOP4vrrr6/z1yQiIiIiov3fvffei5dffhmyLOOtt95Ct27dMh0SERERERE1cO+//z4GDRoEx3EwdOhQjB07FlI979hR24oNGxHD9q9N20XcduC6JfaaZAlBVYGuyojbDuK2t8+VXcleV0PQsKMnIiIiqidkWUJAVRC3HYQ0BUWGjajpQFW875cWSfy5f21a2FFswXUFwgEFhTETIU2FnagWVWxY2FoUh6rICOulxtvHWfyzZ8/GtddeCwAYOXIk7rnnnjp5HSIiIiIialz+8Y9/4PHHHwcAjB8/HgMGDMhwRERERERE1NAtX74cF198MUzTRL9+/fDqq69Clht+FaSqKIhZiFvenlTcdBCzHNhumZpRgCNgWC5UWUJIUxDUvaIArhDICWr7OOraw8QoIiIioloSDniJUUFdgem6MCwXhTEbYV0gpCt+W72iuIW45QIAYpaNgqiF4kSWvqbKUCQJliMQ1r3Jqmk7EAIIaAoM24VhOVAUKSNZ/EuXLsWll14K13VxzTXX4Mknn2x0pyqIiIiIiKj2vfLKK7jrrrsAAE8++aR/GIOIiIiIiKi6Vq5ciR49eiASiSAvLw9Tp06FqjauNJliw/aTogrjFozE/pQkAQFVhqbIkCUJrvAO4Bu2C9sVKDJsmK6LnKCGmOlAlqQGWzmqYUZNREREVA9pioysgIqIYSMnqKEQ3gQzmsi+1xUZtusiZnq9m3dHLBSblpfcBCArqKJZWIcsSQiqMjRVxo6IiXiislSRYUGTZdiul2gV1ktM5Wohi991RaVt+lZ+/SX69u0L0zTRv39/jB8/nklRRERERERUY2+//Tauu+46AMA999yDO+64I8MRERERERFRQ7dmzRp069YNu3fvRqdOnTB79mwEAoFMh7VPJTuNAKlJUWFdSTnQnxTUFGQJgZjpIGo6XgEAWMgJaomOJXKddSupS0yMIiIiIqpF2QEVjisQtxzkBDXEFQcx0ytJGjFsFMQsAEDEdGDaXsJTtq4iN0tDSPOmZkFNRpPEJDOkKZAAbC82YdoONFVGk4AGVwAhTYauKjXO4rccF1HDgWF7CVspEm36Vv73v+jXsycikQguuOACTJkyBYpStkUgERERERFRVSxevBhDhgyBEALXXXcdHn300UyHREREREREDdxvv/2Grl27YsuWLTjppJOwYMECZGVlZTqsfS5q7Gmfl0yKygmpCKgV7+/IkoSsgApVkVAYs2FYLuKKg6CmIGo4yA0zMYqIiIio0csNaVBkCRHDRlBTENQUmLaLbcVxaIqEuOVCuC40VUaLcABZwT1TsrCuICugwna8SlPJ8qW6IsG0AUWSENJlhDQVrgB01ZuAVjeLv9iw/dMCAGDaLuK2k9Kmb+Ovv+Cyvhdh9+5dOPX0M/DyG9NgQUHjOldBRERERES17dNPP8Ull1wCy7IwePBgvPDCC6xKS0RERERENbJt2zbk5eXhl19+wZFHHoklS5agWbNmmQ5rn3NdASNxQD+WaKUX1pVKk6JKCqgKwrrwuqKYXmKUYTtwXRWy3LDWbUyMIiIiIqoD2QEVAVX2KzGpioSAqkBXFAhhQpE1vx2eBC/BKaQrfvJSNNE+z7C9JCdNkdEiOwDHFTAtFyHNS2JyXeFPQKuaxV8Qs/y+0vFEuz/bTa0ZtW3LZgwd2Adbt2zGkccchwlTZiIrO7vKbfqIiIiIiIhKWrlyJXr16oVoNIoePXrgjTfeYFVaIiIiIiKqkYKCAnTv3h2rV6/GoYceiqVLl6J169aZDisjYpbXJcRMdBuRJCCkV23NFdIVf+/ItF3oqoyY5SCrki4l9VHDipaIiIgaJdcViFkODNuFK/ZUMpIlCQFVRkhT6mV2uqbIyA3LcF0V24sNqLKUeA+AqshoElQRVL2KUiXjd4WA6XglTeOJBKmQ7t23O2rCdgUs26s4FbcchEtNQNPJ4i82bD8pqmRfaUmCX12qcPcu3HBlf/z2y3oc0rYdxk+ZBSWcg8K4lXabPiIiIiIiotLWrFmDbt26Yffu3Tj77LMxc+ZM6Lqe6bCIiIiIiKgBi0aj6N27N77++mu0bNkS+fn5OOywwzIdVsYYdmKfKVE1KqDKkKtYoVeWJOiKDCPRbURXva+zGlhLEe5iERERUb1lOa5fcUmU/kMBOBCwHDfRKk5BOKCU2y4u02RZgqrIaBrWURi3IEsSgpqMJhVUW4pbDoQAbCeZxS95yVOSBE2RvXZ3jgNNlWE6LsLljFFZFn/yZwakJkWFdQUh3XudSCSCqy/rj9Xff4fWBx6IGXMXoNVBB1epTR8REREREVFpGzduRF5eHrZs2YKOHTti/vz5CIfLW9UQERERERGlxzRNDBgwAMuWLUNubi4WL16Mo48+OtNhZZQrvJ01N9EppLr7OMlkqOQ4yXEbEiZGERERUb1UbNh+8g7glfqM2w5ct0TFKFlCUFWgqzLitoO47SX+1FUFo5pUrqrKBNQslcWvl8ji11UvMUr4E9Dyx6gsiz9q7Gmfl0yKygmpfl9pwzAw/IrB+OqLFWjatBmmzZ6P9u0PB4C02/QRERERERGVtmPHDnTr1g3r16/HEUccgcWLF6Np06aZDouIiIiIiBowx3Fw5ZVX4r333kMoFMKCBQvwhz/8IdNhZVwyfyn5e1WrRSUlHys9XkPCxCgiIiLaJ6qSVFQQs/w2b3HT8SsfleEIGJYLVZYQ0hQEdQURw4YrBHIqqMZUndhUWULccmtUuaoqE9DkW92TRLXn3uRX6UxAy8vid10BI5FwFUv8jMO64idFOY6DG0dcjY/+9T7CWVmYMnM2jj3ueH/MdNr0ERERERERlVZUVISePXvi+++/x8EHH4ylS5eidevWmQ6LiIiIiIgaMCEE/vKXv+Dtt9+GpmmYPXs2zj777EyHVS9IEgCxJ7GpupWeko8lx6lmflVGMTGKiIiI6lRV2+G5EH7FpJJt3iQJfss2WZLgCu85w/bazRUZNkzXRU5QQ8x0IEvSXitHpRPb7qiJmOVAV2SEdQWuQLUqV1VlAioSf1ZeElXyqXQmoOVl8ccs772adrJNn9d2L/m6d956E+bPnQ1d1zFpyts49fQzy4xbWZs+IiIiIiKi0uLxOPr27YsVK1bggAMOQH5+Ptq2bZvpsIiIiIiIqAETQuDOO+/Eq6++ClmW8dZbb+HCCy9M69madAhpKGRJggPhvQ/H21MLakqVx0nu2SV/HtWtPJVJ3L0iIiKiOlPVdnjFhoVdUQthXYEjhJ8UFdYVhHSlzGQrqCnIEgIx00E00RauEBZygloi0UqusGVdOrFFTQcSAFWRURizsLUwDk2VEdZLTaHSqFxVlQmoJEmAEOUmUSUnoJI/Aa34519eFr9Rqk1fINGmTwiBh++/F29NngRZlvHihNdx7vl/Knfcytr0ERERERERlWTbNi677DJ88MEHyM7OxqJFi3DsscdmOiwiIiIiImrg/v73v+Ppp58GALzyyisYMGDAXp+p6mH+8jqENBQBVfb2olQFhuUVGsgSokqJTa4QMB1vXymY6DwSUBvez4OJUURERFQnqtMOz3ZcQJKwK2rCclxkBzTkhFS/zVt5ZElCVkCFqkgojNkwLBdxxWvxFjUc5IbLTtDSiS1q2oiZiXtsBxK8UwKO5SUCNQvrVapcVZUJqCwBDlAiiUogoMJ/LQAIKt7PRK9kQl5eFn8yyWpPmz7v+efHPoUXn3sGAPDUs+PQq0/fCscFym/TR0REREREVJLruhgxYgTmzJmDQCCAd999F6eddlqmwyIiIiIiogbu+eefx6hRowAAY8eOxfDhw8u9r2RlqKK4hYhhQ5KkPYfOE90+qtIhpKEIad4hfl2VvT041ys0UJXuHzHTgRCAKkvQVRlSYtyGpuH97REREVG9V2zYfuJRuu3wTMfF7qgFTZXgOgK2K5AdEJUmRZUUUBWEdYGo6SBmeolRhu3AddWUcqfpxOa4AobtIKAp2Bk1YCbu0RQNB2QFvOpPrkAw4MWWTuWqqkxAdVWG5Th+EpVpu3B1gbi1ZwKqJSagFVWdqiiLP5pI9irZpu+Nia/i0dEPAAAefOQxXH7l0L3+vMtr00dERERERJQkhMDIkSMxadIkKIqCt99+G+eff36mwyIiIiIiogbujTfewM033wwAePDBB3HbbbeVuad0ZaiS+0GG6e0T2a6AlOiQEdRkqIqcVoeQhkKWJQRUBXHbQUhTUGTYiJoOVEVKa+/NsB1/TymkJ/eZGmaLQSZGERERUa1KlhgFUieae2uHt7PYhBACUcNrz9YkoMEV3njplikN6Ypf/cm0XeiqjJi1J/ko3dgKY5Y3KRQOQqoCGRJUWYIsSYiaNrIDGqKmg4CamCgjncpVWtoT0KCmJP5sTxJVUczyq1oFExNQXZUrnIBWlMUfsxxA7ElsmjtrBu76v1sAALfdcReuv/m2tH7W5bXpIyIiIiIiSnrkkUfwzDPPAABee+019OnTJ7MBERERERFRgzdnzhy/OtStt96KBx98sMw9xYbt7wUBwO6oiV1RE26i64dlC68ylCYjrMnQFAlCAIrsddnYW4eQhiQc8PalgroC03W9g/0xG2FdlLtnB3gH75OFAAAgoMn+If1woOFViwKAhtf8j4iIiOq1qLGnRV0y8SgnpCIroFbYt1iWJKiKhCZBFYbtwrJdAF6buWQ7u3TIicx+wGt/BwBGop1curG5iaQqAIhb3kS3eZaO5lkBbzzLhZEYO1pObF7lKm9imIzdq1wl/AljUFcQ0Lw4C2O2f9qgvPeha15y17Ziw0v20mQ/kSqZoV9aZVn8yfcpyxKWfZCP26+/FkIIDL3mz7hrVNkFREXKa9NHREREREQEeG0tHnjAq0r7z3/+E1deeWWGIyIiIiIiooZu6dKlGDx4MBzHwbBhwzBmzBhIpfYmCmKWnxQVNx1sLYpjc0EchuViV8xCzHRguy5kyeui5zje3oymynBcQIK3J5Tc5zEsF4VxCwAQMWxYjouGRFNkv3hATlDz96aipoOdEROFMQtxy6usFbccFMYs7IyYKUlRyUpZWQE17UIG9U3DSmcjIiKies1NtKAD4FUmgleNKZ2SnK4AdFVBQJFh2o4/GTVtF64r0i7NqateNr+bqK6UTDhKN7a45ZVVtRInAiTJq+AkS5JXkcp0EDcdBFQFpuPCFaJMUlBllauyAioiho2coIZCeFWroqaDmOVAV2SvupMEyBJQFLdgOS4SbwWm60JJtCDMLmcCmk4Wf0CVYTkuVn75Of7vz1fBtm30HTAIjz01tswCoiIVtekjIiIiIiKaMmWK39bioYcewi233JLhiIiIiIiIqKH77LPP0LdvX5imiUsuuQSvvPIKZDl1X6LY8FrkAXu6hhTHbW/vQwjosoxAQEZWQIEkyTAT+0DFcRuW5iI7oCFmOZAkVNghpDhu79mHEgIi0aFDliQEVBkhrf61mssOqHBcgbjlICeoIa44iQQxAcN2UwoMJKmytyeW3GMK6UqDq5ZVUsONnIiIiOqdWCKpyCyRVFRRVaPSRCKBSdckSCbgCAHLdqGpMuKWg3CaE65kbk+yAFPy93RjSyb8xB1v8qyrsp/4FNQUxC3vedtxoSqJ2PTU2JIVnwzbawuYnCRnBao2AVVkCaYN5AZV2K4MQEq0yBMIaQriiQm6EN77Mh3Xf78VZfGHNAWff/EVhl8+APF4DOf8qRse/+dLZRYQlamoTR8RERERETVu8+bNw9ChQwEAt9xyi181ioiIiIiIqLpWrlyJnj17IhKJIC8vD2+99RZUNXVfxnJcv1JUMinKdQVUWUJWQEVRzIKuygjpir+n4+reXk3M7zJiITugIWo6CKhyokOIQNR0UBi3YNouLMdFsyw99cC8ABwIP4aAqiAcUOpVdaXckAZFlhAxbAQ1L+HJTOxhuW6JBC9ZQlBVoJc4DJ8VUBt0UhTAxCgiIiKqRcmknmQbu0CJpKK9SWbsK5IEVZYhhJecpKkyTMdFOM0YkolByZdN/p5ubMnqTCLxRcmJ656EJwdx20G24p0oCOtl46iochWQ/gS0WZaO7MCeilGG7UCC5I9dnSz+tWvX4NJL+qCwoABnnNUZT4+fBEt47ymdyl6VtekjIiIiIqLG66OPPsKgQYPgOA6uuuoqjB2bflVaIiIiIiKi8vz000/o1q0bdu/ejc6dO2P27NkIBAJl7osa3r5F3E9ySuwDyVKZDiFJsiQhrKtQZRlFiWQqTfH2SqKmg5yQl0i1o9hA1HSQG9KgKjIKYxZkWaowoSie2EOqbwlF2QEVAVVG1PBa5+mqnJIAVZIE1MsEr+qqP38LRERE1OCVbFsHoEqTJVkCHHiTR12VYdmun5zkisqfLclMJAslE3WSyU/pxla60pRXD2kPTZVg2IBI5CRVFFtFlauSqjIBjRo2bFegaViDlkjGqk4W/2+//YauXbti27atOOHEjnjz7VlAIOz1yI7ZCOsCIV2pIGFs7236iIiIiIiocfrqq6/Qu3dvxONx9OnTBxMmTKhSVVoiIiIiIqLSfv31V3Tt2hVbtmxBx44dsWDBAmRlZZW5z3UFjMSh+FiilV5YV2BV0iGkpGQlqZjpIG56iVGm47XKKzZsJIZBQdSEqsiAJCE3pKUO4ggYlusdXtcUBHUFEcOGK4Tf3aM+0BQZuWEZrqsiZjkNqiVgTTAxioiIiGpNmaSiKpwO1lUZluMgqCoohg3LceEkso5KJxVVxBXCb4UXVJPVjOQqxSZJAMSexCYXqS8uITXRSlQQXEWVq0pKdwLaMjsAR4gaZfFv374deXl52LBhA4466ii8u2Ahwrm5AIBCeCchoqaDmOVAV7zxq9qmj4iIiIiIGp/Vq1eje/fuKCoqwvnnn4/p06eXaWtBRERERERUFdu2bUvZ01i8eDGaNm1a7r0xy4GAt5eRrAwV0hUYUW+/qLwOIaUFNQVxy3vedlyoioydxSYEvAPzO6I24ALZQQmqAgQ1GZriJVq5wmujZyRev8iwYboucoIaYqYDWZLqVeUowDtsnxVQkVW2+NZ+qX799ImIiKhBK5NUlG5GE7xJZ9R0oCpeadPkJNYfNw0x04EQXjs5XfVqPYUSVY3SjS1ZuUqSJcDxJrMlW8yJRKJUMrGqotYQFVauckW1svBlSNXO4i8sLESPHj2wevVqHHLIIViyZAnaHnoQCmIW4paDnKCGuOL10bZdUe02fURERERE1Lhs2LABeXl52L59O0477TTMnTsXwWAw02EREREREVEDVlBQgAsvvBA//vgjDj30UOTn56N169YV3p/cz4gnqkYFEpWh9tYhpCRZkqArMoxEG7wggEiifV6xYcOyXaiyV1kqK6CiSakqUEFNQVaJzhuG5aIQFnKCGiKGjYAq85B5BnEni4iIiGqNLElwILzEnERSUcl+zXt71pt0ukhODeOOC9N2kZVGqzbD3tPmLaQnq0UpKYlJ6cSmK4nKVYoC0/Je39WFn9hk2d4MWpKTcZeNpbzKVbIEFEQtGLaDMilZAnDgxeRNkCvu21zVLP54PI6LL74YX375JVq0aIH8/Hy0bdsWAJAb0qDIEiKGjaDmJTxVt00fERERERE1Llu3bkVeXh5+++03HHvssXjvvffQpEmTTIdFREREREQNWDQaxUUXXYRvvvkGLVu2xNKlS3HYYYdV+kzyILxbqjLU3jqElKapEgwbEG6iCpUQMCwHpuXt92QHFYR1tcKOJLLk7d+oioTCmA3DchFXHK8wgOEgN8zEqEzhbhYRERHVmoAqewlHqgLD8qoOZQmRdku9sK4gZjmQZQm6qiCgyCiKWwioXinS8sZxS2TgA16bt2TCU7hEQlW6sSUrV2mqDFWWYLsCcctBWFfLTXgqr6Vd6cpVUdNJiX9vyUfxxImEmiYf2baNwYMH48MPP0STJk2waNEiHHPMMSn3ZAdUBFS5Rm36iIiIiIiocSkoKED37t3xv//9D23btsWSJUvQokWLTIdFREREREQNmGma6N+/Pz7++GPk5uZiyZIlOOqoo/b6XJnKUFLywHzlHUJKkxIVpWzX9fZuZAlxy/EP2if3nso7MF9SQFUQ1gWiptepI6gpMGwHrquW2zGE6h4To4iIiKjWhDQFEcOGXiKpKGZ6CT7pUBUZsuRNXnODKhRFgmm5cFxgZ8SErnhJO1LiHtN2YTquP9kNaDJyEuVLswJqSvJOurHJiWQmw/YmusWGjZjp+M8IIaDKElTFi6N01anSlasK4xYgAFlXEDcdxCyvXV0ZjoBhuV67Ok1BUPfidYXw31NVuK6L4cOH491330UgEMC8efNw6qmnlnuvpsjVbtNHRERERESNSzQaRe/evfHNN9+gVatWyM/PxyGHHJLpsIiIiIiIqAFzHAdDhgzBokWLEA6HsWDBApx88slpPVumMlRi02hvHUJKE4mKUpYjoMgSHNsFJC9RqomuVXpgvrRQohCA7QqYtgtdlRGz0t8vo9rFnzoRERHVGlmWEFAVxG0HIU1BkWEjajpQFanSLPwkw3YASAhoCrTkMzqgKl5SkmG7fq/oklRZQkjfk60f0pUylZaqEltIV2DYLgKaAtN1YVoudhSbcIRAQJUR1L2xdUX2J9DlVa5yXC/ZqVlYQ2HcgpEotypJ8PtJy5JXDctyvPdmuwJFhg3TdZET1BAzHciSVKXKUUII3HbbbZg8eTIURcGMGTNw3nnn7fW5qrbpIyIiIiKixsWyLAwcOBDLli1Dbm4uFi9ejCOPPDLTYRERwTRNLFu2DOvXr8e2bdvQvHlzHHrooTjvvPMQDoczHR4RERFVQgiB6667DjNmzICmaZg9ezbOPvvstJ+XJQkOhHewO1EZKlnhqaIOIeWxbC8xynG9xChTuBCOd6hfV+QKD8xXFJOueIfw44luHYbtcv8lQ5gYRURERLUqHPCSj4K6l1RkWC4KYzbCukBIV9Jqh3dAtg5FkhA1HTTN0qAp8l7bzyVV1n4u3dg0RUZY9ybMWbqKmGkgYtoAAAEgmEjOCusy4pZTbuWqkKZgd9TyxrEcPykqrCvl/hyCmoKsEj8Hw3JRCAs5QQ0Rw/YTqQCvT3ZllZ2efOwRPPfccwCASZMmoXfv3tX5qyQiIiIiIvK5rouhQ4di4cKFCIVCmD9/ftonuIlo/yBVUF1hb5588knccccdtRyNJxKJ4IEHHsCkSZOwc+fOMn+enZ2NQYMG4YknnmDLTyIionpICIE77rgDEyZMgCzLmDp1Krp161alMQKq7CVDqQoMyzuEniVEpR1C9FIH5l0hYDrePo6qeHMe4QjEbRdZARVBPVEtqsSB+b1Jvrab6CKSrGRF+x4To4iIiKhWaYqMrICKiGEjJ6ihEF6lpGiijVxV2uE1y9IhQ4KRyKavqDyphETP5oCS0j6vJrEpsgTTcVAcd6BIXiUlIbwJdtxyYNkCccuFEF5xVSkxfk7IS8wqjtsIaYqf4AUAOSG10spZcuJ1VEVCYcyGYbmIK17/6ajhIBwAooYDw3ZQZvosAAcCL77wHEaPHg0AeOafz2LIkCFp/K0RERERERFVTAiBm2++GVOnToWqqnjnnXfQpUuXTIdFRI3cjz/+iN69e+Onn36q8J7i4mJMnDgRCxcuxKxZs9CpU6d9GCERERHtzaOPPooxY8YAAF599VX079+/ymOENAURw4ZeojJUzPTa1pXXIaQobiOkCwS1PYfY45YDIUTiefiH4gEgqMr+3k5Y33u1qKRk/lRy/4t5UZnDxCgiIiKqddkBFU6iJGlOUENccRAznSq3w0smSLmumlIhyXEEDNuB5Qq/5Z7luiiKe63uQprilUytYWy6oiCoCVi2i+ygV8WqKG7BEQKq4m0OyBIgyRKCigJNleG4wPYiA0IIHJAdQFHcqzQV1pW02gkCiSQvXXgJW6aXGLUzYiBq7nlf5VXQevedaRh1l3cC86/3PYBLh41AsWFXqQ0fERERERFRaffffz/GjRsHSZLw5ptvokePHpkOiYgyrFWrVmjSpEla9zZr1qzWX3/btm3o2bMn1q1b53/vyCOPxGWXXYZDDz0UmzdvxjvvvIP//Oc/AIDNmzejd+/eWL58OY444ohaj4eIiIiq7rnnnsP9998PAHjmmWdw9dVXV2scWfb2ieK2g5CmoMiwETUdqIn9o2SHkCYBDUWwYFouYqaDuOX4h+0jhp04kC6hKO5AThygV2UZ4cQeS1hXoFZyOL+0ZCJUMkFqb4Wm9tYtpLK9L6ocd8mIiIioTuSGNCiyhIhh+72cq9sOT5a9Skq66iJqOHBdBwFNQclWzI4r4MDrHe21nqu4glRVYssNhSBJwI4iEwUxE0FdQTM9ANvZc7/rCMRcG6YjISeoQ1ElmLbA1kIDluv6pxKqIqQriFlewtaOYgOJSquQJcn/fkkfLF6Ae269AQBw1YgbcP2tdwLwJvOuEH6SGRERERERUVU8/fTTePTRRwEAL774IgYPHpzhiIioPnjiiScwbNiwjL3+DTfckJIUdeutt2LMmDGQ5T2fA40aNQpPPvkk7rrrLgghsGPHDlxxxRX4/PPPMxEyERERlfDGG2/glltuAQA89NBDuPXWW2s0XjjgJUYFda8ylGG5KIzZCOsCIV2BIwQMy0WTgAZDcRA3HZiOi6hpIW55XT90VYGuyJAgkOXvUUmwHBdNQ3qJ76UnWXEqmcxUUQs+y3H32i0knb0vqhgTo4iIiKjOZAdUA2BFaAABAABJREFUBFTZn9DVpB1esWEjYtj+9d6SrOK2g7jtlEmyqk5sRXEb4YCC5llZKDYcFMYtWIn2f162vtdGL6B6k+vCiA1VkWA6XllWXU2/53SSLEnQFRm7oiYcIdAkoGFn1PSrTkmS19ZPU2Qs//jfuPOG4XAcBxcPvAwj738ExaYDK5EQFTMdyJLEylFERERERFQlEydOxB13eFVpH3vsMVx33XUZjoiICPjiiy8wc+ZM/7pHjx545plnyr33zjvvxNq1azF+/HgAwIoVK/DOO+9Uq00PERER1Y7Zs2f71aFuu+02PPDAAzUeU1NkZAVURAwbOUENhbBgWK7XmcNyoCsyFAmIWV6ykiLLcC0XjhDQZAmaqiA7oECSJRwUCkFTFFi2i8K4BUWWEA5U7fC7KwRMJ9mKz3s2UM4eVG3vfVH5+JMiIiKiOqUpMnLDcpl2eFUpAVoQ25OxH09MYktXTAIAOF7GvypLCGkKgrpSacWkdGKzHRdZAa/PdGGijV5WQE1JTJIlCa7wMvYN24XluIhbAqbtJUU5rkDEsKt8mkCWgJjpQFMkFBsWbEf4ZV9DuhfTf77+CtcMGQTTMNDjot547sXxsFwJUdPxTkTAQk5QS5wkkHmKgIiIiIiI0jJr1iyMGDECgJdYcNddd2U4IiIiT+kkqDFjxlR6/2OPPYY33ngDsVjMf56JUURERJmRn5+PSy+9FK7r4uqrr8bTTz8NqYoHyyuSHVDhuAJxy0FOUENccRAzvf0kI1m9KZEcZdkuVEVCU01DUFf8Q+khzduD2RU1kR1UoSkSIEmImU6V9nhipgMhAFWWoKsypMTYJdXV3heVxcQoIiIi2ieS7fCyAnu/t6Riw/YnhoVxL8MfQKWJSbYrUGTYMF03rYpJFcVmOS52Rkw/KSr52iUTk0oKagqyhEDMdBAxbBiWA8v1JqZR00FAlavUfzpuJybElgtFliBLEnJCqj9B/9+Pq3F5/4sRKS5Gl3P/iBcnvAFd06ADUBUJhTEbhuUirjgIagqihoPcMBOjiIiIiIiockuXLsVll10G13Vx7bXX4oknnqi1zQoiopqwLAsLFizwr8855xwcc8wxlT7TrFkz9O/fH2+++SYA4NNPP8XWrVvRqlWrOo2ViIiIUn322Wfo27cvTNNE//798fLLL6e0wa0NuSENiiwhYtgIagqCmpJShUmVvf0dCfDb1rkCEALICihoEtQQUGXvOcdFXJFRZNiImg5URfL3Zypj2A6ipre/E9KT1aJSiwPsi70v2oM7Y0RERFRvJXsmAyiTmNQ8S0eToIag5pUPDWrehLV5lo5wYqJpWF6ZUwCIGDasRNnSdEWNPZn6ydfOCanICqgVtsaTJS/JqklQgyQBpu0gbnnvITkRToeb6HcNeJNowOuRnZx0b/jlFwzu2ws7d+7AyaeciklvvY1gMOg/n6wsBXgnE5LjuOWdNiAiIiIiIkpYvny5v1kxcOBAvPTSS0yKIqJ64+OPP0ZBQYF/3a1bt7Sey8vL8792XRcLFy6s9diIiIioYt9++y169uyJaDSKbt26YcqUKVDVuknoyQ6oaJ6lI6h6CVC6KiMnqKFpWEezLB1Nwzpyw97vzcI6DsoN4cjW2Wh7QBaaZ+lem7qgF1tQVxDQvLSawpjtV2oqjyu87iGFMW9PKKB5e1cAUlrxZXrvqzFi6hgRERHVWxUlJlWWkZ9MTKppxSTXFX5CUiyRtR8uUU61MrLkTbRDARVWzEKRYaNJSIfpeK36KkqqKimeaO1nuwIuAEmS/Envtq1bMLhvL/y+aROOOuZYvPXOXGQ3aVJmjJCu+KVXk239YlbVyr0SEREREVHjsWrVKvTs2RORSATdunXD5MmToSh7XwMREe0r3377bcr1WWedldZznTt3TrleuXJlrcVERERElfvpp5/QrVs37N69G507d8asWbMQCFSxvUgVaYqM3LAM11URS+y3uEJACK8qkyxJCKgyQlpqJaeSz2cFVEQMGzlBDYXwEpiiiZZ3uiJ7LfIkr9qUabswHRfJnKmAJvtt7rICKrQS3UQyuffVWHFXjIiIiOqlmiQmAcmKScKbpJre5NCrmKSWO8ktLWY5EPAms7YrIEl7Sp4m44tbTiLZCSUm04DtCLiuQG5QQ1HMQsxyYNoOdFVB3HIQ1vc+BYtbjl8eNagkTgaoCgp278all/TBz+vW4pDDDsP02fPQvPkB5Y4hSxJ0RYaRKBOrq97XVW1nSERERERE+79169ahW7du2LVrFzp16rRPNiuIqOGaMmUKJk6ciNWrV2P37t3Izs5GixYt8Ic//AHnn38+Lr/8cuTk5NT66/7www8p10cccURaz7Vr1w6KosBxvM+Yvv/++1qPjYiIiMr69ddf0bVrV2zduhUnn3wyFixYgKysrH32+rLsJRRVZ18kO6DCSewF5QQ1xBVvv8l2BQzb278pTZUlhHTFrxQV0pWUVneZ3vtqrJgYRURERPuc64q9ZujvLTEpHTWpmJSc0MYTE9SA6vVzthwXMdOBabsoUyxVAA68cqkFMROqIkNVJFiOQEHMQssmXi/rsL732KOm4/1cAKiKBF2R4FoGrhx8Cb7770q0bNUaM+YsRJuDDq50nGQyVLKFXkUlXomIiIiIqPH6/fffkZeXh99//x0nnnjiPt+sIKKGZ+nSpSnXu3btwq5du/DTTz/h7bffxt1334277roLd911F2S59ioYrFu3zv9almUccsghaT2nqiratGmD3377rcw4REREVDe2bt2KvLw8bNiwAUcddRQWL16Mpk2bZjqsKskNaVBkCRHDRlDzEp7MxGF01y2xvyVLCKreIfekrICakhQF7P1QfjrYLaTq+JMhIiKifcZyXEQNB4btVJBUJPzeylHTgaZIZRKTqqImFZOSCUTJhCJNkf24/Pdju4g7DkSJya8kSwgqXunVwpiF4riDoriFmOElOoUDqt8XuqL3Y9iO/zrJ3tWy6+DPw67EiuWfITe3KabPnof2HTrs9X0kXyKZD8W8KCIiIiIiKmnnzp3o1q0b1q1bhw4dOmDx4sVo1qxZpsMiogYgKysLzZs3h2VZ2LFjByzL8v+soKAA9957L/71r39h7ty5CIVCtfKahYWF/tdNmjSBqqa/zdWsWTM/MaqoqKjGsWzduhXbtm2r0jNr1qyp8esSERE1BLt378aFF16IH3/8EYcddhiWLl2KVq1aZTqsaskOqAiosr+/patySgJUSRISVZ0CSkr7vKSKDuVXBbuFVB0To4iIiKjOlKwMVRS3EDEcv90c4E0QBVBuRn3MclBsCFiOA00pfwKZjupWTCqdSFRs2P7XhuUgnsjGL822HOyyTFi2A9MRXms9V6DYtBCKK7BdgbCuIGp6PajDugI18d5cIRAzvaQoCYCuyRCuQNy0Mer2m/BB/mKEQiG8OWMWjjvhxCq9j+S8uorzayIiIiIi2o8VFxejV69eWLVqFdq0aYP8/Hy0adMm02ERUT2l6zr69u2Lfv364eyzz8ahhx7q/5lpmlixYgXGjx+PKVOmQCQ+kMjPz8eQIUMwc+ZMSLXwoURxcbH/dTAYrNKzJZOzSo5TXePGjcPo0aNrPA4REdH+JhqN4qKLLsJ//vMftGrVCvn5+SnzhoZIU2TkhmW4rrrXjiiVtbQr71B+dbBbSNUwMYqIiIhqXenKUEVxC3HLy4I3LAfxRA9mCYCWmCiqigw4AoblQpUlxE0HWiIDX1UEckNatWKpbsUkSfImpnHLwfZiA7IkQVNlREwbtu1CU2QENK/yk6bIkCEhYtqImC4s14WQJBi2g2LDhisETMvBjmITRsCBqkgIaV4CWFHcQkhXoMoyTMf14wvqCoKqgqK4iecfuQcL5s6CpmmY+OZ0nH5mp7Tfv5k4fZCciFf15AEREREREe2fDMPAJZdcguXLl6N58+bIz89H+/btMx0WEdVjv/32G1q2bFnun+m6ji5duqBLly644oor0L9/f0SjUQDArFmzMHPmTAwcOLDGMcTj8ZTXrIpAYE8ZhVgsVuNYiIiIqCzTNHHJJZfgk08+QW5uLpYsWYKjjjoq02HVGlmWkBVQq12dqfReVXX3bNgtpGpqr7EzEREREbzKSjsjJuKJpKjdERPbig0Uxkxs2h3D5t0x7I5bsB0BPZEcJAAoEhDUZEiSl8yzI2Lg990xFMYtbCmM47edUeyOmoiadpUy36tTMclyXBTHvfcRMWwUGzbitovCuOUndXnDSoCQoEgSDMeF4wpk6SqCqgLbceEIL7Gq2HCgKyoEBCxHoDBmYUexiR3FJoriNrYWGtgZMSEEoMoSmgRVHJDlfbg36Z+PY/bU1yFJEp57eSLO75qX9nt3hYDpeIlRQdXrUR2ooLwrERERERE1Ho7j4IorrkB+fj6ysrKwcOFCHH/88ZkOi4jquYqSokrr3r07Jk6cmPK9hx9+uFZiKFklyjTNKj1rGIb/dW219iMiIqI9kuuMxYsXIxwOY+HChejYsWOmw6pXSu9VVbfSE7uFVA0rRhEREVGtKYhZiFteX+S46aAobmFHxPuQKmI6MBM9k4OKDFkGHMeFJivQVBmOACRXQJUlRA0bhuXAcgVs14Uqy9gVMxHSFViOKLcNXUWqWjGp2LARMWyIRAlUM1H9anfEgqwAMiTkhFRoigwJgGE72B3z3mNIU/z3qSoyQhoQ1xVojouwriCoKcjSFQQ1FXHHgZX4eWQHFLgQ0GQJTRMJUa4QePn5f+Ll58YAAB54/Bnk9epbpb+PmOn4yVa66sUb0pQqjUFERERERPsXIQSuu+46vPPOO9B1HXPnzsWZZ56Z6bCIaD8zePBgjBkzBitWrAAArFq1CuvXr0e7du1qNG52drb/dcnqUekoWSWq5DjVdcMNN1S5CtaaNWvQt2/fGr82ERFRfSOEwJ///GfMnDkTuq5jzpw56Ny5c6bDqndkSYID4e1ZOQKW4yJYjX0bdgupGiZGERERUa0oNmw/KaowbsGwXBQbDiTJmxBrioSAoiEcUPyqULYrUGzYMF0XiiQhZjoI6QrCuoqsgIpNBXGYtgMhvMQeTZHQMjsIVfF6Jxu2l3CUFSh/SlPVikklE7sggN0RA4UxC64QiJo2VEVCTkiDK7z2gKosQ5EAI/EaEcNBMk8rmKiG5QoB2wGyAzJ0VUFWQEFuSIfpuIiZ3mvJsoTsgAbLFXAcF1kBDdPefA2Pjx4FALj7gb9hwBVDETW9NnwBde+TZMN2EE2MH9KT773y3tZERERERLR/E0LgzjvvxIQJEyDLMqZNm4YLLrgg02ER0X7qkksu8ROjAOCzzz6rcWJUTk6O/3VxcTFs24aqprfVtXv3bv/rJk2a1CgOAGjVqhVatWpV43GIiIgaOiEERo4ciYkTJ0KWZUydOhV5eel3v2hMAqrsJUOpCgzL2+fKEqJKiU3sFlJ1TIwiIiKiGrMcFxHDhusKbCsyUGxYsF0Bw3IR0GRETQeyJKFJSEV2UAMAuLrXZi5mOtgVsSAgkK2rKIhZiJq2315PkiQYpgNZBnYWe8lIuiIjqCsIqAqiiapI2cGy05qqVEwqL7HLdL1apAFNhm7LkCUgO6BBlrz3bLsuCg3vGVWRELMcBFQZB2QFIEkSig0LuipDVQQgeS3ycsM6FElCKBF/YcxrK+i4AjlBFSFdxZIFc3D9X/4CALjptpG4beQdfkyFMRthXSCkK+VOlF0hEDP3JEUFNNk/bRAOsFoUEREREVFj9vjjj+Ppp58GALz66qvo169fhiMiov3Z0UcfnXK9devWGo/Zvn17/2vHcbBx40a0bdt2r8/Zto1Nmzb514cffniNYyEiIiLPI488grFjxwIAJkyYgEsuuSTDEdVfIU1BxLC9vSNZgu16ezoVFQAoD7uFVB0To4iIiAiuKxCzHBi2CzfRQk6SvNKbAVVGSKu80lBBzEJhzEJR3EJR3AYAqIoMXQUsR8CwXUjwMtYFvAmaqsgI6yose0+LvV22AUCCpshoElTRPCuA3TELmuxN7BxXIGLYkIMaiuM2LM1FdkBDzPIqU5WcOFalYlIysQvYkxQFANkBFRKAqOXAcgSEEIiYFhRJgqJIMCwHu6MWJAAuBMIBFW6i/Z6VzNbXFAjhvUbyZ6oqEpqGvZZ5TYKqVwlKlhAOqMhfsgRDrrgCQgiMGDECf3/sMURNBzlBDYXwYouaDmKW105QV+VEVS6vCpfpuH5v6YAmIyeRiJYV8Nr/ERERERFR4/TSSy/h3nvvBQCMGTMGV199dYYjIqL9XSgUSrmORqM1HvO4445LuV6zZk1aiVHr16+H4zgVjkNERETV8+yzz+KBBx4AADzzzDMYNmxYZgOq52TZ6woStx2ENAVFhs1uIfsAE6OIiIgaMctxETUcGLYDUfoPBeBA+ElDAVVBOKCUSa4pjFnYUhiHEF6Wuu0ISDIQi5uwbYGYZcN0gZyACkmSvOQd20VIV6ArMmzXSx7aGTHhugLZQRWqLCEnqMENCBTFLRiJOFRZQkHMBAAosgRXeJO+7ICGqOlVa5JlqcoVk6KJqk9x0/GTonJCKpTERLIwZgLCq8YUt7yfVDJRS5aA4riDmG2jKG4jJ6TBcV00CWrQVRlZugrTcaHIkl/hyS3xww7pCmKWA9sV+OyzzzBsyGBYloVBgwbhxRdfhKIocAUQt7zkqLjiVdmyXeG3EyxNlb2KVMn3HdIVZFfhtAER7V++++47rFy5Eps2bYKiKDj44INx2mmnpZy0JiIiov3btGnTcMMNNwAARo0ahdtvvz3DERFRY7Bly5aU6xYtWtR4zI4dO6Zcf/bZZ2m1BP30009Trk888cQax0JERNTYvf7667j11lsBAKNHj/a/psqFA15iVFBXYLouu4XsA9whIyIiaqSKDduvkgR41YbitgPXLVExSpYQVBXoqoy47SBue+U8k0k2BTELOyMGhACK4xZ2RUw4QiAnpMGyBRwhYCR+j1mOVzVK88aLmQ6KXK81niQBtutVOgooClRFwq6oCUWWoSkyHMOGLiuADAhXwHa9Nny7ohbCuoIDsh2EdQ1bCh0EEhWagPQqJrmugJGoWBVLtNILJ9rcFce9a8NyYbkusnQVluN6rQJtgYjp/byKTduLH4AjBIrjDnKCKrJ07+cU1GS4Lvy4RInEKFmSoCsyVq5cieGDL0EsGsUFed0wefJkKIo3mc0NaVBkCRHDRlDzEp729veVVPLvi4gal5kzZ+Jvf/sbVq5cWe6fd+7cGY8++ij++Mc/7tvAEsaNG4cbb7wx5XsPPvggHnrooYzEQ0REtL9auHAhrrzySgghcOONN+Lhhx/OdEhE1Eh8/PHHKde1cTjj7LPPRk5ODgoLCwEAS5YswahRo/b6XH5+vv+1LMvo2bNnjWMhIiJqzGbNmoXhw4cDAG6//Xbcf//9GY6o4dAUGVkBFRHDZreQfYQ/ISIiokaoIGb5SVFx08GuiImCmDfxshwv8chyBAzLRUHMS3iKJ7LQI4aNwriFYsNG3HJg2i6KDAs7oxZsIaCrMkK6V12qSUBDKFFlSpEBWwhETBvFpg1XCBQb3iTPslwokoyAKiOaqLwUNWwIIaAqMizXRcS0IVwvycpMJDDJkvdeftkex7YiA8WGA8cVUGUJTYKqPzGsrGJSzPKqZZm2C9sVkKQ95UcjpuX3dpYlCYWGBdNxoasKdM2blAISJACWJWAnWgaGAwriiUlsSFcQTiRIJZP8Syf7b9rwM/4ypD8KC3bj9DPPwoTJU6Hreso92QEVzbN0BFUFEgBd9Sa+TcM6mmXpaBrWkZOoUiUBCKoKmmfpTIoiaoQcx8HVV1+NgQMHVpgUBXgnpi+44AK/1PW+9Ouvv+Luu+/e569LRETU2Cxbtgz9+/eHbdu4/PLL8eyzz0Iq5/QxEVFt27ZtG6ZNm+Zfh0IhdOnSpcbj6rqOXr16+dfLli3D6tWrK31m165deOedd/zrTp06oXXr1jWOhYiIqLFasmQJLr30Uriui+HDh+Ppp5/mOqOKsgOqX/EpJ6ihSaKbihCAYbsoitsojHn7ZYbtJUVVZe+LUjExioiIqJFJJjTh/9m773jLqvrg/59V9t6n3DIzIKDGrjFGUWPU6GNPBEXUiBEU7N3wRB9UUjQmtmAssStGFMQSG2JDUMDHXyTRJ3l80hSjIagEolKn3HvKLqv8/lj7nLl36p1hZu7cme/79eJ159w5e5+1zznAWnt9C7BQNixWbhoQ1Mk0sx3LfDdNwjrZpJpTZLENiILUPu/GhRKALWVD3QRCiHQyw5GzBTNFRmFT5afCGHq5YabIppO8xgU2jWtijAwqR+UDhVX4ECnbtnZj51ksHYOqIdMaYxQ+RoxS5JkBFBGIMQKRsnE0IbXTW9/Pp6/VL7ZOEndk0oqubKtGFVajVarO1LR/N3aBECO51tNI/bluxoaZgg2zGfO9jJmOJc804yZQNh5FCvSCFHQFoNrWfEtbPf/yFz/nWU97MjffeAP3/PX78MnPfZFer7/DsWZGM9/LOHKmYKbNApi06DNakRnNTGE5cqZgvpdJloAQh6lXvvKVnH/++dPHvV6PF7/4xXzwgx/k3e9+N894xjPIsvTfxRACb37zm3n3u999QMd4+umns7i4eEBfUwghhDjc/Mu//AtPfOITKcuSE088kfPPPx+tZY0ghNhzTdPgnNv9E1vOOZ773Ocum/M//elPp9Pp7PD5f/u3f4tSavrP8573vF2e/4wzzlj2+FWvetUun/+a17yG8Xi80+OFEEIIsXLf/e53Oemkk2iahqc97Wmcc845EhS1l+a7Gf1i0nnEsL6fM9/NKDJNZhRWKzKjKDLNfDfbo70vsZyEjwkhhBCHkcaHaaWohTJViILUOm5HfYs7maG/pG9x1QQWaKCNWI8hTs/RL9Lxtr3RnibCEa0VBPAh0i9SxPugcoxKT5FpGp9awWUmBWAZpRhVniYEfIgsjhsiik6m6ViNT3FQGA3WGGJ6eXJrsEozqh3rezmFTVWrdhccFNraoyGkn5nRND5Ve8qMZvO4grY8aWYVt5ntoIDaRRpfEYLC5SmwzPtIplM1p6jCtP1dBIxSdNrWeHk7po0bb+HpJz2J/772v7jjne/KRz/zRdatX79dRaltaa3oF5Z+sevnCSEOPxdffDHvf//7p49//dd/nW984xvc4Q53WPa8f/u3f+MJT3gCv/jFLwA488wzeexjH8uxxx6738f42c9+lq997WsA3Ote9+JHP/rRfn9NIYQQ4nBz1VVX8bjHPY6FhQUe+chHcsEFF0wDo4UQYk/9/Oc/57GPfSx/+Id/yCmnnML69et3+tz//M//5EUvehFXXHHF9He9Xo83vvGN+2w8D37wg3nqU5/KF7/4RQC+/vWv88pXvpJ3vvOd2wWA/tVf/RXnnHPO9PFv/uZv8nu/93v7bCxCCCHE4WRyT3E0GvG4xz2OT33qU5h232NHQoiMG0/VJp/HmDpqaKUorKabmbSHdBibKWzqplJ5KufJbUrO3xEFK977EstJYJQQQghxGBm11ZjKNsgJYK5rKezOJ65apSAcaxQLY8e48riQ2sltHNUoUrlO51MbvkmgUW40zgcKq6mdp/Fp4psZTSczDErXjkHReE+MaRI3rBtiUIRIiog3GqUU3TwFVc1lltwqqsZT+4A1ULnIqHas62bESBtRv/NrWmrSk3nyUyvFuG0bSEzVraxRzBYWrRW1C3QzQydTzHUyXAhorbBG4VykkxuU2trz2YdICDDftWSTNneZYTgY8MynPYWrfvwjjjrmtpzzmS9x9DHHTMcghBB7KoTAa17zmunjXq/HRRddtF1QFMD97nc/LrjgAh7xiEcQQiCEwGtf+1ouuuii/TrGW265hVe84hUAdDod3ve+93Hcccft19cUQgghDjfXXXcdxx13HDfddBMPeMAD+OpXv0q3213tYQkh1rif/OQnvOxlL+PlL385D33oQ7n//e/PXe5yF+bm5nDO8ctf/pK///u/51vf+hYhhOlx1lo+//nPc8c73nGfjudDH/oQ//zP/8w111wDwHve8x4uueQSTj31VH7lV36FG264gQsvvJB/+Zd/mR6zYcMGPv3pT0tVCyGEEGIvXHXVVRx//PFs2bKFhz3sYVx44YUUxY6ztxsfpoE+cdu/jOCJ00R+CfSZdAvRhGAlkGw/kcAoIYQQ4jARQqRq28WN21Z6vdzsMihqqcIaennklkFF7QIKxbgJaJ0CfUYxgo80PlJYKDLNuFFYDVZrXAhUbVDRpMWcj5EYI5UL078f1YFurpnNLTEqyiagSRWXlErBUlm0dHNLF8iMI4wbOsZQZIZOZimbsOLAqLaw1bRKk/Nh2vouBV6ldnVGKYZ1akNo27Z1mdFtkJhmVIOLAatTEFnjA4tlg1ap5V+IhoVxjTWauqo4/bmn8C//9P9Yt349H/6bL3L7O9yJTvtZFDvJBhBCiF353//7f/ODH/xg+vgVr3gFd73rXXf6/P/xP/4HJ598Mp/73OcA+NrXvsbVV1/N3e9+9/02xle+8pXcdNNNALzuda/br68lhBBCHI5uuukmjj/+eK699lruec978o1vfIP5+fnVHpYQ4hDSNA1XXHHFsopQO3O7292O888/f78kQxx11FFccsklPOlJT+InP/kJkDZsd1aZ6uijj+bCCy/kV3/1V/f5WIQQQohD3bXXXstjH/tYbrzxRu5///vzta99jX6/v8PnDio37VwCKYm8dJ4QlgT6aEXHGnKrKZ2ndJ5+YZkpDu/wFekWsv/IrpsQQghxmBg3KTK/dgEXUuu3br6y4KGJbm5oQsSFyKBuiDGSa41WahrUU7eR7Fqpacu4SdnPsvHULqSWeyZFItXeUXvP5qFjWHlyo1BA5TwbRxVNW5HJx4hC0fjIQtmwOG6mgUtAmjzXHqXSsZPWeLszqc40ibIflKn1XdO+T908BXLlVpO11zGoHOPGk1mFUqnPcwwpAKoJgcxqGhfYPGpYLNNzR42n8REdA2ee/gL+4e+/Ta8/w7vO+xwbbn9Xxu3YFdBdYVCXEEIs9aUvfWnZ4xe96EW7PebFL37xssdf/vKX9+WQlrnsssv45Cc/CaQWf3/0R3+0315LCCGEOBwtLCxwwgkn8OMf/5g73OEOXHbZZdzmNrdZ7WEJIQ4BGzZs4PTTT+fe9773dq3qduRud7sbb3vb2/jhD3+4XyvE3ute9+Lf/u3feOUrX7nT9n79fp/nPe95/OAHP+BhD3vYfhuLEEIIcai68cYbOe6447juuuu45z3vyaWXXsq6det2+Nwt42YaFFXWnk3Dmi3jhqpJHUdcSMn1VRPYMm7YNKwp2w4ew8qxUDYH6rLEYebwDrkTQgghDiNVWwWpbKtGFVbvccs23QYBNUBZh2mvY6XAGo3VChciZePp5ZZOpqmcp7AaFwy18wxrh48GaxSVA+ciw7atXje3bfs5CFajlaabG+Y6FqUU/dwQSdWYXIy4yuF8bLMKAouVY76XE0mBYP0VZBcUVtP4QMcaqiawWDtmCkvpt1bVmrTXm8ktAxxV49kyanBtFa4QU7BW6TzOp+pXwUMd0vtwRCdnXDuMgte/9lV869KLybKcv/jg+dzxV+9LBLSGzaOG9f1cSqEKIfbKxRdfPP3z3e52N+52t7vt9phHPOIRdDodyrIEUtWoM888c5+PbTgc8tKXvhQApRQf/vCHybJsn7+OEEIIcbgaj8c8+clP5p/+6Z848sgjufzyy/d52yohxOFrbm6OD37wg0Ca2//gBz/gmmuu4frrr2c4HGKMYX5+nmOOOYYHP/jB3P72t9+j8z/60Y8mxpUluG2r3+/zrne9i7e+9a1cccUVXHPNNdx0002sX7+eO97xjjzqUY/aaUULIYQQQuza5s2bedzjHsdVV13FHe94Ry6//HKOOuqoHT53UKWOGwALZQqGglQhqrCpA4dWihBTG72qTU5frBx1CMx1Msa1Ryt12FeOEvuefKOEEEKIw0RobzBNKintbb/mzGjGeHx7nkllqMoFOrlhUDrGtcfqFDTVzQ3j2tPPJxWlPGXjqZrAuPYMS8eWssG5SFSgFXSzjFlr6BcZ/SId18nMtJJSiLptu+cYNQ6rNTO5bStSpYl35cKKyo12M8OwcuQ2BXaFNrArLnmfCmvwMTKuPMT0HjY+4Nv3dEtbvcqHSNkEFsYls4WllxuMgkHpsSby6feexSVf/CzaGP7kHR/iLvf9LRarhl5umZnc/2uDrOY6EjAghFi5zZs3c+21104fP+QhD1nRcXme85u/+Zt85zvfAeD73//+fhnf6173Oq655hogVbJ6+MMfvl9eRwghhDgcNU3D05/+dL797W8zNzfHpZdeyj3vec/VHpYQ4hDV7/d5yEMesuI1x4GS5zmPfexjV3sYQgghxCFjOBzyxCc+kX/913/l6KOP5pvf/CZ3uMMddvjcxodppailQVG93NBtk8+X6mSGfoyMa8+oTvtFC6R9kWHlpoFUQuwr8m0SQgghDhOTxLvJzz2tFjUxOS6STuRjpNcGPRXWUGRperFYNoxqRyczFG1AUz839AuL1RqtFaPKsWmUgqKqJgVMaaU4op+xvp9Pg6IKa5a1l9NK0c0MmdbENlDJtC34JgFbYYWZhlorirYNYDczxAjjdiIOoEnXa5Si9oGmbd+XJvOpbV/VBnp1rIEYKdoqWtcvVFy/ZUwk8NXzz+aCj38YgDPf9C4ecdwTyK2myFKrvkHl8DGde1x7Bkt6cAshxO786Ec/Wvb47ne/+4qPXVpZatOmTVx//fX7bFwA//iP/8j73vc+AI4++mje9ra37dPzCyGEEIezEAIveMELuOiii+h0Olx00UU84AEPWO1hCSGEEEIIIdawqqp46lOfyne+8x3WrVvHZZddxj3ucQ9CiAwrx8Zhzc2DipsWK24eVPx80zglslduurcy17X0C7vTvSitFP3CMtdNtXyqJkwrTo0qf2AuVBw2pGKUEEIIcZhQCojtT1YeOLT9edJxto3WdyEF8/Ryw6j2zBQZ0EwrQpVNIDcaoxXlJNhIKZwPoCBqRS8z+AgROKKXc8Ts1lJPSytFLTWp2FTYdO668eSZoXGBEOIeBX71CkPpPJ3c0Mk1o8ozqh3G6PR3laduAt3MEGJkcewYN47ap1Kvs90M7yNKwahOYxo3vg1CU1x6wSf4zIfeAcAfvPbNPOH3noHVik4/JzM6VaiKYJSeVouSrAghxJ746U9/uuzxnrTO2fa5P/3pTznmmGP2ybiapuFFL3oRIaT//r/73e9m/fr1++TcQgghxOEuxsgZZ5zBpz71Kay1fOELX+CRj3zkag9LCCGEEEIIsYY553jmM5/JZZddRq/X45JLLuFe974PW0YNlfNsu7MUfAqWiqTuGkYpNvSzaUL67hTW0Msjo9ozrj2dzFA5TwgWrfcuwV+IbUlglBBCCHGY0ErhiWki6VMruM4OAo52q531dqwmRGh8JMRIv7CEmFrJzRQZmfGUtceFSNW2t1MqUjdhOnmeLTJiAGOAWKO1xmaaqkkBVt3cYLaZ+IYYqdzWzIGZjsUHqBpPTyuUUpSNZ9auPKAoM5p+YRlWjrlOhg+RQZ3O898bRxTWkBnNsHHUTcDHtMGfmxS4lGlNJzfcvFgRoyI3itpFujlc9d1L+Jt3vwGAF/zBmTzzhS+jY800sAzgyJkCaxQL45RNUZo0+R9VnvmeBEYJIXZvYWFh2eMNGzas+NhtA5UWFxf3yZgA3vrWt3LllVcC8LjHPY5TTz11n51bCCGEONy98Y1v5P3vfz9KKT7+8Y9z4oknrvaQhBBCCCGEEGtYCIGXvOQlXHjhheR5zpe//GWOfcCD2Disp8+pXaB0nhAiMUJZe0rvpwnxXkHpDLZy9IuVhaN0c8O4SftJtQvkbfL5So8XYnfkmySEEEIcJgqrUzCUNVRNoHKBftyzykohRpRKLetm26pGmU6t3/qFZbaToZVjVPvUVs8anE+T5BjAakUvs4waR24NY+uwVrFxsebI2QKUIteazGpcDIwbyG1qZhdJE24XwrQdYGY1M7llWHmcDrgYURpqH/a4VeBMYfEhkhudql5FuH6hZLFKQVybxk2qctW+l3PdjNyk1oG50YQYmSksRsPPN41ZqBr+83vf5uNv/WMAnnzaC/iDM19D1mZJKJUCq3r51iApyYoQQuytwWCw7HGn01nxsd1ud5fn2ls/+tGPOOuss6avcfbZZ++T8+6NG2+8kZtuummPjrn66qv302iEEEKIW++9730vb3zjGwH4wAc+wGmnnbbKIxJCCCGEEEKsZTFGXv3qV/Oxj30MrTWf/exnefDDH82wckAKgJoELy01ahyNjwxqRwww2zFopRjVqVPGTGf3ISlaKXKjU1K88+Q2/blf7PZQIVZEAqOEEEKIw0Q3MwwrR241VitciNOAppUa1x6lFN3cYo2mmxms1YxqjzWKwhr6haVof1f71GZvZkl1pNp5aq+ZKdLxR6iCuSIjEttiVAqrVFuNKtC0wUhLWaUockM+DShSNF5BiHSsIcQUvLSn5rsZChhtHDHTyeiOHc4HmiZAAKMUMx1DbtM12iUBS0Zpull6XzuZYdPV/8onz3olwXseecJJnPFnZ9GESM8ocqvpZGa74C3JihBC7K2yLJc9zvN8xccWxfI7DOPx+FaPJ8bIi170IqqqAuDP//zPuetd73qrz7u3zj777OnmsRBCCLHWffzjH+eMM84A4C/+4i84/fTTV3dAQgghhBBCiDXvzW9+M+95z3sAOO+88zjuCU+aBkUtlA1Vk/ZqlEr7L5nRqUpUCJRNYFA1aW/DawZVw0yRMW48SrGiPY5JMFRoA69cCAwrl34XU3UqpVIQVWHT/pIklYuVkl02IYQQ4jChdQpcKp2nmxkWK7csoGl3KucZ1al93YZ+xrgJzHYzUFA1gYWxo5dHum0FpLmublvr+bbSUwrEKhuPNZrZjsVohQ+pvd+4zTZQQJ4ZMq0pvYewdcKLVnSMwZqtk91ubmicIuJQSqXqSzEFgu2NuW7G0XMdbhlWGA3WaMrGUVjNbDdfdl7VZjF0Ms2w9ri2l/Z//PD7vP81L6OpKx70yMfyR2e9h9vMdlHAXCfb6WRdsiKEEHtr2wpRdV3v5JnbmwQvTWxbQWpvnH322Xz3u98F4Nhjj+XVr371rT6nEEIIIeDLX/4yL3zhCwF41atexWtf+9pVHpEQQgghhBBib4UQGTd+1YN/3vve9/L6179++ufTnvXsafu8pUFRvdzQzZcnfefGYLWmcRnD2qNR7fNTcFTqMKKnnTN2ZnLKxgUWxg3OR+LMNk+K4Ik0PgVNFdbQKwzZbs4thARGAb/85S9pmgaAO97xjqs8GiGEEGL/6RUpMKqTG+oQtgto2lH7uRBTQNMkKKrINDOdDKXcdDK7QJoYj9rgptzo1AKvncCn86ZKSp0stZ+b62RsHNZ0C0PtPEToZZrFylM1HpMrZvIdT1UUqY1eN0vVoba0/x/v5mY6xluzWJjvZSyWDUfNdYhbxgwqR+U9s2QoBUan9nlFpqfvmQ8N48bz4x/9mHe+6nmMh4vc70EP5cy3nU23U9C4QGY1ZePp7SI7YtusiBDjTp8rhNje4Tq3n5lZfpdg2wpSu7Jthahtz7WnrrvuOl7zmtcAKYD0nHPOIcuyW3VOIYQQQsC3vvUtnv70p+O95/nPfz5/9Vd/hdrDFuJCiL13uK41hBBCCLHvNT4wqjyV82y3A3CAg3/OP//8aUXaN73pTbziFa9gyyjNecraT4Oi5rp2h0n27fYPRiu6mSG3mtql/afMeAprGNWeue6uxx8jjOrUxWNOKYxW1G0SeViSQK+1omPT65TOU7rUdWNGOm+IXVgT344HPOABANzpTnfiS1/60i6fe8UVVwApy/lBD3rQis7/yEc+kp/+9KcopXDO3brBCiGEEAexzGj6hWVYOeY62S4DmmKE2gVqH5jE5kwCmgCOnCkY1o7No3ra9q5qPD6yXdDQhNWKbp6CoyBlF3QyQ+U8w8qTZ4YjMsO4bqtM+RRMpFBtkFW6hsIaUFA2fvrc3Bo6bWDU3rSe2zYzY6F0LJYNQUEvt+RWtdWiFEYptCZlLBBoXGTL2HH9z6/j7a98DoubN3KPXz+Wt3zok3T6MxilKL0ns5raB3q7GMfkLZu854daXNTBkgEjVo/M7fePubm5ZY83bdq04mM3b9687PHs7OytGsvv//7vs7i4CMDLXvYyHvKQh9yq8+0Lp59+OieffPIeHXP11VfzlKc8Zf8MSAghhNhD3/ve9/jd3/1d6rrmpJNO4pxzzpGgKCG2IWsNIYQQQqwFg8pNW9QBqxr8c+GFFy6rSPu6172OECKVS4ny4yb97OVml51Hxo1jUHuqOnXC0EpRO48LgdvMdqh92g/YUXL+xMZBzbj25JmmcqlDhw872CDxkaoJab8pS/tCw8oRYpzuXwmxrTURGPWv//qvKKUYDAa7fe6jH/1olFLc/e535z/+4z9W/BrxUNt1FEIIIXZiprD4kFrczXUySpOCi1yIVC5QubDdMUsDmhofIKaqTVopMqMZ1Z7MpJ7SjQuU3tNUgUwrerkhz8x0Ej8xmcQPKsdMkbEla9rqVZrap4l3jUK7VGFpJrcYpYlERrVvA7ZimkxrRS8zdIyhl5s9WhzsLDMjtxprFG4U0Ao0pEpWRhFjZLJuCTFSu8DPf/FL3vT7p3LLDb/gtne6G6957yfpz8zSKwyjyhOnFaB2PZ7JlGSyPjhU9joOpgwYsbpkbr9/3OUud1n2+Nprr13xsf/1X/+17PFd73rXvR7HV7/6VS6++GIAbnvb2/KXf/mXe32ufemoo47iqKOOWu1hCCGEEHvl3//93znhhBMYDAb8zu/8Dp/+9Kexdk3c1hXigJK1hhBCCCEOdlvGDWUbbFS2CetulYJ/Lr30Uk499VRCCLzwhS+cVqQd1Y5ICthyIaLU1m4dSzU+MK49w8oxqjwGhY+R0nlmCosLkcXSoVSVKkkZxVw33+FYFsuGxSpVqXIuUDeBTqYpa4dSCmMUKiqiingfiTGSW4MLkToE5joZ49qjlZLKUWKHDslvRYxRFihCCCHELsx3M4xWDCs3bW+3u6wEYJrF0C/sdGLs2//njmuP8x6lFV1rpv2iI2CUSpWoYFnQSwiRLaOasvH4AM4HBlVMVYOUpWoCjQ9sGTUsjBusThWFTFtRyGpFjKAzg9WKuW7GTGHbyk67t6vMjM3DmkjEx4jzgdmiwBqFDykYy2o1DSgbDhZ4x6uexy+v/RlHHHN7znz3x5nfsAGALaOG2gX6RRrT7qYodRuYNqmatKsMirXiYMqAEWuPzO1X5td//deXPb766qtXfOxPfvKT6Z/Xr1/PMcccs9fj+OlPfzr983A45Dd/8zd3+fxtM+3f97738alPfWr6+HWvex3Pe97z9no8QgghxFp3zTXXcPzxx3PLLbfwW7/1W3z5y1+m0+ms9rCEOCTIWkMIIYQQB9KgctOgqIWymbaoUwoKmxLPtVKEmJKIqzYwabFy+zz45zvf+Q4nnXQSTdNw8skn8+EPf3hakXaSPF+2VaMKu313kGHlGNXp73OjWQiRyqckfB+gcRGIKKUom4BRihsXa4zW23X8cD6wcVgTI+3xgWHtWdfLKGzaD9JuazcRm2lCjFRtUJnzae9lrpO1iddakq7Fdg7JnSYpIy2EEELs3kxhKayeVvHJrV5W0WkpRZoMF1Zjjd5hJkM3N4SQSpyO2ij+TtvermmrO91mtrOsTdqo8Qzr1FatYzVlZtgybhjVjlynln5GpRFopaYT415hWN/LCTFlHABsmMmZ6aQe1ytpxba7zAwfU5lWoxRKKcaNo8CQG8248ZQxlY+lHPMX/+v5/PTHVzK3/gj+5D2f4Mijb0fVpDaEQKpuVUa6uWN2F9kcIcbpMZ22LG2xk89krTiYMmDE2iRz+5VZt24dd7zjHaeVov7P//k/Kzqurmv+6Z/+afr42GOP3WdjWlhYYGFhYY+O2bRp07I2gNu2+RNCCCEOJ9dffz3HHXccP//5z7n3ve/NxRdfzMzMzGoPS4hDhqw1hBBCCHGgTLolwPKgqF5u6OZmu8CjTmbox8i49oxqT9UEFmj2SfDPv/7rv3LiiScyHo95/OMfz6c+9SmM2ZpsHtrA8dDex9/2dZaOv2o8ZZPu+zc+3d+vvWdYB3KjqH2kcYHMFBitGNWeGGGmszVMZfO4ZlA6tpQ1w9LjY2S+m4KifIgMa0dckmTdySxzXUs3t9QusGXcUPtAbjSdLHXwmO+t7X0Vse8dkoFRQgghhFiZzGjme5oQLOMmBSiFuKSKj1IUVuNDnLY/230mg6FyYVoZyRo1DWwZNX6ayTAJmOnmhoUy/bl0Hq3AB6h8amGXblTGVG0qT4FJIUY2jVJ2QWEN8z3Lhn4BQK/YfbWolWRmxDZIqQkpK0NrhdWKQZnKuYYImxZK3vLqF/P9//cP9GZm+fMPfpK7/eqvMigdtQ/cMqhQ7XmzNpvDagX9HZeLHbeLAqu3VthaafWrg9HBlAEjxOHgCU94An/9138NpCpQP/3pT3fbFu/v/u7vKMty+viJT3zifh2jEEIIIVZm8+bNPO5xj+Pqq6/mzne+M5dddhlHHHHEag9LCCGEEEIIsRdG1dbk4cl98rluSvTeGa0U/cJijWJh7KiaQGn8rQr+ueqqqzj++OPZsmULD3/4w7nwwgvJ8+X7FZO9ncnPpUFbw8pNx79YNdTtn7u5QTVpvHntqJvAqPbUzqNUOs6HyLpezrjx0/Z8w8rx3xvHjBvPwrgBFEYpXAj8YvMYH9LeEFpRGI01iqZKbfdmioz1vYxubhjXnpsGFXdY36NynhDsihLoxeFDQuWEEEIIgdZpwrqhn3PkTMFtZguOnCnY0M/JbaqQBNtnMmzo58x2MjpZaoHWyQyznYwN/TxVU4KUydAGEw0rR+PDsoCZcePxIeJCZLbImOlY5joZ890sTfrbdnm1DyyMGzYOaka1o3aB3CqOmM2nQVH9wu42S2JXmRlLrydV1DIc0SuYa1sPjhtPEyJKK5SCd7/+VXzv7/43edHhnR/9NA98wG8yU1jW93Myoykbz6ByjJtA8GkV4UNc1lZuIlXaSu/JpF/3SqtfHYxW+j7vyfdGCLFrJ5100rLHH/nIR3Z7zLbPecpTnnKrxnDGGWdMW5Ks5J+f/exny45//etfv+zvzzjjjFs1HiGEEGItGg6HnHjiiXz/+9/nmGOO4Zvf/Ca3u93tVntYQgghhBBCiL0QQqRyW/dDIN0n31VQ1FKFNdP75uN2DyEF/+xZS+Brr72Wxz72sdx00038xm/8Bl/72tfo9XrbPW8SBzX5Oakg1fgw3cPYNijqyJmCI2dycqNZ183pdSzd3GCtxoXIsPIMK8fGYUnlPDcslNy4UHLdplHad3GexkVGlUsVpypP7VMiv1KKXKcE+tAGSimlGFQNNyyWNCGglGJYOjaPauKS91mICQmMEkIIIcQu7SyToV/Y7cq7TkwyGea6qcpP1YRpINSWUbNdwEwvt6zrZ6zrZRwz12XDTE43SwuD2U76fa+wGK1QGpTSzLRBUL22olI3NyuqKrTS6+lkBgVkVpMbjdUK3wY3bRrUfOCs13LF17+MsZZ3nfNxHv7wRzDfzchMGtu6XkZuNT5GnEuVp0a1p7CGUe1xbaBPiClQamGc3pMiS4FCsLLqVwerff29mZxPCLFzj33sY7nPfe4zffz+979/u8Cjpb773e9ywQUXTB+feOKJ3OMe99jhc6+55hpU21pUKcWjH/3ofTZuIYQQQmxV1zVPe9rT+O53v8u6deu47LLLuNvd7rbawxJCCCGEEELspXHjiUDddkyYVEvaE93coBS4EKld2OPgnxtuuIHjjjuO6667jl/7tV/j0ksvZX5+fofPndy/nyRtT5KWp0FZjZ8GRc12LL083fPv5ZY8S+EnM7klt5pMazrGkJuUeL5x2LBxWFO7wC3Dmqr2FFazpXKMXXqfrEndJjb0cm473+U2cwX9jiWzGq0VETA67eHULrA4dlQ+jW3TqJ52pxBiKQmMEkIIIcRO7Y9Mhs2jmhDidgEzx8x1p4FNqT1ezlwnI880hdXMFpZ13YzMagqj6bTjGNU+BdO07fr21fXotp0dpAl21QR8jPgQ+NyH38mlF3wCpRSvfdv7ecRvHw+kCftkQZMbDSgKa+gWhkHlGVYNw6qhdp5NozpVwBrW0yyLItPT61hJ9auD1cGSASPE4UZrzVve8pbp4+FwyJOe9CSuu+667Z77/e9/n1NOOYUQwvTYs84664CNVQghhBDb897z7Gc/m2984xv0ej0uueQSjj322NUelhBCCCGEEOJWmATplO0988LqnSYP74xWqt1z2HqelQb/TNp0X3XVVdzpTnfi8ssv5za3uc1On19M9kXa+/mVCzgfqCfX0WztfJFvc89/tkit7UJMlZ1mOqlTSa9jWd/NsErhfMBqBRF6hWXQtt7TpECrmcJy1GyHuW5KPs+Npp+nPaBJUrnzER8jM0VG2Xi8i9Q+EEPaU5hUuRJiYvdlFYQQQghx2NpXmQzjxuNCpGw8lQ+Yxk8n7UsDZvpFyiIY157aBTKryezy4KBe7RjXnqr2zHUyermZVo3a19fTzQ1VOw404OHCj3+Yiz7+AQBe8Wd/ye+c+FQq5+lmaVrVyVJf7EHl2uAejVWaQe1QSnHLsGG2k8q/ruulBY3Vim5uppP6lVa/Oljt6+9NapuYWjr21/D7IsSB8KQnPYnTTz+ds88+G4Af/vCH3Ote9+KZz3wm97///Wmahn/4h3/gC1/4Ak3TTI9729vexv3ud7/VGrYQQghx2Isxcvrpp/P5z3+eLMv40pe+xEMf+tDVHpYQQgghhBDiVpoE6UwSf/c2ITq3msqF6XlWEvwzadP9b//2bxx99NFcfvnl/Mqv/Mouj+m2exy5TZ00XIhtizpFs+Sef2cn+zK93OJ9ZGQ8xEm1K8Vc17IwdsQYCTFitGJhVONcpF9YQox0M0Mvt2Rm+8AxrRTdzGC1YlA5GhfITerAUTYe6xW9torUpPuHEBOysySEEEKIndqXmQyVC2wZN2ilGLZVgHYUMJMZTdbVqapUM+kjDTGm5892LBrIbQoksmblATN7ej2Z0fRywy2Dmn5m+caFn+Qz70/VWH7vJa/m4U86LY2vjGilqF2g8QGtFJ3MpIyFPI1rXT9joXJEH4kxTif2823Ww0S/sGs6KAr2/femdH666OsX+3y4Qhxy3ve+97G4uMgnP/lJIN0AOeecc3b4XKUUf/Inf8KZZ555IIcohBBCiG289rWv5ZxzzkFrzac//WmOP/741R6SEEIIIYQQYh+YxC9Nfu7pvfKJyWHbnm9nqqriqU996rI23fe4xz12+zpap04YpfN0M8Ni5dgybuhkdtqyLt/mnv+ki0TjA2UTGFQORdrvUEAn0xTWUNhA1aRuIvP9jM2jNnCqSfsKETWtWLUz2ZJgqKr29DuWQekIOuJCxIfIplFNZjUhxuneklbp3N3MTNsEisPH2t51E0IIIcR+ta8zGcrG08st48bRzewuA2a0VvQKS28Hf2f13gXM7M319AvLxlHN311+CR980x8B8IRTX8QTn3M6VRMYVg6j1LLrsFpxm9kCo1LfbK0V/dxitWHcuOnzRrXHaodusyvW9bIVV786mK1mBowQAowxfOITn+CJT3wib37zm7nyyit3+LyHPOQhnHXWWfz2b//2AR6hEEIIIZZ6+9vfzlvf+lYAPvzhD/O0pz1tlUckhBBCCCGE2FeUAuLWwKa9vc89OWxynl3FVznneOYzn8lll11Gv9/n61//Ove97323e14IkXHb4WNpEJEPkVHl6GSGImjCCBbLBucDWqvpPX/nA+PG07iAj3G6DwQpud1oRQQKk6pPHTmTs3FYk5nUaaPygcJqrIaKrQFMu1NYTeU8LkZC21FwXHsWdJMCsXLD+n6+5M0DT6TxaU+nsIZeYfZ670KsPRIYJYQQQoid2teZDJMAF+cjZAc+YGZvr+f7//j3vOnVLyWEwGOf8gxO/+M3Mm48PgYyrQBFZhRKKzrGLGv/d3Q3a7MqGnwMDEuH1gprNIZIN0/ZDVopKhe4eVCt+Un5amXACCGWO+WUUzjllFO48sor+f73v88vfvELjDHc7na340EPehB3vetdV3yuO9/5zsT98C/h/jqvEEIIsVZ85CMf4Y//+I8BeMc73sGLXvSiVR6REEIIIYQQYl/SSuGJqUqRT8E5O2tDtyt126lhUu1oZ/fdQwi8+MUv5sILLyTPc7785S/zkIc8ZNlzGh8YVZ7Keba7Mxe3/tg4rMmtxijwpOAjHyNWa8a1Z9x2B2l8YFx7Sh8gpI4ZmVYM6sj6To5pu0PULrAwdnQyTek9RrVBVjECgRjTfs/u9hS0Ulit03U4R9l4FscNs4UlAjHAQtkQwpKKUVrRsYbcakrnKZ0/JDp4iJWRT1kIIYQQO7WvMxm2daADZvbmev75//1f/uD5p9HUNY88/kRe/udvR2uwRtHVGTMdi9GKue7W7ANFCt7q5im4aVg5ahfpZhbXbftnG0WMUDVpMXAoTcpXIwNGCLFz97nPfbjPfe6z2sMQQgghxDY+//nP89KXvhSA17zmNdLaVgghhBBCiDVmZxWXlrZtK2wK4OlYQ9WE1AFjBcE/IUbKxlO7gGvbwxFhvpul6ks7aKMRY+RVr3oV559/PsYYPvvZz/LYxz522Vg3DmsGlVtWHSqESGY0Si0PIgpZpGwCPoJRYIzCucgtw5K0EwKNS9fkY8S0151ZTRMihVY0IbBlVKdgMAWj2hGx9JQmt5rcaIJPxyqVWup1VxA4lrfv6+ZhTdUElFI0IbJYNtBNQVxVE6h9IMZIbEecGc1cx7KunzOsHCFG5jrZnn70Yo1ZUztt4/GYK664Yr88VwghhBDb2+eZDKbNZGgzGg50wMyeXs+P/v2HnPZ7T2E8GvKQRzyaN77rr1E2J7aLFq0VZsk/WkHe9reeXONC2VA16frLxrE4blBt6z2jFa6teoWPVE3AakU3M3Rys2Yn5Qc6A0asTTK3F0IIIcTh7NJLL+VZz3oWMUZe+tKXctZZZ632kIQ4ZMhaQwghhBD72+4qLi1t25YZjfOB3KZ2ci5ExnVKjN4R5wOj2rcBPel3o9rhfcRqhVKKUeUZWkeILOs+8aY3vYn3vve9AJx33nmcdNJJy8a6UDaU7X5F5Txl7ad7FArI2mAua/R0v8Io0AqaAEVmUoCVi3StZlA3OJfu3XdzTTe3ZEajURSZxho1DewaVI46BCJQ+wB1up7CGqrGk1tFbIPBjFLkVhNipPYB5wIhQiSiSHsxkciWccOwdORW42OgrAO50ZRNYFw7rNH0tCG0n0fdtvorG8+WsuGIfpHaAyq1JpPUxcqtqU/3F7/4BY95zGN2+7wY44qfK4QQQoid29tMhqUmE1eArjXLfh7ogJk9uZ7/uuYannHSE9m8eRP3+80H8d6Pfopgi1QOtvH0cstcJyOzmn5u6O1g0jys3DQoarFq2DxqcDFSWE2RpQXGfDcjxDQpr9oFwmK7QJjrZIxrv+Ym5fv6e9Npvy+FXZutBcWOydxeCCGEEIer7373uzz1qU+laRqe/vSn88EPfhAlSQBC7DOy1hBCCCHE/jSoHMPKTR/XLlA6v9O2bXUb6GR0qoS0WDlGtceaFBS01LD9uwnnAwtlzcI4/a5XGAZVw3wnR2m1rPvERz/0Ad7whjcA8L73vY/nPOc5y8Y6rByLY0fpPYOxo2p8qhBlFHN5RrcwKek5RnRIXS8mQVMda9AqsjCuWawc3dwSVaSwhsJCp62MZbRuk8c1tg3WCnkKdhpWjlHpKJ3nyKJDWTus1eRWobQit2b6egtlA4DWoNh2rRRpQmRh1HD9QklhNS56rDLUwaN1Rj839IsM55d/NinAKxIi0ARuHlbMuozKBYoNvWmAmTj0rJ0dtlbcTWWJpTcRdvfcHR0jhBBCiK26WapatNJMhh0Z154YSZH/mWFUeea7GYuVO+ABMyu9nhuu/yWn/O4TuOH66/m1X783H/vMF8h6Mzgf2DxqqF1gpkjZEwp2GNzVtIsdSEFRZe2ngWBHzRbk1tAv0sKI9hz9mMYzaku8LtAw18kYVi6Vn10jk/J9/b3J2/d5JeVzxdoic3shhBBCHG6+//3vc+KJJzIajTjhhBP4xCc+gTEyzxViX5O1hhBCCCH2hy3jhrJJ9/3L2jNutlZcWmabDhG93LBp1NDJUtJ01QQWxo5eHunmKSBpcZtqTqPaMaz89PUyqzFKpWRk69k0rKfdJz7y0XN51StfCcCb3/xmXv7yly8b62CcgohciAxrT+3S7zs2BTT5GClrnwKc2vvwmVFYrdsgLk0THP2OZXHcUDeBqCIda5gpLEVmyI0mM6rdG0nVrLa2FoTgI86n1nxbxjWNj2TtXo9W6ZpTcFRgWG0NDtOKdK6Q2uF5H3FEBmNHhDbpHBSR267rpCRzBVtG9Q4/G60UPgQWS0/uUiAXwA1bSn5lQ+9WfkPEwWrNBEatdHGy0ufd2mOEEEKIw4Fuy5iWzu82k2FH0uQ9TWC7eQoC8h46uZkuGA5kwMxKrmfTxo0846lP5r+u+Rl3uvNd+NyXLuI2R92GjcOaENPEPbL1hmhu9bRy1bbjBKgaTz2pmlRYupkhtwaltg+o0krRLyzWKBbGqdpUadJiZFR55ntrIzBqX39vAAprdvg+i7VJ5vZCCCGEOBxdffXVHH/88WzevJmHPexhfOELXyDP89UelhCHFFlrCCGEEGJ/GVRuGmi0UDbTbhFKMU1s1krtsENEkWl6uWFUe3q5mQZHjSbBVT49VwGLZcOg8rgQIEJuNP1O6mARYiTTelrNabFyfPUrX+TMV5wOwMvPeCV/+qd/ut1YbxmkIKGUdB7pF5a5IsNaNW0xt7Td3WyRUbuIzWGua1kYO3y7nzPXz9k0qMitYUM/Z10vx/nAuPGM67DD1oLDxnPzoGZUN9P2gOu7OT6mlnfz3RyF48aFksxoeplh7DzjyrODZoWEEBlUDZnRKKWofGC+sHQyy6hxdGIKNlNtS77MqCWfTUSp9P6NagcDuN26LlvGDXPjhrluth++PWK1rYnAqNe//vWrPQQhhBDisNUrUoBLJzfUIewwk2FbYUnlI4Ai09MgoHX9DB/iqgXM7Op6YlPyrFNO4kc/vJKjjzmGz3/5Yo4+5rZtQFRgse1VrQL4EKldYF1v+0lyaP8OoGz89M+Z0XTaceftImlHCmvo5TEtitosjcp5QrBrJjhoX39veoVk0R8qZG4vhBBCiMPRz3/+c4477jhuuOEG7ne/+/G1r32NXk+ykYXYl2StIYQQQoj9pfFh2pJuaVBULzc7vN+9ow4R6X53qsC0rpeRG824ThWhtoxT67hl1ZwyQz839Ao73T/pZJrZNkBqXHsuv+wyXvX7LySEwGnPfh6vfcNZjNu2dZOxjmtP7UMap0t7E93c0MtTqEhhzbTd3bhOid6LNMwW2XSsvdywWELZpHaAHkUkBYDdMqgISzqDOB8pvYcQ8SGyUDWpOpPR9DJL6QI3LVZkSoFS+BgIMVWoikQ2jWpu8pHcqBQA5iNWa3Kb9gu0hsVxTZEZGu8Z1gGtFMes77JpVFPY9Drd3KTnb/PZFDa198ut4oaFVJlr07Bifb/glkFFNzdrpnuHWDkJjBJCCCHELmVG0y8sw8ox18lYoFmWyZCbNCFVKpVFrV2g9mEa9V9kmrlOCh7qF5bCajYO61ULmNnZ9WxeHPEHz38G//S9/8v8uvV88gtf4ehfuSML42bZ9cx2LQqomoALKZPCaLVs3GWTchiqxrctAz1znYwi09MFTC/f9bi7S6pq1S6QW8242bPqWqtpX39vZCFy6JC5vRBCCCEON7fccgvHH38811xzDXe/+9259NJLWbdu3WoPS4hDjqw1hBBCCLG/jKqt7fMmQVFzXbvLhO8ddYiY7Vi0UqnyUjejkxluGVTkWQqSCj6QacVMN2OuyMjs1vvivdxM9we0Ulz5z//IGS9+Fq5pOP6JT+HNf/VelFLcsliTZ3o61qoJzBRm+rpKqR12s+jlFqsVi6VLXTCMp7CGce2Z6VgiCmsUw7qhm6UWdKPG07iAIt3nDyHiicQILgQWSkfTtstzPtA4TRMCVmsWKjdNgL9lUFO5FJRVNp7GB8YK+pmdXrMPkVHlUCpS1gGjIQSFVZp+x1B5D1FRWN22L9z5XopWipkio+oGNo1qFipHr7BkRq2p7h1i5dbGzpoQQgghDogQIuPGU7lAiHFJ/+dUYhRgrpNRmpQ54EKkcqkk7LasVtOIfEiBPjPtBHa1A2ZmCosPKQNirpMxpObMl72E/3PF/0e31+eDH/88t73zPVks3fSY1Ftb087h6diANXqH416sGkZVYOO4om5SUFO6/jTuXm6wuxm3VorcaCoXKJ0nt7ptx7fHl7tqtn2fb+33RgghhBBCiLVmcXGRE044gX//93/n9re/Pd/85jc5+uijV3tYQgghhBBCiBUKIVK1VZzGbXu6Xm5W1AUDtu8Qsb6f431o7/+nJOvZIiP4iOlmy6o5KZjuLxitGNWO2gWu/P6/8byTn0o5HvM/HvU7vP6vPkTpIt0QWawa1tt8OlarFZnVDKpUlSq3O+9mkVtDN0+J6mWdAqNql1r6Wa3oZoaqPa8ikhlDDLClbHB+a2tBqzUhpLZ/hdU07T5PEwNaQSfXZDZVxBo3nsZ5BqVDoRhWjsoHCq2pXcWgdvRy0wZCQdlEysbRLyzdzKBUYF03Zzj2zHZTIJVfYQvkmY5l3Hi8D5S1p5fbNde9Q6yM7DIJIYQQgsYHRpWfTsKXieBJZVBHdep13csN6/s5dRu0E8KSICqt6FhDviSToV/YZcEtB0PAzHw3w2jFoGz48z88g0u/9hXyPOfs8z/NAx/84J1ez2LZtJkexbS07LbjnvTbjm2J1/XdbBoU1c3Miqs+TYKhQkifSljhZP5gMnmfh5Wjk6XPb2+/N0IIIYQQQqwlZVnylKc8he9973scccQRXH755dzpTnda7WEJIYQQQggh9sC47RBRu4ALEaWYVjpaqR11iMitxupUxWlYp9cwOnVisDolTncyQ4gpqGqSQP6zn/wnLzntqQwWF3jAbz2Ud33kE1RRc/OgZlS7VI1p3EzHmmd6Ws0JUsu6XelkhrIda+MCmdWUjSczmjEpWMqHSOkCGwpN7QOFUaioyTNFbgyRyLCE+a6i9ml/KWsrOSmVWvKhoHaRECNz3RwXIv+9acSg8lgFKgMTFVXjGFeOEFNCeWY0Vqd/xnWgkxs0gFFoUsWoxodl7f12RgGF1Qx9mH42sf3M10r3DrEya+LTNCb9h+Xud787//Ef/7HKozm0xRj5yU9+wpVXXsl1113HwsICvV6PDRs2cL/73Y9jjz12+nkIIYQ4NAwqN+03DewyaKWXGxqfAqSsDvQKuyyQZak0oTT0ih33Y96TgJncaEJMgVSj2k+zIzYO62lZ1L2J3u/nhte/9k/4m098DK017zj7XB78sEe3E2ymCw+t1fR6NhyRU7mwy3EbnUrKxmjbsrRpyrW01O1KTObsk3ioNRgXBaRAuMLqafDdZNG3I7v73oi1T+b2QgghhDgcOOc49dRT+da3vsXMzAzf+MY3uNe97rXawxLikCZrDSGEEELsD5OE6LKtGlXsoOLSZP+idoEQ0567UirtM9i0z7CjDhEAvcLiYmRdL6eTaWbbjhkAw8oxqv308XXXXsuLn/EUNt5yM7967/vylx/6JNHkqLYLyKZRQ240i5VjfS+nsHoa7DPZX9hdsNAk+Kh2gdJ7MpuCnybHRSKotN8B4FzqrrGut7XDx6By9IqUlN/4QGYUG/oduplhWDnKpsL5CNrjXKRRnkBEK02uA0qrlHyuI1GBCyrt02jQGpROF+NjGkvQEYVGaUWM6Vor5+lmu96Pie31TvYrau+nn/la6t4hdm9NBEbF9t/SuFZ3Aw9yi4uLXHTRRXz1q1/lW9/6FjfddNNOn7t+/Xqe//znc+aZZ3Lb2972AI5SCCHEvrBtq7yFcUPlUunSENL/a7ev1QT4SNWEaanUuW7WBgFFcmu2a7u30mCl3QXMOJ9a7A0qBzEtIPptwIxve1U3PgUp7WkwTeMDZ531l7zrXe8E4B3v/SBP+t2nTBcuPkTKmCbts52MDf2coq1WlRm9y3FH0vEhRFyAzCrW97Ldts/b1mTqM1mn7Ga9clDLjGa+pwnB7rRd460JchNrh8zthRBCCHGoCyHw4he/mC9/+csURcFXv/pVHvjAB672sIQ45MlaQwghhBD7w6STw9aKS9vvYUyqOS0TIx5ofEr4jjHifJxWbFraIWJH514sm1RZiRTk84tf/JLTT30KN/zy59zxrvfg7R/5DEVvlqpJbeqqJuCiJ+8WDMoUIDXb6dD4FCk02V9YSWeKfBJQNe1mAUqlPxulqJ3HmlTZaq5NgjdaE2PEx7R3ZLXCO5jtWHp5ans3YZVi7DxFYRmHhlHlcR5uM1fgXcagcYxLj1KK2Y5NgVfdLFXPqgLDqsHHgDEK59I+QwwR51PgWT+3NC7QzXZ4eVN1G5xWZAbi1j2Ztdi9Q+zamgiMAlBreSfwILa4uMhRRx1FWZYrev6mTZt417vexfnnn89HP/pRTjrppP08QiGEEPvCjlrlLc002FI1VE2Y9que72X0cotWihBT8FHVloldrBx1CMy1WQu51beq3dnOAmYGpWPceLSCXmbQSlGHFAS1o/ZrpfNpwruC9muDyvGhD/01b3z96wB43ZvewpNOeWaa6LfVorTRy1q7bR439EOcnntXgT6Z0WgVmGnfo05m9jgoCrZOyieBQrvL5FgLtFb0CyvZFoc5mdsLIYQQ4lAVY+TVr341559/PsYYPv/5z/OYxzxmtYclxGFD1hpCCCGE2Ne27egwuU+/bTWnSVDOjrpx2LYC02LpCG11qKWxNzs69yQoalA13HzzRl75gqfz3//1U465/R340N9cyG1vd9t2/ybt4bgQGJaB3HhigLLxlHXaY/G0+ww+PX93WzqTGdWya58mcqvUbq5y5EZhtGJdL5+OfdykRHcfYtvOLyVFA9P9JlDkVjFuHCFEjFEYDY2PZFZzZFHQdCIRKDKNBjKb9mzme5HKWRqX3qfaBzYOam4zW6T3wUXIUzDXrmwdC3SMoXSeTOtl1y0OHWsmMErsH9777YKi7nrXu/KoRz2Ke97znhx55JGUZckPfvADLrzwQm6++WYANm7cyMknn8wFF1wgwVFCCHGQ21GrvEHVsGlYEyMpmyEEOsYw27V0MoMPadLaKVIEfycz9GNkXKfMhqoJLNAw18naak36Vrc9Wxows2Xc0M0N3dxQ1n7ae3tbwQU2DxtCjBRGk2eajcOaXm44cqbYYfWhLeOGz372s/zxq14BwEv/15k8/QWnUzXb1MrapkpWJ08lXkOM06Cwbcc90csNg8pRu8CWtipXfwX9rJddW4zUk0m5TZ9DsZP2c0IIIYQQQoiDw1/8xV/wnve8B4CPfexjPPnJT17dAQkhhBBCCCFuFaWAyLKKS9tWcyrrHe9hLN1nmBxfNp5B6ZjvtfsM25x7UoUKUlDU5i2L/MlLn8lPfvxDjrjNUZz72a9wxzvccfoShQWjwYWY9nucx4fADJZB7ZjrpJCQjjWpupQLhHzX+xWTK5k8JZICnFJyvaJqFFVMCfXretmyczXbtB5MieSqfa9CqigFFNayMK6pfKBfWGoXUBoypekVhsoFGh/JraKXpb2rDTMpAGtYO25erHAh4HxkWHtGlaNXZJSNY55st1VEy8YTI1itsFahHHTb9oASa3/okcAoAcDc3BwveMELeP7zn89973vfHT7nXe96F2eccQYf+chHgBRU9cIXvpBHPOIRHHnkkQdyuEIIIVZoy7ihbNLkc2mA0aB0ND5SucCoTkFTudY0LmCUosgMo9oTYpz2s9YqBQBZo1gYO6omUBpPJzOMKs98b98E7QwqNx3zQtlMA5aUYhqAFUJkWDvGtaNqqzyVjSf3mtkiY7F0+La609IWe4PKcfEll/AHL3kBMUae/pwX8j/P/NNl595dlaxx7dFK7bIq1aRPdm41VitcSEFl/T2orDWut07Kc6tR7XmFEEIIIYQQB6cPfOAD/Pmf/zkA733ve3n2s5+9yiMSQgghhBBC3FpaKTxxWnFpy7hGq7QfMqiW7mGke/mZUUv2GSJ1u88wqBxKKdb3M8aNJ681/cIuO3fjA+2WDZXzLA7H/NkfPJ8f/uv/Y25+Hed8+kvc8S533W6Mzke6mWFdL6N2AR+h9oHGh7YNHlizdb+ibDy9fOf7FZNuFqpNPK+dJzOGbm6pnKeTG2Id2+Ci5f3qJvFhcdoeUE3PWTaexkUKq2hCCpCKIQVPDUpHZjWz3YyZjk2dUGqPVYp+x2KUmgZYddsuHRpNN4+Ma8WmUYM1GhcsIUaM3vmeVe084zb4rJMbGpcqVRlz6HTvEMtJ2YHDnLWW17zmNfzsZz/j3e9+906DogB6vR7nnHMOp5122vR3mzZt4uyzzz4QQxVCCLGHtg0wWqwcLsQ2sj8y07FkJgU7zXczikxPJ+eLVQNA2YRl1aaAFGjURs1PJo5VWx721mr81tdbGhTVyw0b+jmznQwfUvQ/KPpFxkxh2wwNxy2LNb/YMmZQNSyMG+q2dO3GYc2mUc23/vbbvOjZp+Kc44TffRqv/Yt30C/s9NydLLXO62SG2U7Ghn4+vdaqCSyU6X0ZVm5aYnVHtFYUbZWnSTDTqE6tDFeicn6aETLJUCjs9tWvhBBCCCGEEAeHv/mbv+HlL385AG94wxt4xStescojEkIIIYQQQuwLk04OHWtwPrB5lLpYLA2K6uYpKGmSrJ0ZTWENM4VlXW+y/xKonce1QUfOBya3/CddI8aNn1ZaGowq/uLVv8//++636fb6nP2JC/jVe917u/EtbQm3rpv2OfrZ1upQtU8VqyAFAUHa49gyqlkY12we1Wwapp8L45ph1VC1e0sdY1Jgl0/7Pxv6GTHCTJFRZCmwalR5RnXqtgFMKzUtLdg0bjzDNuJLqdQWz4eAJiWHT9oPTp/AknZ+2/yEFLg0W6Q9rsxouoWmrAObxw1jl/bGdrSdEmJkVDsWy7ZgQJYS5msfUucQ6d5xyJJP9DA3MzPDW97yFjZs2LDiY97xjncs69X+ta99bX8MTQghxK2wqwCjXm7oF9k0ur6whiNmCtb18mkQTt2EaXDUqPbbBQF1c4NSqTRr7ULqJ92sLOhnV0bV1upWkzHPdS39wqKVYrFspgFDlfNsGdUslg6tFJ12YTGq0qR2y7jhl5tLyvb5V/yf7/GsU36P8XjMI377eM56z4dY18+n596RSZWsuW6a4FdNmAabTca6M71JG8LcUGRpyrUwdtN2fDsSYmRYORbG6bMrshSktfR8QgghhBBCiIPLRRddxHOf+1wAXvGKV0yrRgkhhBBCCCHWvm5m2hZymsanDhZbRvV0D2O2k9HLd73PoFVqB2eVIsRUsaiTGWJkem6rFWUdGNeeunG89U9fxRWXX0yW57zvvE9zv9980A7Pv7Ql3EyR0c00/U4GbcWq1AUjPdcohfORhXHDTYOKhdK1VaUiPqTnbxo1bBmnvZjU9q+hsGmfI11npPYOH9J+yeZxzU0LJddvGbMwbqZVslLFJ8fm0dbOJrk102Ryo9N7UeS6rdikyLQmxEho2+3B1gCpbd/dTmbodyxKKWY7FmXS3ljVBDaOaioXqFxqLVg5z2LZsHlUTxP+8yx1ICkbT6fdi5HuHYcuaaUn9tjtbnc77nWve/Hv//7vAPzkJz9Z5REJIYTY1s4CjApr2Dyq09+5yUR0a3/nXm6xWrFYOuomUBlPYQ3j2pN1t8ZTa6XIjaZyqSJTbtOf+8XejzmEOK2oNAmy6uVmWnlpWLlpz+4dlaed6Vi6eWrrF0NEWcW4dmwZa/7jqqt4wTNOYnFhC7/x4Ifyzg+fz3y/Mz337qQqWak/97hOC5ZUJcvutIpTZlIZ3GHlmOtkLJDGPGpbGuZGp0m2SpkTk8yNScxUkWnm2jaG/cKSGYlnF0IIIYQQ4mDz7W9/m1NOOQXvPc95znN497vfvSyhUAghhBBCCLG2TTpEjBqHaef6W8aOTqaZ62bku6kuNGnblltNNzf4EPEhnbfxYVnFoluGNY3zfOAtr+MbX/osxhjecfZ5POThj9rluSElaWutmOvkVC7QZIHKBWydAn+0UmwZN1ijyKxhVDluqWtUjFidKi85Is6lziO1T3s202uMsHFY0ysslYssVmmvRCmIqOneR9V4jE57Ro2PQKCbpapZudFsGQcKq6ma9F6mPahApjSF0cSYAqum+fpaLf2xTC831N4zLAP9PLXXI0Lt0kbLoHTbHWO1SgntNlXDCjGmgDLp3nFIk8AosVdmZmamfx4Oh6s4EiGEENvaXYDRpONd2Ka/80RuTduT2VPWfuvkMMRlk8FJMNTkPDurgrRS48YTaftMO89i6RhUirgAtfcMSo9pXz+3GqMU3dzQycw0sCszGt+WXO3nBh8j1153HS855XfZePNN3PPXj+XNH/wEedGZTnJXqpsbxo2fVsnKrWbcePrFzqdTM4XFt/265zoZpUmLFBdim62wfTs+q7de1+R1Z3bxGkIIIYQQQojV8U//9E886UlPoixLnvzkJ3PuueeitSQ0CCGEEEIIcajpFYaNo4o8M+jG4UJgWAVmOpYQ4w6rRYWY9gaWVijq55bNo4bMqOk+w+TQTm7IrOIj7/krLvzkRwH4s7e/n995/BN3f26T2tEtjGt6mWkTzT0uBoyCn292HNEvyKxmWDqCD8QYiSHiYqTygWbcULXRSB1rWNfVWG3QwOZx3VajMlijqFyNBgalRylY11N0M4OP4EJgXHlyo0BrCqvpF1v3cSbn2DisiaRApKYNZCpyQ+MD48YTQsSaFCwFpKCnHZgpDMPSkZmUbN4rLG18FEaDQqEUKK3oGENm9bSlXjo+k+4dh4E1tcs2Ho+54oor9utrPPKRj9yv5z9UXHPNNdM/H3PMMas3ECGEENtZGmDkQkQplgUBbdvfeUcT9k5m0qQ5RBoXyKymbDy9JQE6k8Mm57mVcVGp+lTt+K+NIzaPUtZCP0+vN6x82x7QM24CWimOnMmZWTKZnlxLZnSqvhQCbrjA/3reyfzy59dxhzvfjbd+5NPMzM7tdKGyK3tbJWu+m2G0Ylg5OlkKeJoEf036ZiuVskM61izLLukXVoKixCFL5vZCCCGEWMt+/OMf8/jHP57FxUUe85jH8LnPfQ5rZe4uxMFA1hpCCCGE2Ncyo7FaA57MaDKrURGqJlC7mmzSIQKm+zPNkg4Rk7ZtAPNdi9F6us8QItPuExee/2E+/sG/AuDFf/RmHn7CSSyWzU7PPUkUV6QE825usNZQZJ7FKpJpw7B2DGtHCBBioHGpbZ5SMNu1ND5Q1gFlJwFEmp5NlaBQEaUUVROw2mN1Cuiqm0Avt9RFYNg4BqWnyCJapeRvpRR121IvxMgtseaImYL5rmXcBBbLBoXCKEUEOpnGxUimFaAZlClIqxdBd7a2G1yqcqnVXwgw182xWrO+n+FDCr4yShFi2tfJrEKhCMS2ilSkk6UKU9K94/Cwplbrv/jFL3jMYx6z386vlMK57cupieX+/u//nhtvvHH6+KEPfegqjkYIIcS2JlWIJq3yiiWt8iD9/44Yp4FNO6r0tDTAqPSezKZSrr0lz5kcNjnPre0WccPCmBsXKgZlk/pZ+8hNg5LaBRbHDqWg9J6uMcx2MyoXuG7TmPW9jCNmOtPz5DaNe7BlgVc+/2n89D//g6Nvezvece7nKGY3TMe+N8FRe1sla6awFFYzqlIv69zqnZbXVbSt+wojE3BxSJO5vRBCCCHWqmuvvZbjjjuOm2++mQc+8IF85StfodPp7P5AcVAJIaZWH+1mzTRpRSkKq+lm0kJjrZK1hhBCCCH2h25uKJ1nYRyZyS2ZVcTAtMvEJAiodgHnAyGmuWU3N8QQGdeO+V5GYXMWS7dsn2GmsJz/sY/x9jf+KQAv+F9/wpNPfT4hMD33thqfWt7lRrfVkRQ+pqpRjQs0LlCGtL/TyyyDqqFsUhu72U5GjClAymrNTEdjlaLIDVYrKhcY1x7vI3UIdDPNsHKp5V57fCBSWM1i6Rg3jqpx1CHNs50PWKPRGnwMaJ1aCA4qT9k4BlVDbhVFrmnaNoJZjDQ+kls17XwSFQwqTy/TqRAAkQiUjWfTqJ52D4lK0S8KOpllQz9Dodr3KAWRuZBa8WVG02tbDkr3jsPLmvpk460tRSH2ibe//e3LHp9yyimrNBIhhNj3DoUbo5Ngna2t8pYH12gFnlShCJ8mmjua600CjOJ0cr787ycTcT3t77z378t1m0bcvFgDsFA6FsYN1ui2JGuq/uRDau83VGkyPtvN6Hcsm0YNPsJRs2kjQgFVVfInv/8cfvhv/8L6DUdwzme+zLrb3pGFUd1OnlWqgJUvv/BJ+dm0gElzD6UUWrGspO3eVMnKjGa+pwnBrvnvmBD7gszthRBCCLEW3XjjjRx33HH893//N/e61734+te/zuzs7GoPS+yBxodp0sp2M9IInthWLHaStLJGyVpDCCGEEPtDjDDXyVgcOxrf0M1SdaHGBUa1Y1R76saDUiit6FuD0ZMAnYg10LhI41wKHNJmet4LLriA//U/XwbA8176cl74P1/JYttJIxBxPs1vjE77CFYpMqOAVMEp7V1ofLuRM25SQFRVOqoqBXR3M0M/T10rCmvoZmmO24SARqF1qt6kSMnedScFZI2bADGQm7RHsqGf40Nk86ihsIZR4wk1GGPoW4XzgRIYN4FuZhm7hmHp8b4ks6ZtQ+iZ6Vhmi4xh7SiyNPaFcUPlU5BSF41RGt/u0wyrrYHpZeOJEXKtUyJ9E5jtWOa7Gbk19AuTKlpJ9w7Rkk9X7JHPfOYzXHTRRdPH97///fnd3/3dfXLuG2+8kZtuummPjrn66qv3yWsLIcShdGN026CdbQOWcqtpvKdjTVvmNRDy7asnTR7tKAgoxEi9pNc0pMpUe+OGhZItowal4KbFks3DGkckM4p+kdGxkYhl0E56nY80RDaOa0rvOaJfsDBuMAqOmOnQOMebXvkS/uUfv0N/ZpZzPn0h9/jVe05fo3JpIVG7QC+nPWdIi5YlpW2XvqEeaLyndp7aRWY76Zr3JhZMa0W/sLttwSeEEEIIIYQ4uGzZsoXHP/7xXHXVVdzpTnfisssu48gjj1ztYYk9MKjcsg2V3W2UlM5TOi8bJUIIIYQQIu0HROgXJrWMM6kuURMCLsRppwjnI6X3jGtHRJFbRS83ZDpVdqqcb9u5Jd/65mU8+5nPJITAc573Av7wz97MxmGVuoJE6OYZHbt1M2LceBaa1NLPaDX9qdoEb6MVzkeMVlilqEJgVDaMG98GD6WNkczqZcnjSkHeVlQa1Sm5e9Owonae4BVHrC9SO8G4tfLSjYslRqUqUsPSUbtA5R11E4kxEELAGM2WsmFLGdEocqvJMt3OwSNGKQalp3EBpdN7ao2mn6d9mEyrlPHfztldCPgI/dwy38vaqleK+W7O7dd3cT61+Wt8kO4dYmpNreY2bNjAy1/+8tUexmHrhz/8IS95yUumj621fOQjH0HrffMfirPPPps3vvGN++RcQgixJw61G6OTyfnOWuV1sjSptUZjtcKFuMPqSXHp+VgeBDSuUzS+1Wra27rblhvdE6PacdNiBcAtw4ph5UEr5jLDhpmcuU7OwrjBx5QRkfp0K2oXWSgbRrUHKo7oF2waNfQyzRvOfDnf+dal5HnB+z/2GY69328AkNk0eY4hBblNKmANK9eeJ3F+559/1ZasjVWkmzvWTSKrhBB7TOb2QgghhFhLRqMRT3rSk/iXf/kXjjrqKC6//HJ+5Vd+ZbWHJfbAlnFD2aS1X1l7xo3HbVsaGcBHqiak1hqZoZMbhpUjxMhcJzvAoxZ7Q9YaQgghhNgftFJ4YmrDZjSdrK1m1EBmFGUdGDee0FY4yowhtyodF2ChbKZ7MgCl8/x/376CFzzz6TRNw1OfdjJnvfO9bCk96/oFdYhsHtVsGTfkbeBOJNK4SDe3uOAZN4EIbOjk5Ca1pVsYpb2TOgRyrVERZjo5gdSyrvKeXmapXKCXRbI2eKiTGbRSyxLjUWmPxLb7QJM2dr12b2y6j8RkDymSaY22ER8VjY+oEIkhEIDaB5oQKLxmOHb0OgajFD7EVLkqwEzXMt/J8TG917127ynESOUCrolt5SuDRlGHwNGzBUfMpP2amSJjvpcdEh1ixL5z8O3m7sKGDRt4/etfv9rDOCz98pe/5MQTT2QwGEx/99a3vpUHPvCBqzgqIYS49Q7FG6NLJ+epVV6Y9kie/H1uNJULdHLDoHSMa4/VyyPnJ63y1LRVXvp95fw0kKibT6pF7d0E8pZJ+7xRTdme8/bzXQKRENNEd9tPI9OableTG83Nw4pR7elYRy83nPVnf8I3vvx5tDG84T0f4R73ezCDyqGAxXEDIeIj017fi2XqqT25rrLe+ec/rj2jKpWfnetkjGpPL/fbP1cIsSIytxdCCCHEWtE0DSeffDJ/93d/x/z8PJdeein3uMc9VntYYg8MKjdd+y+UDVW7DlQqVT/OjJ5uAjU+pA2XEFmsHHUIzHUyxrVHK3VQJkiJ5WStIYQQQoj9obAp8GjSjWPTsKbIDN3M4kKDMYoZY6eVmzKj0ShC25GkdoHaBxbGDdZqfnH1VbzkmSczHo857vjH854PfZTMWmJwbBk3OL+100dKGtcpuVx5BlVDCCmoiQiD0mG1onKBYZ0KAWjAx4iPkUwrMqUJEQql6eaGwhoKq5nrLt/jmrSpcz4QQnrtwmpKn/ZHah/I2i4cs0XGjXVJ7QKZ0cx2MoxSlN6zaVARYySqiLWGmbYy06j21C5QGIVVqYpWiJ65jsVHKJuADxW3mSmY7+bUPrUqrFzq+GGUIs80XavxEW4zWzDfz6f7YL0i/ZTuHWIpWcWJ3dq4cSOPe9zj+K//+q/p717ykpfw6le/ehVHJYQQt96hemN028l55QL9uLxVXi9P1Y8Ka2iyQNUEFsuGbm6mk8dm0irPpMdWq2XVlYpMbzfR3BPOBRarBoDN44aszUiY72UsjhtcG/2/bbjVJG6pmxvmfMZC2TAYO776sffxlU+fB8AZb3wX/+O3H0eIqcoUsW3B11bHsloTQsmRsx0ABtXSz78t5WrUks8/smVU04RAbCKV9+RWE2P6Hh1Mn78QQgghhBBi3wkh8NznPpdLLrmEbrfL1772Ne5///uv9rDEHmh8mFaJXrr27+WGbm62ayvfyQz92CbH1J6qCSzQMNfJGFZuer9ACCGEEEIcXrpZSpjPrSYSGdWeSAo+qts55mSPZds5ZmENIY9sGtZE4NqfXM1rX/g0BosLPOihD+Ps8z5JnucslA0uRFyIdDKN1VmqnERqlRcJKAXjOuBjwLYbJqPGoVVqoVf5QK6h9kCMbZu9yHw3tZ1bKBtCjBwz36X2KYl86XgnSfOlS3tBM4UlRojta4WYuooAVI3HKMVcJ8O2yfOT98QaTUSRaY017ZgV5EZhtCYzhsKmP4dg8SFgNORtcNmw9oya8TSpf1Lhyai0jxNjmtOv7+fTAgb9wspcXeyQ7OKJXVpYWODxj388P/jBD6a/e+Yzn8mHPvShff5ap59+OieffPIeHXP11VfzlKc8ZZ+PRQhx6DuUb4wunZxPyrKO69T6b8Iu6RM9U2RAeg/GtadsQurR7FNf5kBkUDpiNKj2fSkyfasnmhtHNSGmdnq1T9W4NvRzfIAiM7jaTTMTJuVNfUwLgkkDu35hWCwdX//8x/jKOe8G4FmvfAO/86SnMagdmVYsjhuUglHt8SHSzQzjxrFx1PbgNmr6+e9s0aJoA6EAo9PzCxPQbbDYwfT5CyGEEEIIIfaNGCN/8Ad/wGc+8xmstVx44YU8/OEPX+1hiT00qrZWiZ6s/ea6lsLuPMFHq5Rdbo1iYeyomkBpfGpNX3nme7L+E0IIIYQ43GitKKxJAUMx7SFsGaXk79xqZjuWfBdzTOdTYNHwll/y579/Kps33sK9jr0f7zvvM0RbTPeqrNEcMZMTYpqXThK7x42fniMSGJSOzCrGtUeRup50ckPHGjJrKJ0jMylYalw2NM6TW8O4diyWDbULzPdyFLC+n0/3RSbJ6aH9Q2YUtUut6AB8iNO/mxQfmOlYerklhMgtwwrvA4UxjOuG2jl6maFXGI7oFTQhMCgbxk2grKGTp02gI2YKlEqv50NkXKdiBURofKSwGtOOMUaY7ViOmCmmCfzd3EgSu9gp+WaInRoMBpxwwgl873vfm/7uaU97Gh//+MfRet8v/o866iiOOuqofX5eIYTYkUP5xujSyXk3Myy2VZ6sUcuur19YQoyUTWCmyMiMn7YTHLRBY/3CMihTkJVSKrUSXFJV6tZMNBfb11gst77WTJGlftlWUwdN4wK1S1kXmYEmpKC2EFM1L6s1/3j5l/jKX78FgMc/5+U8+ImnTftfdzsZLkRCjLgQGFSO+Y6lbDyZVvx885jMaNb1Mua7+bJWgkD7/vhpZbD5XkZhDItlCrYqm4Pv8xdCCCGEEELsG3/2Z3/Ghz70IZRSfOpTn+KEE05Y7SGJPRRCpGoz3cftpk2vbRuyEoU19PJUDWBcp/Vf5Twh2L1qJ7+nQoiMG0/VtoNfmjhULMmaF0IIIYQQB0avMIxqh1YpgXzS/SK3OXYnydNL9xk23nwjf/Kip3Pz9b/gTnf7Vd750c8xMzvHYtteTys13ataLJtl+zejBUeE6dwUIpWLlLXDGiiMwSjFun5GZjS2rcx045Yxo8rhg6H2EedT8NXmcYPWCkUkAnmbUB/bCKhJIFRKmI9M8snrNsCqabusKMV0z6h0bZeVTkYT6zQGpZlpr2m+n6FRbJjJuXlQUbvQJu9HOpkhM4pR7enmliNmLI0LlN4TQzsX1opOplnfzekt2ZtK+0sS+iJ2Tr4dYodGoxEnnngi3/3ud6e/e/KTn8ynP/1pjNnzdklCCHEwWes3RleiV6TAqE5uqENqlbcwdvTyuKwi1mwnQ6sUOJUZjbeR0gVymyagvbZ60vpeTr+wywKHbu1E07cZBZOWfd3cYE3qbT2uPTO5ZYAjxMhi6VAqlWXVWjGqHEVmuOKbX+fTb38tAA964rN4zDN+n0ylG8VznYy5bppkD2tHJzeEGAkw7aldN5Fx06B1mrhHImmKn8rFNj5MJ/95ppktUpWsI2ZyQB20n78QQgghhBDi1nnnO9/JWWedBcCHPvQhnv70p6/yiMTeGDd+ur6bbNp08z27t9nNTcrOD5HaBXKrGTfLqzLva40PjCpP1SYKLRPBE6eVsAubsu+lirEQQgghxP6XGY3RikgKRNJGo7wnxMjmUUNuNJlVTMKNGhepfSDGyOKWzfzRi57Bf//Xz7jdHe7I+z/xBfrz63E+VYPKY9p7mOxVLd2/KaxhtpORu8C4cvgQ6eWWUe1ApU4XG2byafB8v7AsjlOCurWGHqTXqT218zQhMldkECHTirkuVC60/6TXmwRCTYoLqHb/o2m7epQ+7a/lbUDX5PwAg9pN2wt28tSBJDN6em0ZmvVdGDcpcV6r1LFjrpexrpexZewgRopM08kNWqXXWdrxQ4HMhcWKSWCU2M54POZJT3oSV1xxxfR3J5xwAhdccAFZlq3iyIQQYt9YqzdG90RmNP3CMqwcc52MhbZV3qitCJUb3VaBShNmo2BQeWqXWtr1+tk0CKiXm+l17cuJ5qTU6uSnVbp9PTvtyT2TW3KjcS4wdgGlFOMmXcM1//gd/vrPX0EInvs86kkc/7xX0y0MmdUcNdthtm31V7uAD5F+brnNbMFNixVl4zFKE3AYlcqyjmpH7ba/JqsVnSWBc50svbcbh/VB+/kLIYQQQggh9t55553HmWeeCcBf/uVf8tKXvnSVRyT2VuXSZkzZJkcV7abNntBKkRtN5QKlS23WKxfoF/t8uAAMKsewrbAMaU1bOk8ISypGaUXHGnKrKZ2ndF6y5IUQQgghDhBrNJ1Ms1g19HNDjGmPYVjVxNT5DQVtW7i0F+PKEX/6+8/i6h//kCOPOppPXPBVbnO7X2HTqGGxbAgRVAjb7VX1C0thNaM24MhqhdaKXmHTHo2CiEvt83QKPOpYTYikNnSAijCuPIFIYU3af3GBkXHkmeamxYpOZqb7IFXbsk9rRXCBsvH0ckunLZ6StQFScdpqL+2rTAoR1C601aQC/dzQyzO0Um3lqa0yq6hcmmsXWbrGxkVmO5Y7bMin+1hSPVXsCxI61xoMBnz0ox9d7WGsuqqqeMpTnsK3vvWt6e+OO+44vvjFL5Ln+SqOTAgh9p19eWN06Xkm5z1YzBR2Wr50rpMx27FYrYgxjXWxdCyMHYulw8f0/CNnco6aK9jQyzFa0S8Mc90UyZ/+vmC+l+2T6PvJhHXy08Wt799skU0XALnRHDFb0M8tvcLStZr//o8r+eBrX4prau7zP36HJ/3BG8gzSy8zrOvlzHYyQkzBTotl6vFdZJpuZlnXzbjdui6VS9WgZrsZ852cQOpdbbUiM4o8S1kM872tGRq93LRZGgf/5y/E4Uzm9kIIIYTYW1/84hd58YtfDMAf/uEf8sd//MerPCJxa4S4PCFnb9eyk+rJ0wSfuF0dp31iy7iZBkWVtWfTsGbLOCU6NT7iQqTxkaoJbBk3bBrWlO0m2bByLLTrX7H/yFpDCCGEOLiEEBlWjo3DmpsHFTctVtw8qNg4rBlWbjp/26evGSOznQyr0hzMhRQs1cstxiiMUikwCoWPkaqq+NM/eD7f/+fvMTe/jk98/ivc5173TNFTQNnuLWRG7XCvyhrNXDdjfT9v93wUWkHTeKxWzLb7P3mekrpHtadqUkD/uPI0YevehdWK+W5OJ9dYVOokElNVq0HpGFQNmdWUjSeGtO9Ru4BWkFmNAvI2QGoyJdYoQog07XVUTaqgZZTGGk3RzqXzbebiqn0DQozk1kz3syZVpxof6GaGDf2cI2cKbjNbcORMwYZ+6nAiQVFiTxz2KSTf+c53OPfcc7ngggsYjUa86EUvWu0hrZq6rvm93/s9LrvssunvHvOYx/CVr3yFTqeziiMTQqx1IUTGjT9oorr35Y3RyoX9fmP01pjvZhitGFYuRfxnZrfZphP7O9vUtJ95ZvS0v/bckv/d9NpqUePGoxzMdCy28Wz8759y9mteRDUe8au/8RBOfMVbcNFMKzllRjMo3bQ8LaSgqJm2AlaRGea6OWUTuGVQ40PAGoVSmpk26GkpRfqsu/nyKllr4fMX4nAjc3shhBBC3Brf/OY3OfXUUwkh8KIXvYi3ve1t22U1i7Vlskybbtrs5ec5OWzb8+1Lg8pRtln2C2WztWWJSgldmUlJXSGmNnpVWwV7sXLUITDXyRjXHq2UVI7aD2StIYQQQhxcVrP1cIwpIKp2kU5myIyiCZHSBaYxSEqhtMIS+Is//H2+951v0+31+OinL+QBv3G/9jxt0rgP5EZj9a7Hl6pFpWTvca3aKqaWTqbTPDCCC6lzyFxXM24Ck+HMdiwuRrRSxBjJtMG0e3TT9oAxtc3LrUIpGNaOqgmpAlY7Ic6txoWIb7uxAAQizqXnOR9x7Xw1s+marE7Voops+fXF9pObzNEnyfLSqUPsD2vmWxT34Wrzhhtu4OMf/zgf+9jHuOqqq6bnP5xvdDjneMYznsHFF188/d0jHvEILrroIrrd7iqOTAixlq3mxHRX1tKN0X1hZlJqtf0scquXBUAtdSB7Ms8WlnHtme1YFsumzawIyyb/1mhmjSaESNd5fvyfP+GNp5/GYMsm7vJr9+WFb/wAGytLZmC+m1O5QC+PVG5rWdmlbfC6bf/pECP93FAVpg3AUtNJeyfTbeBeymDo7CRwb618/kIcjGRuL4QQQoiDzT/8wz/wlKc8hbquOfnkk/nrv/5rmU8cApQC4tb1294mtEwOm5xnX381JvdGYHlQVC83dHOz3X2LTmbox8i49m1FgMACDXOdrL3Hog/I/ZWDkaw1hBBCiEPfarceHlQNo9qjVNuuTqW9FaNTe7kQU9CPbyLvfMOr+LvLLyHLC/7yQ5/kmHscy3UbR8x2LMPaEWKcVk4yu5lj5FbTuEBhNZtHgcYHjFbT4yaBTZFJpSdPJ9OEmCpDDWtP7TyDKr1uYQyLZcNsxzKoNIXRjGoHpGvw7djyTOPbYKV1vTTf9IDSCnza55skkJfe0/iAD1DYrcFQudm+c0vj2lZ/OhUyCCHiYqBsAqPaMdvJGFSOY+Y60jZP3GprIjDqZz/7GQBZlu31OUIIXHzxxZx77rlccskleO+ni6TDfSHjvedZz3oWX/rSl6a/e9jDHsYll1xCv99fxZEJIday1Z6Y7spauTG6L2VGM9/ThGAPmupdG3o5Nw+qaWWo2ge2jBqOmCm2e67WiuGWjbzupadyy43Xc8e7/ipvOPtTDFWHWtdkWqWKUArW93Myo+lYg11yI7iXG/qFpR7WEFPFqkkPbqUVs0VGZhTreitrHbv08w8xBWNtHKpVf1+FONjJ3F4IIYQQB5srr7ySJzzhCQyHQ44//ng++clPYtr2EGJt00rhiWk91m7aTFp07Im6bQsybQm/j+ecoyol95RtkBPAXNdOk3x2RCtFv7BYo1gYp2z+0ng6mWFUeeZ7h19glKw1hBBCiEPflnEzrbJZ1p5x41Nw0rba9sNWK7qZoZOb1FovRuY6ez9XGFRuOjcctwE8uU0dK+ZzO22HVzWOt73+NXzroi+gjeHVb/0g9/iNh0xb/4UYWRg3VI0nRsismlZQ2plOZoioVDmq/V2MW4+KpLbLWqnpGCfVlsrGp2Txdp+urD0LowajFUfNdVgce2a7lmGVgvStVRil6eeW2cIQ22pUtUvvaeMjHWOomzB9rRAjZeUY1Z5ebsitmbbP62xTLSq07ft824Jvc1PTzVN7PB8i3sdpMNZkv/FAFlgQh541ERh1pzvdaa+P/c///E/OPfdcPvnJT3L99dcDW7M6VFsqLsbIQx7yEE477bR9NeQ1I8bIC17wAj73uc9Nf/eQhzyEr3/968zMzKziyIQQa9lqT0x3Z63cGN0ftE43Tvvbxx4dcNZqZouMLWXDum7GjYOKTaOawqaWdkstbNnMy575VK695qfc/g535K8+9jlUbx033DTAKMUxcx36HUMvT+0Cm3ayDCmLop+baQCTVkyzGTKjaXwgtvVk96TdeO0CzgdqH3EhYrVaftN6FauiCXEwk7m9EEIIIQ4mP/3pTzn++OPZtGkTD33oQ/niF79IUaxswXSwtY3fX/bHdR6o966wac3XsYaqSe3n+m0LkRWPtd20Aei0a75iJ1WY90YIW6sej9t7Kb0llY93p7CGXh4Z1alFfSebbHjZQ+L7tydkrSGEEEIc2la79XDjA4vjBucjv9w8ZrFqGFaebqaZKQxGpzGUjeev3/U2vvw35wLwyje9i2Mf+lg2DmoGtqGXp0pIpXMYpdEaFku32zFplYKinE+BVJVPlaF8u7FRh4hRihADMaq2Q0h6T3yMjEpHVXtGtaNxaY5rjWLTsEFFUrWoGBk1gSLXrO+mxPJxHZjrWnq5ZVSnoPFh5cmsSlWeQmRQObRKwWKQ5s39tjVeN1+exA4pUGtUO5yPzHYsSim0Sp/xoGzS/IuINZqZwh7wAgvi0HNIfmPG4zGf//znOffcc/nOd74DbF9CN8bIve99b0477TROPfVU7nznO6/CSFff3//93/OJT3xi2e+uvfZafuM3fmOPzvPtb3+b29/+9vtyaEKINWq1J6YrsRZujB4ujpjN2VI2zPVyxi6wWDZcv1Cy3gVmOxYfIouDAWc87xT+49+vZMORt+Ht534OuhtYrBp6uUGblI1RNp7ZIn2mqr2ZXmTp+xaBYZVaDHgfCBE6xjDA0fiAayOjVlpyP8TI5nHNqPLMdbJp9aiFsjkoqqIJcSiRub0QQggh9pdf/vKXHHfccfzyl7/k2GOP5eKLL15R9fSDtW38vran19nJNC7EXQY7+RgP6HvXzVICVm512kQKqf1cfw/WZOM6ZfFbrcitRrXn3VfGTXov6vb+iFJp82hPdHMzTUqrXSC3mnGzZ9d5OJK1hhBCCLF2rHbr4cYHrt9cslA2jGrHqHZpHys3KK0Y1YEYPTcvVlz48Q/z8bPfCcDL/uQsHn7CU3E+Mqwd4yailMO3iQIdY5jvZjSkxwvjhrnuzgsH9HJD2fh2fyviQ2BUB3KjyY0BlRLAlWLZfpxRipsHNZvHDVYbbB4ZDRw+KDQOImid2tpBYFxGnIvktmFDv2C2YykbRy+zhDZoaVCm+eewThWdOplJCeRa02nns53M0MuXz0lrF7hpUNG4kLp8uDANQq9doAmRrK1KFWJgy7g54AUWxKHnkFoZ/eM//iPnnXcen/vc51hcXAS2z+ro9Xq84hWv4LTTTuM+97nPKo949Xnvt/vdL37xiz0+T9M0+2I4Qog1brUnpiu1Fm6MHkgHMst5R69lNGwa1sx1LDFEtpQN/71pTIgRi+edf/QSfvDP/5f+7Dyvfd+ncDPHsHmxIhCxJrXAC0RuO9/liJkC51PbxsanftlLA5RSVoJiYVzTydMkPUaoJ72sVxgcd9NCxajyWK0IRBZGNTOdbPv3aZWqoglxKJC5vRBCCCH2p40bN3L88cfz05/+lLvd7W5ceumlrF+/frfHHcxt4/fWjtZpozolPeVG08kMLsSdXqdWqXJ07QPdzCxfWy8JdrpxocSFSDdPwU4H4r3TbWXf0nm6mWGxbe1hjVpRRabKpfsVsDVYqbArWyOvdK1dtdWoy7Zq1CSrf4+uUylyo6na9zS36c8HQ7Xog5GsNYQQQoi1ZzVbDw8qx2LZsFA1xPZx4yOKNMEbl2nO2M013/zSZzn3nW8C4GkveTUPf/JpDEqHNSoF+7jAuPIYo1AojIE6pMAghWLTqMa0nT92JLeabm4Y1o5eYRiWLrW58xHnG4zSZDbNJTOTEsabELhlWOFiYL6TMSwdt4wqImmfrptZMgPWGhofaDyUjaOvLPO9gtoHNo8b+rklRpgpMmYKyyA6rFagoHEeiGRZ2i9rfGC+my0LigoxUjaejcOaxgVya6h9oGkT5ZVKgVn9wtKxml77HijFAS+wIA49a/6bcsstt/CJT3yCc889lx/96EfA1kXMJLvDGINz6YbF7W53O97ylres2niFEOJQtpoT0z2xmjdGDyYHMst5V6+1oV9QNSnq3wMhBGIMOOd5/xvO4J/+/ltkRYeXnfVhekffhWHlMFox38kpnWPjuOK2WYeZjmXLqN5t28ZObsisZlz76Y3nygVqt7LguE3D1PIPUk/tQRnJrcYYddBURRNirZK5vRBCCCEOhMFgwIknnsiVV17JbW97Wy6//HJue9vb7va4g71t/J7a2TptsWwo2zX9oKqpao9qr2VZCwwf2dRuanQyQ5EZFsYNC+OGbm6WBTs1Lkxbly+UDYqUZLSd/fDe9Yq0/u/khjqElJQ1dvTyuMMkLkibNpMkLoAiSwFik/Ptyp6utVNCT2pDAuz1unsSDDU5T1hhReTDhaw19q0YIz/5yU+48sorue6661hYWKDX67Fhwwbud7/7ceyxx2LM2kwgFEIIcfBZzdbDkzVA2XjK2rNYNmwZN2gFKIVWCqVTa7jLL/4SH/+LPwbgd055IY845cU0PjDXy9BK4UJgWHlK7+hnhplORi+zuJg6nAzbuefmUU1h9Xbt5yDN+Xq5Za4TuH7LGB8jHauxVjOqHAEom4CPEdpWdMPKUVaerjUMakcTA51M08ksc12LIl1HZjU+aDLdBiP5yOZRTT+zLGapapNSisx4rNHMtpWt5klFBLaMG7yPVD4lWCiVEkkicdq6z/mQEjCsaX+f1hKznYzcahbGjhgjs50MazT9wtDJzAEvsCAOPWtyNy7GyDe+8Q3OO+88Lrroomm1oslCZvLnY489luc+97mcdtpp3O52t1txFYjDyaMf/egVtw0SQohdWc2J6d440DdGb619XdXpQGY5r+S1+h3LoHKMa0dm0w30j739T/nety7G2IyXvels7nnfB6JNKk0LMCgdtY/MFZbGR67fUjJTpF7UudVkRi0JUIrTtgSD0mH0pB1ixMdIYTWLZbopHXbSVjHEyOK44YaFCkgZCrZ9z4/o58x2s4OmKpoQa4nM7YUQQghxIFVVxVOf+lT+4R/+gQ0bNnD55Zdzl7vcZbfHrYW28XtiZ+u0QdkwqlLl3XETIII1ChVBqcC81cx0MkJMQVFlk6op37xYUfmAaVt3FJlJrc/bDRUfI7nROB/SmwZ0Ms0RM8V+f+8yo+kXlmHlmOtkLJA+v1Eb3JYbnSpBK9qKwoHah2nL9CLT06CsfmF3uYbbm7X2xmFDJ9PT19vTalETk8Mm55FbvrLW2NcWFxe56KKL+OpXv8q3vvUtbrrppp0+d/369Tz/+c/nzDPPXFHg6Z7627/9Wx7zmMfs1bHf+973eOADH7iPRySEEGJ/Wq3Ww0vXALcMa4aVY9QElIL5XkZhNJWP9AvLN77xdT75l39EjJHfOO73eNSzzkBHxWLtqFxI8+IQKV1AATFPQU4+Bvq5IW+DlmofWCwdRlccNdfZ4Z7DoO2IQqpZhbWaI/sFG1FYTdrD8mCUbufnkX7HsqWsGdcpKP+o2S6z3QyjFc4HZjoWH1KSQiSSuYjX6b1erB2dxrBl1GBnFY1LVatCTEkBmdEcM9cht5oQIltGDS5EbhnU23VaaXxqn0eEYe0prOao2YLcGkZ1CoqyWmHbwKpOZlalwII49Kz+KnwP/OxnP+O8887j/PPPn7Z72zar48gjj+S0007juc99Lve///1XcbRCCHF4Wa2J6d46kDdGb439UdVpT7Kcx7XH+4hWkGeGWwYV3dww381XFJC10tcajRt8iMx2DBuHNZ/8wNv41pc/g1KKP/zL9/HbTzgBTWpb1/hUalYpOGImZ9z4drHQMFNY1vW2D1AqLIQ8lWkd1x4f2u9sjBRak2eKGBQ+RjYO651+/otj1771W4Oijp7rMN/Ld/oeyKRdiB2Tub0QQgghDjTvPc985jO5/PLL6ff7XHLJJdz73vfe7XFrpW08rCypZnHJBs/SdZrzKWEI0iZF3SY/zeSW+V5GN7f4mKooa5U2K2YKyy82j9k4rImkzZ35ToYiBYyFGNk8djgfppWROrnhNjPFdJOjs2SzZH+9dzNF2ugpG89cJ6M0aW3oQqRyYdrObimrFd3cTMfXzc0uA7P2tqKYUmnzqnYpc35vKz1NDpt8HQ/n2B5Za+x7i4uLHHXUUZRluaLnb9q0iXe9612cf/75fPSjH+Wkk07azyMUQghxKFuN1sPbrgHKScK80XQzzVw3o7CGxarh/373O3zgtafjXcOxj3g8j33haxhVHuerFHgUIp1MY5QiRgikueY488wUFq00W8YNENlSOzrWpjWHgl5mt9urGFaeqvHMdTPyTGOVovGR2U7aqzKmnVsaTYyRCDQu4pq0N9bLDP2Onba8y7SmbAKNT+9zjJM9DVCk6q9KQeUi4zpgdWBOwYZt9kVs+/5mRrNxlKpHBRvpWIPSpCpSQAQWxw2dzLChn6eWei4wbt/jTru3mJvln/OBLrAgDi1rIjDqb/7mbzjvvPP49re/nf7l3WZxmGUZT3ziE3nuc5/LCSecgLVr4rKEEOKQshoT01vrQNwYvTUmfavLxlO7VNWqdL79/2B7U7sw04nxSqo6rTTLuXaehbJhUPlpGf7ceWaLjGHlibGeBpbtLCBrT15rUIFSitJFvvapj/C1T34IgJf/2ds47sSTKLL0XKNThnAkcsNCxc2LJU0bjNfLU//rECLabP/d00rRyy1WazYOK2qXFhZFbsiUYaZvsFrv9PMPMWU5z3QsZfs9Wd/PWN/feVDUUjJpFyKRub0QQgghVkOMkZe+9KVceOGF5HnOV77yFX7rt35rRceuhbbxK02quXGhxIU4TUxauk6LpPXOJDEENLlJa7dR7XExMltkbfXedNzNg7pdj1nKNhBoUiFp0yiitKIwKVN9UDqGVc1MJ8NqRS+zLIwb1vVy+u06W2u13967+TYjflg5Oll6vd1VdJrYXfXkW1NRrHKewhoqH6abZp1sz6tS1+0adrK+3NvKU2uZrDX2H+/9dkFRd73rXXnUox7FPe95T4488kjKsuQHP/gBF154ITfffDMAGzdu5OSTT+aCCy7Yr8FRd7rTnVb8eXY6nf02DiGEEPvHJHD8QLYe3nYNEIHZjp3uIU3mWtdd9UNe+/vPpq5K7vvQx/CMP3o7Y5eS/8eNp9vO7Qqr6RcZTQgsjhtuGdXULrBuJufOhUVpGJUh7YVoqJ3nhi0Vc53U9m5pW72O1XgfmJnJ09yyCWRWkWtD6RzdTOO8x/lA5T2F0dSuIaqIjtAtDEaptt1eu/cxfW8VMSqU0vRzgwuRmEdCgG6hIUZ8CCyMHFqpaQGB2Y7FaMUNCyUznYyooG7nxMakZIiq8an9IGkMWZugPqrdNCiqyPR0ndXbQfGFA1lgQRxa1sQ35NnPfvaybI6JBz3oQTz3uc/l1FNPZf369as0OiGEELA6E9N94dbeGO1lhmHl9lmLu4mbBxWbhjW1D5S1n95gXqpsPAulIzcNM0XqwdzJ03hCjNMJ6cRKs5yHlWPcBDJjmO9qBmXD5rFjsXQsjBtmC8ugUhxNh15hdxiQtScZ1WWTsiLGyvHFz3yaT7z3LAD+5x/9OS9+yUsAWN/LphP/0FZ12tDL2TxqyGxAt+/NoHJorThypthpOzwXwvS97GaG+W5G2QTmu51pZsKOPv8QIrqb4fzWQKzbzO7ZzTSZtAshc3shhBBCHHgxRv7wD/+Qc889F601n/3sZ/md3/mdFR27FtrGr7R9m1WKYT1pBVJNk0d6uaHINBsHKXFo86jG+UiRpTVw4wPOx+n6XEXFLaMKHaH2gcaFtt2FonKBURXQHUVTe4iREGHzKGXAdzJD7QMbBzV6NiVHLZapvdmoTglS3TxtkuyP926msBRWT4PIcquXrfOXSlWvdl+Z+dZWFAshMqgaOsawUDYMraNf2D0KbEqt4tPrdtrvZrGT6zqUyVpj/5ubm+MFL3gBz3/+87nvfe+7w+e8613v4owzzuAjH/kIkIKqXvjCF/KIRzyCI488cr+M62//9m+5853vvF/OLYQQYvVt2yp4f7ceDiEyrh3jxnPjYkXjA3XbAm9QORRprnfdz67mpc/8PUaDRX79Ab/F8/7sPSw6hdZp7ymSEsKt1vjAtFWdD5Ge1WSZZjBu+NktA+Y7OZXzjJuGzKSE/LJ2KXhpFOlmhnW9nG5hmO8WzHUzRnUKsO9mEaNTEP7YqdSmGRiXDucjzsOmkcP70HYDMenaY1wWINXPLS4ElFKYtkKs0REUjGtPCKAynQKt2oCsSQJD4yJHzhTkRnPLsCIzii3t3HjSacaHQDc37RwYalLF2sncrcg0M0Xa1+rlZlkw2MSBLrAgDh1rahdOKcUxxxzDc5/7XJ7znOfwa7/2a6s9JCGEEK0DPTHdl/bmxmhmFY2L/z97fx5vaVrW98Lfe3iGNeyhqnpkJjHh9QhoiCAmiiMagggCigcUBaJEUEQ0EtFmcAqKHESNQutRQYEXJaJyUETjgKiJnrwRxQlRmkF6qGnvvYZnuKf3j+tZa++qru6q6q7qrqq+v376U1W71n7Ws9baWNd1X9fv9+NY112wiLsVt+61HJ11AMw6N9xXJKVEYaQYLbSiGO6x94Hji8DSBQ5NSjbrgqaXaIODitZzUTmLQ5X8XefD2hnJGjjZeNwyMS89hVHsLB2HxvJ82+PilIWsc1VUx2FBCOA97/pVfuxV3wnA//kN38xXPveFa+Xssg9sjuT1ti6sfy7GpcF5UUOsbF5nrUcr+ZxKu2/N2nuxgk1piHRALFxLo9kaF1gtj72jz39n2cu1kjQ10/r8DqohF+2ZzEFybZ/JZDKZTOae4tWvfjWvfe1rAc470ulSj40/n/i2460nRBnouOEx00ociI/PenaWPW5w0FWs1OJgtURw7DWOeSexeEopOhfwCYyCQmsqLQMYq0UR7kJk3gQaH1g6GSBZowgJdhY9rQ9cM61QWlFaWYRaufeOS8OkshflvSuMZmusidGeNXbwXBaw7q6jWIyJnWVPYbREqvQSI3I+r7Hpw/BZqXUfPLoLrlNXCrnXuPBYa/mu7/ouvuM7voPDhw/f6WPH4zE33ngji8WCt771rYBE6/3kT/4kL3/5y++J281kMpnMFYYaDvlXx/EXM3rYhcixWceJRY8LkdZJHHRlNSHK0n/vA3/1tx/mO5/zFeycOM6nfOoj+c4f+b857gw2BialJSrYWXhSDNSlwSpN6zwhSuScj4lFK4tPSitC6IhJZiaFlSWqQiuuqiylkbqu85HCaloCk0FMoJTUt60TMUGhNZ0P+JDYaRy7jSOkRAwy+9gcWepCM+88pdFrp6jKahJpnaSxWrKvrJEoPp3oQmQUZVGqLuTvTxcwbA4LYa0LbI/L9X35oeZddoF563AxMaksKSXpHw6IT0aFudNa+J42WMhcGVxWspGUEjs7O9x000189KMfvZ3yI5PJZDL3HqcXkhezML0YFMNyzFXTimk15DAPFv5GKwqjmVaWq6YVxihmrZdYO+SAfK917Cx7Ti7kMHmvdfRe7FVbHzix6JkfUPDeEcfn3Xop6ti85fisZ9Y6tNpXJRuliAlRFgSJQBiVhqYPnJjLc4M4P62Whc5F5bzo/Hopat455q04YS16v36eulCo4WC8d4Fl77lt1vKxEwv2Grf+71wV1e0wZHjf7/4O3/sd30RKiac96+v41v/8Cvn7Qc3ch7j+mVotUrU+MCoMh6cFRuv1IpQBOieH5vNWnK7mrZfPYzgo3hwVHB7tbyNtj0qqwtzp5z8a8q7HlSgV7o4r2uozgVy0Z+675No+k8lkMpnMPcEb3vAGXvaylwHiYvKc5zznvL7/QsbGH7zOmaLbz5fT49tmnV8vb9WFZqO2bI0KNmpLaRVucM89sXTMe8+oNMw7zyd3GmadJwHLzrPoA70PLFrPvJXHKqAqDLPWcfNOx7z1nFw63CD4qAvD9qhkqy4pjCYmcXoKCYnSQ9G7yF7rRYBDYt555p30asdmPbvLXuI1EPco6YUvznsH4qI1qSyHJyVXTSuu3qi4alpxeFKKY9M5LEVdCEexaW1lwDUMlfoQmQ8Re+dC58V5CvaX9ip719yrrxRyr3HhmU6n/OAP/uBZl6IO8prXvAZ14P9f/j//z/9zMW4tk8lkMvcBVvX3qr5ZzT3Ol7NFD887z4mFzFgSIiSf957OeTonCz0+BI7eeisve/5Xc/TWm3nAQ/8FL339m/C2xoUkMxyjsVozrQzjqmBc2XXNV1lxaIqIoNugWHYiUleski40RmtaHzg+6zg6b2lcZNl7eidurUopDk1KtsclIK6khyYl125WlIU8d1VI7+JDxBqJu6sGAUM5xNiFlEiwrt9BRA8rYX5VyOOUAuLqsfJ8SrEWMCT26+GtUbFebFrd19aoEFG60SilKLSmtpqtUcHWuDwlPm9a37lA4N4wWMhc/lw2jlEpJZRStG3L29/+dt7+9rdz3XXX8axnPYtnP/vZPPzhD7+3bzGTyWTu02ilCCQpKIO4JdV3QZ14tsL0QhJjOm916PmocbuhQB0V5k4j7lasim6A47OWnUYWnKaVZVoXFEYWdWJKuJDWimXfBarh0HvWek4uekojB9PLLrA11neqco4pMW8dR2eiSJh3HjeodAujmdYGqyU+YbUkhYZCKxoXqIyhJXJ80TH1BbtLx/a4ICbOqqjuQ+TP/9ef8u3PfzbeOb7o3z+ZG37w/0JpTeedvL4QsYPiYVxaVm/3arHo8KTCaFnIAtgYFaSUKAtNOhAdobSiNmZd0ENAa3PK+7A6GD+Tg5OoQdJl6YqWyVxq5No+k8lkMpnMPcHb3vY2XvCCFwBwww038G3f9m3nfY17Ozb+jvrWEBPLXiLh550/a3xbTImtUSHDnBhRUfrb1dJR5wK9j2tFeaENPiVWkw/nI1rB7qInIPHvLiRqW7FZF+v3pbCKPshiU+8DCsXSBQIitgkpDctOCqU0Icl7I5HnolzvY2SjkshzrfwlrQi/UI5io9Kwu3QizLGKzkmsyLhMZ/w8Qd6HVRwfyNBqdQ4zru67blG517h0uN/97senfuqn8td//dcA/MM//MO9fEeZTCaTuVyphnjn2ho6J7OLyVBXnitnix4+OPtpusCi9+w2Hh8jZSlL8z4mZns7fN83P4ubP34TV1//AF75U2+BaoOTC7eu0/sgs5VxaQkprudnMSRchEJpRpUeFogTizbQhYRSspxUWMWRqaWwxbpel+tYlr1nYyT3M2vkOZVSLFY9gYLaanxIXL1Ry1xjnpi1gWUXmNSBQitQinnnafoAChTynhRar2vJutifDa1ag1WqhlYKq9UdpmOcKalloy4IMZGQGde4stjB9ao0+g7j807n3jJYyFzeXBaOUX/6p3/KN37jN7KxsUFKaf3fzTffzGtf+1o+/dM/nUc96lH82I/9GEePHr23bzeTyWTuk6wKyFVBuTq0PR/OVpheKFyI7C4dx+adLAGFuF56CVGWuuad59i8Y3fp1uqD81Hj1oVeb8vPOr92cWr6cEbnKBcis0ZcpuadY9bKYw6NS67ZrIciUqxRKyv50tvjYn3g2rlIH+LaOWo2LAmJfWk6o8o5RolCOLHoOT53uCBFd+vCoBaW/zu56Ll1t2Gn6YlRCvDGRUKCNLxvs8Yxa0TRutv03DZrz0lR/Td/9UFe8OyvpG2WPOZzv5Dv/9E3YIw5oyp4tTS3UnoeXFDaGhVyGD/E4Vmj2agKNkclW+OSzVHJRlVQDJECldVsjwvGpT3nBaXL3RUtk7lUyLV9JpPJZDKZe4Lf+I3f4NnPfjYpJV74whfyqle96i5d596KjT9b37rXOBZd4OaTDcdnPT5ENkdWnI7OcI+9l4GM1hK5HlJi0XlxJ+o9JxZOFqFgEMhYNipReq8U4j4mGh9p+siikwWrRDplWUyhCDHR9tK/LXoR3oAo1A9PKkalwSiNHaL6RoVho7br/rZ3kVknPe2yD/i46gXP7b27J7lQjmKTUl5/6wMbVYEa3tJlLw7Ue8OgrvPSs696+YNLUSsR1mRwQb4vknuNS4/pdLr+/WKxuBfvJJPJZDKXM6PCoJCFequlhmz6c3PXXHFn0cO3m/30w+xneM6NkWV7VFLi+IEXfR0f/4e/Y+vI1XzzD/88duMqlt6LO2uIhKFeHxeyGKSUOKf6EJkPtW1hFePCMikt46JAK82i9xxftEQSrUvUheXqacX1WzWT0qKS9Ag+Jm7ZbfnkyYYTi55j855F55lUlu1JQV3IQhZKMW89xijGlWZSG1l4SorOySxo2cp9W60wSjEuzHopamUeALIQ5YdIbqXVYDBw9nSM05NaSitJHXZI7ACYVJLUsTkqzmkpCu5Zg4XMlcNl0SF95md+Jm94wxu4+eab+fmf/3ke97jHrf9u1dx84AMf4Nu+7dt4wAMewJd/+Zfzjne8g77v78W7zmQymfsWF7swvVCsXJnONwbv5FKKS5DC+KAa9/CkZKMuqAuzjhDYqAuJXTuwuHSmiLsVy04ON1sfWLQBnxLTynJoUt5hUaeVYlxaNobDz87FQR0A8y6cYl96usrZhcjJpaPzca00XvSeE/OO4/OOpgu4IE5Siz7Q+MiyF7vVcWGYlJpJZbFW7FitlcL92Fxcp2ZtYG8pr/eODmQ/8g//wDc886nMdnd5xKMezate/zNU5b5VU2HldafhrYrrhSI1/Lr6ujQoRivGpWF7XDIqDYVRp8XhKSblgSJb61Ouc7ba+Z6y681krnRybZ/JZDKZTOZi84d/+Ic87WlPw3vPM5/5TH7sx37slDin8+HeEEicrW89Me85sejwIQ5uUoE+RHy443s76Lwr6m7ph04sOpyP+BQphyiLcWkotCwulUYzKS2bdYEZbnrReo4vHE0XmbWOE4uOeetofSCkSOtkaOJ9EsdhJX1kac0gIhLFfBgcfvsgj5f+VgIOehf3I+qGs4VLUVxyIR3FxuX+QtNkeC9W5yudj8xaz14jcfHdgaj4jdqul6JGpQip7qvkXuPS46abblr//rrrrrv3biSTyWQylzVaq3XU2mpmtOzDBYkediHebvajhsdtjS2jwuBDYmc+53te+HX87V/8/5hubvHSH30zm9fen52mZ3fpSCnhUyKkiEExlNvEGFk6qZF9SEPEnl0vwlujsBqcDyx7ibiblppRoZlWBZOqYGssgoWVkcDxRcdO0zPrHM5Hbp21HJu1nFzIvcw6TzU4MAG4ILOs1dxNAWY1N9GajQNRfyBOUeNyv6ZsncyL0GoQArAfr8fZBQyrpI7rNmsOT0qu3xqxPS6pC0NdnNkd9Y64pwwWMlcel9VPyWg04tnPfja///u/z4c+9CFe+tKXcv311wP77hHOOd797nfzjGc8g+uvv54XvOAF/Mmf/Mm9eduZTCZzn+BiFqYXit3GrQvctg9SJDZS6LqQ8FHsOzsn8QEnFz3tcE/HZh3z1tP2Yb0UdWdqXBhUn5VlcyQFZOfiWnWw7PbfF3F0koPstg+0IVAXkqN8LgVhafUpytrCaPoQWTp5rasDU5DCdN75tXq384Gjey17rWPZeZZO4gG1gb3GcbJxLFqPVjCtDEaJXaxVkgVdW01VaMygPrhtr+PjJ5bsNY5bdht6H874Gm7+5D/xVU95Isduu5V/+amfxg/f+BZG4wmR/cpZId+3Omhe/Vu/+pHYX1BK6+9SSr4+Li3b45LDk5IjU/l1e1wyruz6+853QelyckXLZC4Hcm2fyWQymUzmYvC///f/5su+7Mto25YnPvGJ/PzP/zxa3/Wa+54WSJxL3zrvHK2LHJ/3nFw6+iBLTccXHf90cjm4AnecGMQ/y94f6KtEPFMXGu+HAU1MTEqL0QozLOac/jplOSdASjROXKASkZhg2UdclFi3Y3sds8aR2O99RkMkhl8tZSlZ9un9aoEqrhfXSrsfd77qx+etOCFfiuKSC+0oNikt49KQUqIuDIcmJVujgqrQFEbiSgqjqApZYjs0KdfxeZNqf0Hqvk7uNS4N3v/+93Pbbbet//zZn/3ZF+25Xvayl/EZn/EZHDp0iLIsueaaa3jkIx/J85//fH7lV36FEM5PvJnJZDKZS491vFspYm2Avcaz6PwdntPHwSV1r5H6+kzRw6tZzemzn9JoOidOrSdnDS9/8fP5//3JHzIaT7jhJ36BT/20h1MYiUOeNY4Tc4dzETfE2S06z7z17C4D3ouTlNYwKjWF1WhkMan3EmUXYqLQirLQWGtwPq5fZ10YlIK9zq/dqOat49hex7GFCN1v3u04NpfeYdF6Ti57YhLxQVVolr1nZ+4IQ109rWW+NSplDqeQOLuN2p5iWBCTCOtBxA5Wi3iiLsx5p2NcLgYLmSuTy3YS9ymf8in8l//yX/j4xz/Or/3ar/HkJz8ZYwY7t0H9cfLkSd74xjfyOZ/zOSil1k1PJpPJZC4OF6swvRDcnRi83WVP70WJe3zRyb2VZr0IdjYqa6itpuk9t+y2nFj0fHKn4bZZO1iddoQh7s7HBClRWX1eSlMpjNX6NaWUaIaCPib5WoyJk/Oe47OWk03PJ042fPJkw7F5R++kmDRasVUXlGb/tVWFISZonawt9SGy6D2LLjBrZclK8qEtMYnL1LJzHJv3fPi2BR89vuDW4XXvLHv+6eZbecZXPImPf+yjPPih/4w3vuVX2Dp0CDj18H217rQ6WN4/KD91Qan3+wtnan1Qfufv111ZUMpFeyZz8ci1fSaTyWQymQvBhz70Ib70S7+Uvb09Hve4x/HLv/zLFMXdWxQptGLZeToX2Vn23LLbcWzeycJR59dOQQeJMbHsPDvLnhOLnqOzjttmHXtNT4yJGNMZ+49z7VurQlMVhi6GdZz5zbsty6FHm7WOmBii4hOLLrCz7Jm1EhXvQ0Sh1n26VtLjeh/X9+XCvhCkcWFwVk4Yo9EMsXp9YNF69pYyfPEhsuwDLkWawSm5sIrpWqku1yysIsRIiqC0uFkd7OFWgx8fE50TEVHnwyUpLrkYjmKTynJ4UlLb/R50sy7YHpccGkQ/m3Wx7ilrK87I92WnqDsj9xr3Hj/8wz98yp+/6qu+6qI919ve9jY+8IEPsLOzg3OOo0eP8pd/+ZfceOONPO1pT+Nf/st/ya/92q9dtOfPZDKZzMWnMJJiAbBZF+sZ1N2JHl6J1kFqXpC62CjNbuOGhaXIa1/+Et7/O79JUVZ8z4/+LA/9/zySRR8YV4ZxIfF0887R9IGQWD//vHf4kCgLiaqblnYtOl9FyTmfCDGilQjQex9Zdp691rHbuKGO98w7TzekjvQx0nlxqNpt+iHWOTEZZnMhJuadpIScnPdoFJPCYK1mr3VDLLfHWlnOMlqzORJXKnuaqER6lCj3X1sUsDEq0MO9wrmLzy8Hg4XMlctl3y1prXnSk57Ek570JG677TZ+/ud/np/7uZ/j7/7u79aPSSmth6k33XQTX/ZlX8Yzn/lMnvKUpzAej++tW89kMpkrjlVhuug8m3XBHqJqXfbiQlQavbbXXKlD+7DvZnSmwvRCcCYrVJACd1Te3qazLgyTJIe8yz6w2zhCSlTGMGs922PFqCzP+bmbXgrxxkXSsPRkjWbRecalZWfZ40Pi+KwjAYXWaKXQnHsxp5Vs6Xc+iMIARTcUpS5EccFa9pxse1HyLnrsUCwqLarTZedpusD2pMCHxKg0bJoCrcQdSV7LKnovYAfHqBATrRcFb9cHTix75q2nHuxgdxtRIYxKA67lP3z10/jQ3/4N11x3PT/79l/lqmuuxflI7yK9j8RSVMTOp+H+Vq9x//NZPb/Vij5EGhepraEeDjfLs/zs3JUFpVXR3vrAqDDMOj/chzqnJblctGcyZyfX9plMJpPJZO4qH//4x3n84x/P0aNHedSjHsWv//qvMxqN7vL1XIgsu0DjxFkXJHLCx7ju5VyQGv+gi2/T78ear1j2nt5LxPnxuSi5r92omNaW0hrpEbU65761MIZppZm1PXshYrSic6JEN0Yxb51EYRiN1mpYKJLBxcllT+cjWimUUigFpZZevQ8RqyVmz8e4dsldDTw6H2i6OCxrJVyMND7gUmDZw6IXcVRhFV5DJGE0FNZgfCIM19JK4WLCIEs/ibSO7QDpbwuj6X1kt3UYpYiJS1JcoodYQK0VhIQLcS32Oh9OHyqV1rA1LojRDnGJ8lmkNDglK4kxGRW5pzxXcq9xz/K2t72Nd73rXes/f8ZnfAZPfvKTL+pzHjp0iM3NTRaLBSdOnCDGffHdP/7jP/KUpzyFl73sZfzAD/zABXvO2267jaNHj57X93z4wx++YM+fyWQyVwIxpnOud6aVlXmEC2zWBa0JNH2QhXof1zORg1itGJVmXaMdjB5u3H509UqQ4KK4OymlCCFw4w+9gj94939DG8N3/NBP8n985r8BILhA2wVChKJUVN7Qh8DUWIzSuBTxAayBaW1p+4S1slxktYjcnQ80PrDXhKG+huAhWoncW4kwwtCDLHsRQkwrS2FE6CDvkyGmxM6yxw5LV+PSyPuhxJVq6QIaed7pyOBjorKGomS9pHXK5zKYGpxYSOTwxuCiVViJAryr6RjjSmYsdWlkwctF9hrPuExnnNet7mU1r4OLZ7CQubJR6QqVP/zRH/0RP/MzP8M73vEOFosFsO80sWI0GvGkJz2JZz7zmTzhCU/A2st+T+w+x1/91V/x8Ic/fP3nD37wg3zap33avXhHmUwGZBFmpXJt3X5hekecqTC9kPbvu0tH6wNtH5gNB82bI3vOyyyfOLGU/GQSoNgcWe63ffYDsVWhuuLkomevc5Rasp0Lqzk0KWm6gNaKj51Y0vtAZQzjSqL0ztWVanWv89avi+G60Fy9UdP5SF1obt2V3Olb9lqazjOtLRuVpfGRQosCYuk8pRlUp6VlWplhSSky7z3HFz0G2ByVWKOYDJEIALPWcXLZs9d4yaZWCmUUG6Xluu2a0Hd837c+h//9P/6Qre1DvOlXfpOH/ouH0fnIqDDsLnv8sEBVF4adIZd7a1RgjWZS7eda7zVuaHQCR2cdrQts1QVXb9Yo4PCkvMPD4c6HtUOZOIQZ6uHQ+Wy4ENeNwLks2cGZi/bVz/fhSXnBFgAzmSuZXNtn7g1yr5HJZDKXD0ePHuVxj3scf/u3f8vDHvYw/vAP/5Crr776jI89l8HL0oX1khLA8XnHbisK8GXrUQqmo4LNqlgv9KzjJYaexflIGwKLxnF80eMjTGrDRilK7Glth8cbJpVl1ngSCQ00fj/C40w94fF5z17bc9teS9NHXAjM2kBMkVFh5XVUhkPjct2j+BCJwLJz7DSekCKTwhISbFaWjVFB03tGpaXzkWUv/WxMEZUUSxc4MetY9J6dxlEYjRnehyOTEqPAJ8WilcUohfT2o1LuRytohv4pxsS899Rac/VWjdWaBx0Zn9JPdT5wYt7T+8C0LtgaFVy/PTrn3u2eYtGJer/3kd3GodTQj55HpF5MiROLnpRgayROUNPKrh0RMheX3GtceP7qr/6Kxz72sczncwCstfzJn/wJn/mZn3nBnuP3f//3efrTn84zn/lMnvjEJ/LoRz+aw4cPr/9+d3eX3/3d3+W1r30tf/RHf3TK977+9a/nRS960QW5j1e+8pW86lWvulvXyH1GJpO5r7ISInQ+cGfLCgoRGI8rsz5Ln3f+lHq993Et3l7X94NAoDywrDOp7CkumycWPS7E9Vn/wfjmm/cafvp1r+aXf/r1KKX4ple8jic+9SupjCEiC/G7i55P7jbsLD17TY82isOTkpE1JKXwQZasjBbHqK1RwWZtaZ0scc1bz7x3LPtApRVVadEKjkxLNqqSzZHUva3z+JCGujMxqQ3TodbuQ8THiNUittgclZRWYpi1Eierj59omLeOblhkUkBlNNZqUkjUlWFaFWsBQucDiy4MTlQwqQxXT2sArt+q2RqX6/mX1YpDkxIFXDWtzmlp/+Dnd3DOohTnbbCQXVMz58oVuxi1Yj6f87a3vY2f/dmf5X/+z/8JcIod7qrJ2d7e5ulPfzpvfOMb77V7zZw/eViRydw9zmcT/3y5UIXp3SXGxLG5ODGdXMjizerg+Vz5xMkl89az7EUVvFFbrt8e3elB58FirnPiGLXsA4veU2jNtLYYrdgel5xc9mhY36dS4r4lVvjnfuDb+8islaW0uhCFwNUbNYURR6i/uWWGD5Fbd1v6GNmsLFvjch2zcHJ4fms0DFEKRybV+vq37bUcX/QUSu4/pMR1WzXWaFwI9E7iBmetGw71GQ7xFUcmmp951Yv4n7/3W4zGE17/pv/Goz7z0VSFYdbK4XGhNfPhZ2almLBasTUub3e47EPk5NLR+8Atex29D0wqiZXYGknEwOlcqAWlXLRnMvceubbP3JPkXiOTyWQuD/b29vjCL/xC/tf/+l888IEP5P3vfz8PetCDbve4cx28zFpPStI3+iA9c+vESRhg0a9cege34dIQEmu/X4UorvsgizKr7yu0pizEBWmzLhiXhroQR6fNuiAlkeLsLnsKq7lqWt1h33rTsTnH5j07S8escVir1s5OldFsj0uUElGPVmpwhxKBSesjzkdmjZOItnHBuJBFrURCoQgxcXSv5ehCesQYQanE7lIWpVofSCnhfGKjNozLgtpqNsbFuqdbtoFpbblqWtH6wLSyg6O05+TCoY0MfLZHJePSnCI+iikxaxxH5x1WKa7arNisS45My0tOXHIhzhzuzlApc+HIvcaF4eabb+azP/uz+ehHP7r+2o/8yI/w7d/+7Rf0eWazGUVRUNf1nT4upcQP/MAPcMMNN6y/VlUVf//3f88DH/jAu30feTEqk8lk7hoXYn50dxarVhybd4QoTksSgycuSrPO8aY3/ARvfI38//hvetkP8CVPfzYgPYAs/kvd/JGjc3bbno+faEgpsTkq0CgOb1QUWmYnKNBKnFJH1tD7SCBxctHTdIGqUCgl6RyF1jzgyGg9R4opMW89fYjsLByl0RyZliRgoy5Y9J40iDAmleXazfp2s6vjc5ntzFvHoo+EGLFKE1PCp0hlDVYr6kLe25BkpmGUYjqyHBrJvOXQpOTazZrOB3aWMhsprRIXXCO9xbnOFy81g4XMlc8Vvxh1kL/+67/mZ37mZ/jFX/xFjh07Bty+uQnh3DIsM5cGeViRydw1LkTBeCk9z51xIdSbR2edZFQve0aV5fC4ZHtSrJXAZ3rO1fLNrHP0bj/Srh9s9Q+NSlDiWHTrXosPiaOzji5EjozLdVzb2RawDiJOSKIuMFpRW81VGzUxJToXOTrraJxj3om6YKMu1tGHrQ/cttex7Dw+JSaFpSoU07pgZA0xJo43HU0fBzcpQ2UM9ztUryMOlr1nt/GEIAtSCsXm2LBoPe/40Rv449/8bxRlxQ0//ib+zed+HnYYDIysYbdxjEpDSIl5I9nXdWE4Mi3XiueVOgJYR1Acn4t702qJCmBrXDAp7UVdUMpFeyZz75Nr+8zFJvcamUwmc+nTNA1PeMIT+IM/+AOuvvpq/vAP/5CHPexht3vcuQ5eYkyDW7D0ckYpxqVFKYmvcCGhUey1PYs+4EKk7SMhSZ+36oGVUrggcXqlURRGURYG5yVabuUCVVjNtLS0PmCUYlJZeh9RCq7fGp3SA63YaXo+fMsMFxPHFx2z1qOA6RCVoZDhxbiUPmclmtFKovqOL3pigkXrWHSB67crDk8rJqXEcbiQOLnsWXaBvdaxt3Tstj2dGyJFEOHNwnlIMoApjQysHnhoLEthPrJoHdpqDo9LjFbrGJGTi57dxmOU4qqNkqrQ3H97xEZdkpBlqz7EQaXumZQiTDJa8cDD40tSXHJ3XarvqqNx5uKRe427xokTJ/j8z/98/vIv/3L9tW/8xm+8JJbIvumbvok3vOEN6z9/8zd/Mz/+4z9+t6+bF6MymUzm/DnlbL0PNO4cztYLQ12e+Wz97hgAHJ11xCQLSieXvdTOMfH//YWf40de/h0AfMO3vYxnPf9bTxFIKETcXhjNbbOWE/OOj51YsvSBQ3XJ1rjg8KTiyLRk3gYg0YVI72QZPiapA3cH4bUG4nDNrVHBNZs1I6sHV1epMXeWPbuDc+v2yFIXBVrDvHOMC8t1WyOqQnPoDkTjnzi5lPjmlDi26EkhgVZrZ1czzFKq0lAPCR6TuqAcZnaHJgVXb9TMGseJhaMPkcIqNgZx//a4OGW+dy5zv0vFYCFz3+A+tRi1wjnHr/3ar/GzP/uzvPe9711nTeeG5vIjDysymfPn3ig0LqYz1dk43Qq1LjQb57mQcmLRs7t0HJ+3KK25drNiWtkzuhK5ENlZiiL44FLUqDQoBcsuUBopaI0WW9UTw2H20VnH8UXPqNSMjMGnxLUbFRuj2z/PmZi3np2mx3lZXjo0rTBaohxmrUeTOLF0uAPWqgAhJBrnuWWI2mv7yLgyHJ4UaK0olGHe+2EQENFaURrDgw5LoQ2iTr511uFDpNSKmBSFVRyZlLzxh1/Jb739Z9HG8J9fcyNf9IQnAqI2ACgLjRkO6WtrODG8htIapkPRfM1GRWH17Zac5p3ETWxUBZ2XZazyTnKsL+SC0oX439K9+b+NTOZKIdf2mYtF7jUymUzm0sY5x9Oe9jTe9a53sbm5ye/93u/xqEc96naPO9fBix8cnqxWuCgLRiCq6Ks3KrRSg0Pv4Aw8CFM+udMwaz2zVnqDupTaf1wYKmuJ7As0ppXl6s0KjaJ1Qep/LS7DLiSsUmijOTwpmFbF7ZyH9lrHsVnHXiO/Hl92LLrAqNRsjUo6F3FRotJHpai2D01LSNKrhgif3FkSU2I5CDy2xwX//OoNxqVBITXUvHX8007DvPUcm7UsXCQNESA+Rgpj2Gt6QoDpyLBZFVSF4ZrNmjSo7F2KLDtPZcXBatYFSiMx7Z2PlFpTV+Kadc3G7VXtrZPIeYmAL9ioLQ8+Mrl7PzQXiRy5fuWSe41zZ29vjy/+4i/mz/7sz9Zfe9aznsWb3/xmtL73f56PHz/OAx/4QJqmAeDBD34wN910092+7m233cbRo0fP63s+/OEP85SnPGX959xnZDKZ+xJ3lsZQWVk00krmDS5I3Xgx0xhWjlEn5j1HZy2T2vLud/43XvmS55NS4jnf9K18w7d/jywUgSzwO5mvrFh0nlv3WnaXsrxUW811h2qu3ajZGBWEwV7Wx8SiE1HDao6028iC/chqSmupS839tmpGpZVlsMKsI/Bu3Wslcs8qQDGtClJMzJ3nmo2K6zZH65SSFTElOh9wPrLXStxfAkjQh4RRiqRAJYkQDMOyVGU049Ku3aAOjSx1adlpREARhw9FK2h9ojBqPcsYWcPWqFgvsp3t87oUDBYy9w3uk6t0RVHw9Kc/nac//el84hOf4Od+7uf4uZ/7uVPsXTOZTOZK5Jw38YM4DB3cxF90npjSXVoi0VqUrwdS2e4xVgVaHF7nXSmYtILCKtCKFKUgvyMBQzMcanYurJeiNmpLaQ3z4aBc6f3rglivhghXbSR2l45lF6jH8qATS0dVGMqzKE1jSsw7+Xy1grq0omRM0khMK4PRmmUvy01bdYmLkb3G0bjAsvNoBUZD48RBysVApQ3GKJRSVFYcnZo+MJ1YqsKsY/sWrceHiEFcpnxMjAvDO/7vH+e33v6zADz3P7+aT33sFzJrPaXRbI4Myy7S+0hZaFovh8LTykKZsFrjoxy+Ny7SuHjKa7Zacf1WTYiJZR/YGhVs1MU9piqYVuJktSraS6vvcCnr9KL9Tov9BGHIKF90Phf7mcxZyLV9JpPJZDL3PWKMPPe5z+Vd73oXdV3zrne964xLUfPOr3vgsw1ejs06Ohc41nuaTpTc12zVzFuHUXB4UrFRF2jlh4GEISXp19peouVCTIQg0XO9UsTkJQ7DKI5MK7ZGBSlCWWrGpVkvU2HB6MRe4yhTonOaaVUMz6OxRrPoPM3gUrVa4lJKMbKa2lgKranH0rsnRIW+NwxRCiPPB1BazdIFfEjEJD3ozsKx2/Rs1gWVNRxf9JxY9ixaRxcSpVEYrVFATIouyPJTryI+gtLiItU4z7S0GKOIXtG6OMRrGGqrSVGcqzZHsvQ1soZRaantvquV0hJRvnL/rY1hXBqumt7+QOFSEZoURq/dmDfrgj3cEBso5y7nG7mee79Lh9xrnBvz+ZwnPOEJpyxFPf3pT+dNb3rTJbEUBXDkyBE+7/M+j/e85z0AfPSjH+Xmm2/m+uuvv1vXveaaa7jmmmsuxC1mMpnMFc/qvBvObZm8LgyTA8vknYvs4disi+HcXN/tukkrtT6LT8Dvvve3+N7/9AJSSjztWV/Ht73slSilWPZSi5dGUxqZW3Q+kqIkc+wsHZM6oVRBQhECuJhIKXFko2R36dbR2W0f2W06kpIauraGqtCMSs1mXTIqLQrWs4Y41I9EGFnLqFTrOLyl8yj0+r1bRf/6IdXDHag5jZYlp1W97JeOUaUxKKKC6eCU2zmpra0WYfmktCitOb7oWXZ+3Y8kRDRRWk1t7Xp5rO0DO8ueUWk5NJGZzZ3NFwuj2RprYrSXRG2fuXK5Ty5GHeQBD3gAN9xwAzfccAO/+7u/e2/fTiaTyVw0zudAeLWJ72Ni1nn6GNmsxbJTlmwun38+VkXf6tfzidBbURqNQlEbQxMD/VCYnU6Mab/4G97rUSlLTTFJHABAbfcPpEEK/GUfmJQFhycFt846OhcZ1xY3RABOqkRd3LHS9OSiZ955tJKYBjmkT9SFHIC3TgroutB0QQ5kQYrhQhsinr3Wr+MROhcgJcxE03WRUWlwIeCcqI+NlYP5lMDpuD7Q3xgVKBSFgd/71V/krT/5GgBe+F3fx+c95RmihPYyNJi3QyPgAp1TbIwKfIhDI2TX92eNOuuS06FJiUad94LS3eWuFO3n6zTV+kDrQ7aHzWTOgVzbZzKZTCZz5ZNS4sUvfjG/+Iu/iLWWd7zjHTzucY+73ePOdfAicXiBZe/FpbZJhCTuTa2LGKU4Nu/xITGurDgxWc0tuy3zzmO1kj7MKkxUxAjFIPwwMVJqGSZYrXEhUVlF04vAZFQammHIM60t7TAw8EEcqSorveKoRIZBXmI0Gh9RSlFrzXRS0Qfp40ySHsX7fVcbgKb3NM5TGelNl60sfxmjqEvDvHPEJP3LbbOOo7OOlMBojVGRABRaYbUmxAQqYI1B99KPzjq3dmcujbwftrCMC1ms6lyQPtgoNkbSq27UBXUhanJ7Wm+27D2gGJeaazYrCiM91cHP9lITmkwrS4iJ1gU264LW7Eeud4NL1umcydE493yXLrnXODPL5ZInPvGJ/PEf//H6a1/+5V/OW9/6Vow5e5zkPcnDHvaw9WIUiNvT3V2MymQymcy5s+z2Rfur2vxs8cN6iJu2RrHXyPyiNVJLL7vA1vju1XiV1euUjA/82Z/wPd/yXIL3PP7LvoIbfvD/WtfT49JSGk3rZMHdarCD8CCmJPMJrSiNovFRhBDDPCdGeR1KJcaFJqWE7Q1WS4297EW0UFnD5khqQWv2l536lXMWUBYiYp8UhsYHll1ka2TWs73SaJa9zB96LwtMXYj0XurjpvNUheGqaclmXVAWw/MMs4zrt0drQb9C5jcpiZh+2cs8KCRZ+gpRIsCLIZJca0ApWbRCavpl79keB67bqs86X7w3DRYy9w1yp3WAL/zCL7y3byGTyWQuCpfiJv49hRqqt9VLPNNC09mQQ8oeaxQ2KFLaX3w6SOvkUNYNS2VKsT7glJiEhNUKO6hfV3+nlaI0ms5HjmxU7LaOhQtM64LCanof0SrQukCxUprKy6L38tnOh8+3spq6kAiEqjAUViIUuiE7WimYlJbey4KXuBcFKqMprSIly/YosdvIa7FaCuDOeRZ9IkR5js4FTizkMH7kLQEpuseVYdEF/tfv/Do/9YPfDcDXvfAlfOXXfSOLzlMYhVEKY+QDmVSGEJNcpzSMy4rSKhSilhjfyaHwmZac7i1VwbkW7feWa1smc18k1/aZTCaTyVyZvOpVr+LHf/zHUUrxpje9iSc+8YlnfNy5DF4WnR9cfTwxIQssg7LbhcjJeUc/smyUBY2LGLNacBG3pY3acmzWrV2BogHnAuPCEIaouGllMUrU1L6P+GiYlOK+WxXSG8oyVKKwoj6PJNrBlaoPkdhJzzBrPM6L6+72RNynRqUh9qIKX/TiBmy1ZmItZnAoWg49SLTiaOVDwhglbsjBsHSe+2+N2Gkci8FNGOSaxmo2SoNGo5TcY+c0syYwKhRay5mD94lZ6xlZQ1nCZlWwNSo5OpO4jbqQ17M1LrhqUqG19IbWiLtVStIXuiAR6dvjYr00Vdm7LzQZFQaj1UXtFbdGBUYPMfFD9Mk95WicuWfJvYbQNA1PetKTeN/73rf+2hOe8AR++Zd/maK49M4uRqPRKX9eLpf30p1kMpnMfY8YJdINoBlq03Fp7nQp6iCVNYxLSY5YiQw6H4jR3mkNdzaH0cpoFsDffvDP+a7/+DX0XctjHvfFfN/rfup2C77WaKZGSzydWzmAJro+rJegrCo5uugYF1aik7uINp6QZClJa0UiMa0Mi95L/+HCOnpuNecYFWaIwYvrlJJymMuFmNgYWfZOOmJKGC0CcxcSjXPM2iALUV4WokKSXsiFSBcjoYPjqkcpmGLZHpVcvSGR2BuVpbT6FPGBD5GdpscoxSIElp0jRJjWlvHp88VBpKCH9zikxM6yJ6XE9dujy26+mLmyuGy6rRgjH/zgB9d/3tjY4KEPfehdvt5HPvIRZrPZ+s+PeMQj1lufmUwmc6VxKW7i31OsrFC1VhDkcLsuzk+xdrCwHhXyulsX1wreFStHqDbsF6paKfoDxesqV7k8sPEP0gR0PjIqLFdNam6dtRxf9hyZlBgjS0J+cKRauVKtCuPWBaxSbIzssOiUGJWaupCoN60UWkEYXktwERdkwebEssOHSFUYrt8aMescSpVwYsmi9+w0cqheWkWpNMsgTcTJpsMk2ZraGkWqQR3sfOSDf/K7/MQrXwLAU7/2eXzbS79n7djlml5+tkq7zru2Wpa/wrC4VRrD/Q+NMEqd95LTpawquK+6tmUyZyLX9plMJpPJZO4Kr3/963nVq14FwE/8xE/wzGc+84yPO5fBy8GafNZ4lp1nr5OI8NIYtJZFqXnjYVBJG11TGM1u4+iD9FV9TExqy0ZtSUnqfqMgGDBKcWhcAqx7t364r0lp6FxEa3F2akNAaYVOSZaoosaHiFaKpgvUwzIVSD9pB9FJSIlJaVj0sLN0LPtAYaRXNEYxKc3a/aoJkUltGNUGNfRXfYgsusDCeXwAazVt6wCFVprCSFyfNbJYlEjECBsjte43550nhETbeyaVZdl5VIJEkij5pADF1shyzUaNViIAmdb7fU0cxFkhJkalxMutevdxJb/eFaFJoUWxfmzeUVnpW9dcBHepuxO5nrkw5F7jnqHrOp7ylKec4p71+Mc/nl/5lV+hLMt78c7umFtvvfWUP1911VX30p1kMpnMfY9mEJX3B0Tlo/L85jSj0qzrv95LhFvjJGnhdM7ZYRT44F/9Nd/4zKexXMx5+L9+LC959U+CuuPzdz2IvEfIEnyI4vZkFMz7QEiJxsn5vlKJ0msKbZjWsqSv0Cz7np2FI0ZZgjJWXJeaPjCtVq9TYvAU4gprjfQHVit5DUMdvJqR7Cw6yqF+Xi2Q9SGiUsJoEWqAuE5ZrelDYK+ROr4uDVuDUL8+TVBw256454aUaJ0sd22NCqpCr5e1NIo4vKeSuDK80YPCf7eRCPLDk/Kymi9mriwum6naG97wBr7lW74FAK017373u+9WQ/OhD32IJz7xiaRhUvvTP/3TPPe5z70g95rJZDKXEvfWJv6lwsoKtbZy6Nz5yCSl84rUiymtX+vWuKTxAas0e41nXKa169bqPDYNvzF6P3sa5GB39b6Py9urDcalxCRsTwq6EFn2cuhrgmJaFhid6ILkVvc+4mIEpdioCia1YVoV7Cx7jkzL9YLU6nC1tOIMVVvD8Xkvyl8jBfC0VpSD+kEBJ5Y9dWFpXUQrMMPBt4uJRe8hiWtWYRLTyuJipEDTusBNH/x/ef3LXkAMgcd/+dN5yQ0/iNFyDxt1QUyirC6MHIxrtVI/wMhKYVyYfcXApbrkdL7cl13bMpkzkWv7TCaTyWQy58ub3vQmXvziFwPw/d///bzgBS+4w8eebfCy6Pz+UlQnLklhEGMURrM1spTGsNM4XIiEGAHNiUWPNopSa3YbGRAQE+PSsFEXzFoHIEs5Vq9j9mAYeCjFovf0PlAYcQ6Oq/i7EKhLyyIkSNKHtj5glKIPCePV+rWUVvrPcWVpfcD5SGkUKUU0ihAiDqiSJhSaqtDy+pA+9eppRduLQMaHyLL37C68nB0oWPaRcTks9ChZ3NJa3s+VIKi0Bq3Ax8ShScGyk+GNC4FDo4rCQGEMdSHHz9IDK3aW/eAEZWVQlfavuxLUVIVeO+VOKhEA3RWhyV7raPpAWWg2qoJ561l0gbrQFzXG/K5ErmcuHLnXuPj0fc/TnvY03vve966/9gVf8AX82q/9GnVd34t3due8//3vX/++KAruf//734t3k8lkMvctVrHC7TCrWi3Ynw8HkzfaYQG98/F284PzcRi95Z8+zrOe9iROnjjOpz7iM/i+//pmKEfsdQ6l5Zz+TPcZk0QoH5z9aKVoFx3GKK6uKiCxs3Q0vWcxpCr3IdB0jklpiLGQGdPIUpthGSpIza6Q+11FocQoi0khyiJWGNJJQtQYpZm3Dh+hLAx7jWPeegKJymiKYVmq64abGGrmSWkICTqXOLnoMVpxhIrGBQ5PSiaVpXOBWweB+z/tLNFKSRz2uDjje1NZQywPvDcJifxWihPzjo3aouCymS9mriwui4naYrHge7/3e9fNx/d8z/fwJV/yJXfrml/6pV/K93zP95CS2GO//OUvp+u6C3G7mUwmc0lxoTbx1XDg2Q9Zxqslq0ud0RArVw6H0imxLlbPlaYPWC3KUmvkgHZzLIekyz5wYtGzNyhXex/pnCzB7C1PXYqaVnKwOy4N9gxLLZPKUhcSkzcpDYcnFYfGxeCoFIY4PDmUrgpZhNquC7YnBRtVQWU1127Ug+2pXHNVmNaFWRf8yDk7s6Ub7scyqQyFkesqpSiswmhFCLB0kdZHXIoYpSgtGAPOJ+ywgNX2kQ/91V/wI9/xH+i7jn/zBV/CS3/gR5lU+2rchCykjQvL5qjk0KTkyLTi8LQUq9ihkL4LaYeXPHfk2jap7B02gCvXtlWueOfiehCwul4mczmSa/tMJpPJZDLny6/+6q/yvOc9D4CXvOQlvOxlL7vTx9/Z4MWFyHLo02ado3fS49aFYaM2jEtZ5imtZlLu/3klElq2nnnv6frBlUmzVkmveplwQCxzkNLuuyCt+gLnI9ZAQnowrUTA0vlIinK/KSVxlEKey6wGJCkxLeXeZq3HGE1daKpCes5Dk4JxYamMxHOPC0tpDfUQTTeuDNduVmyOC3xMtD6y7FYqdEVhxCGq6UX5rTTUpV73KVWh2awspZbrGa3pXMSYIRpueD+3xyXTSqI2NusCozWz1rPXeGatRIikBFYrNmq7XooalRJFeGdCk8OTko1a+snV+7tRF4MYR5g1nn/aWbLbOHaWPU0vTgNucJbabRwnFz3t8HOx6Dx7w5Lb3WHlaHx4UnLVtOLqjYqrptV60JSHQRee3GtcfLz3fPVXfzXvfve711/73M/9XN71rnfdLqruUuI973kPf//3f7/+87/9t/+W8Xh8L95RJpPJ3LeIw7/NcaiT76rod+XEubpOPG2YsDtEQ4OcxZ9c9Ow2Uj+6kE6pAT/0kY/x1Cc9gVtu/iQP/uf/kpe9/s1QjOh9YtbKdXaWsmTU+WH24wPz1g8LT/uzH1A0fWBzVFIazaJ3uJjYHhdcPa3ZmhRsjSxXTSpGlSUpEZLf71DNpDCyyF9LBPfuwrHXOhJQGqnJWy/Oql0fOTmXvy+Moq40887hAhgNO23PbusIiHhjWhdMh3q9Lgy1FUfYCHQhEhJsjCy9j+wt3e3mDycWvbjiDoIDBVw1LRmXdz7XGJfiqAsixndhSMdo/GU1X8xcWVwWi1G/9Eu/xG233YZSigc96EF893d/9wW57nd/93fz4Ac/GICbb76Zd7zjHRfkuplMJnMpcSE38Q9eZ3XdSx2t1dqlaXTARnTlonU2Oh/Wh+ZHpqXYgxrN9qhko7brZavOy0HtrHUse08fIhHZ2p/Wdr0UNSrMGa1dV2zUxXpxrbaaI9Oa+x8acd1WvV4eqgrNqDQcmpRctVFxeFxyeFJy/faIQ1OxK199xKvGYF9NESis5FAvBuWqD5G9xnFy2dOHyKQ0kFYWrIlEwvtI8InSyKF2bQyQ2GscJ2YdH/7Q3/ETL30uzWLG//Gox/LSH/4pJuPqlAUw5+Ve1PCl1RnwqndZ3fOV5kh/YVzb5LGrZqsbFC6ZzOVIru0zmUwmk8mcD7/7u7/LM57xDEIIPOc5z+FHfuRHzhpjdWeDl3VN7QL9sGAzre3a0eng96+/L0kvZ7WWg/zO0w0R6qx6r6F3OvClMy6+VFbEMBKXJ9/hQ6K0g7PUUPu3TtyL4iBsSTGJiMVolF4tee0/nwKs0igFxiiuGpccmlRMa8uktmzVBdYoUpQHH54UHBqX4jxVGkaVCHJcDDgfmHcSFxijDFlKq6mNYaMq2BoVjArpDQ9NS0aVYWtUSHM3iJFckPvdqAoOjS3XbNb8s2umHJlWVIUMZKxWg0BHszUqODQp14tjk2p/Qep8hSaLztP7xLi0KJXWTs5uiJG3RuI/NupBnDQIwWYHFqKaPjA/4DSQuTzIvcbFJYTA13zN1/DOd75z/bV/+2//Lb/xG7/BZDK5W9e+6aabUEqt//v8z//8O3xs0zTnde2bb76Z5z//+ad87eu//uvvwl1mMplM5q6ymgGcLug+X9RpM4WDe1GnO4zOOr82C6iHxSOpYzXHjh/jG575VD7x0Y9w/QMexA//32/n8FVXEVIiJnH7nHeOeetY9LIcNWv3l6RS2p/9aKXo3L6DVUywNSoprWZaW7YnBffbGnHd9oirNmuumtYcmVTrpmE6iN5ra0QEPxKx/KzzHJvLYpf34oiKUpSFIoRESNB04h6rtAjcl428/s1aav1xaVAofIoURq8FC6NSEyL4EIFEXRhCTOtauPMB7+PaEXevlbp4c1SsHWHPRmn30zJWfdle2w/zkstjvpi5srgsFqN+4Rd+Yf37V7ziFVh7YRIAi6LghhtuWP/5TW960wW5biaTyVxK3FOb+Jcy42pYNCrNsL0Pe43Yqd7R64gpiUq0kYKvKkR5ulkXXLUh3qx1IctJB/OUrVaUhZGir9BsjctT4vOm9dn/DbNaDoXrwamrsnKd67dHPOSqCQ+9asqDj0y4drPm0Ljk8KTiqo2K6YFDYb0+KN8vMMelwflIZTUJWdY5ueiZd36twF0d/i57TyKxUcsBtzEKaxUhRRoXaFwghETjAieO3sxbv/f5LHZP8uB/+XBe+F/egLEVvU/MW48P0kisIhfq4f1Y/Uz1QxG8uue72hRdqtzXXdsymdPJtX0mk8lkMplz5c/+7M948pOfTN/3PPWpT+XGG28861IUnGFQkmDZeU7Me27bazm56Lh1r2XWenEYHtyFTl84Yv/bBSV9YO8TzstwIab9+LbVrhRGesreReatY69x7DbiNLwcYvtikoFA7yMuxLUYoi405dC3LjsR6qQDMX8ate6pOh9Y9J6dZY8eBjMbo4LaaLanojjXSmGULCHVVjOpNKU1GK05PC6pSjMsVRkKYzBI71dozajQTEuLMQarNJPars8UKquZVuJWNS5lacxocaoqC0MaVOr3PzTigYcnjAtZPiutuDBvj8VFeHtcslkXlMPCWD1ErK+i7M5XaOIPOILNO0dKEvdRF2Z9z4rh/RjcpQ5PyvX737m4Hggthl45c/mQe42LR0qJ5z73ubz97W9ff+2xj30sv/mbv8l0Or1H7+Xtb387n/d5n8ev//qv0/f9nT72d37nd/isz/osPvaxj62/9umf/ul87dd+7cW+zUwmk8kc4HRR9PnMl2KSRfedZc+Jec/JZc9u04sTqPPEmM7ZYdSFyPGdPb7167+aj3zobzhyzbV8341vZ7R1NfO2J6XErHHEkIZYaEPnIyHIIlRp9Hqpf2tcYpQ4RY1KQ+sCnQtYpTg0KXngoTGfcvUGh4cFpXEpi/9HpiXbI/n1yKTCWhEK+JCIUQTl1ihGhWGjtozKgnFtUUkitcel1LONDzQ+4GJi0Tp6J/F542Lfral10i+A9BKr+OlxYZmUIgyJSZ6zKgzz1q/nDyeWPSGJw23vI0pxTvOtg6ySTJRS69fXunBZzRczVw4XpjO4iHRdt85+rqqKZzzjGRf0+l/91V/NC1/4Qrqu433vex/OOYqiOPs3ZjKZzGXCPbGJf6lTGLH6X3SezbpgDymMl70s+JRGlpqUktfV+0gf4vo1VoVeK1UnlV1b+S87cZ4q7bAUpRSLPjD2cpAqyt5EPTj+nCk+73RWC0TWSHFtzXCIbTQxHcjAVorKakaFOUWFXFmNC5HaGjonKoJJkgg7ayRSwQVPiokYwFrFrJX4ghDlNbc+DLnPEJJCK+QQu5LCeNkF6lIzHhn2ThznXa9+IfPjt3L4fg/hma/4r3hdM+u8WMKmdIo7l9VyH2oYKJxpYaqyl8Xe9jlzT+anZzKXOrm2z2QymUwmc6789V//Nf/u3/075vM5X/RFX8Rb3/rWc15yUGJ+Ky5AraP3gdIaml5U4z5IH6IUhCTR4D5Iv9IjApOY9vuSVfWekvSHEhM+DC20xvmEUmGIiIgQYOGC9D3x4AKPKLt9SLRe1N3WakqtmZQFLkYUct3CahSiPnchrqPh+hAlbt0FmkH44mOShaUEUSmObFQcHp/aLPTDsMiHiFUSi15YzaQwaFVycuEwCrqUmNiCUWEp7Cq6IxJI+BCHWEF9SkxgYTSlVRRWBifeBxZRokpGpaEwmo0NcWhqBufic+lv4fyFJssDLrurgdhV04pl74nDYKewmtYFxsPy1SrG3BrFXuMlxtwE6sKw7AJb4yurR71Syb3GxeX9738/b37zm0/52sc+9jH+1b/6V+d1nT/4gz/g/ve//92+n/e97328733vY2tri8/5nM/hkY98JNdffz0bGxssl0s+8pGP8Nu//dt84AMfOOX7rrvuOn71V38VrfP/rjOZTOaeRCtFIEmtF2SRaeUUekesFt4PzmoaJ0kK0SgRM/SBY/OOzkW0ljr7oMPowWX6WevYnS150fOexV/87/+Xze1DvOZn3s4DH/wQ5p3HBygsTOuCvc7TBzg0tkyH2ZAd5kwrlJJ5ztaooHGe3UaW649sVIxLS2U1dvjvYHjrqNAs+sC0KvjI8Tl9SFy7WVGZQOcTdSlpHetFJhSRxKxyzDtPkYZat0toYG/pmDWOjSG5pLBK+pshBhikXl8JAYxWuNUMyhrC4PpaW0PvA03vKW3JrPPrSO/VNex5/vupB8fbzkXaEKiTPuXzzGTuSS75xagPfOADeO/X9qkXOqd6PB7z+Z//+fzWb/0Wzjn+/M//nEc/+tEX9DkymUzm3mR1IHxXNvEPcrnHnU0rS4iJ1gU264LWBJo+4AfbzjNZd1qtGJVmXaCPSrNWrRZGszXWxLh/sDupLK0LmNLQh4hWq63+cz8oa/pASvLcpdWk4SDZnSU2LUZxb2qG3OyYEvPWERKQ4PC0XN/PXuNpfcRoiSJYdGGtppDniRRarFutVfQuEuK++9O4MoSQOHFil1/5/hdy4uaPMj1yHU/+z/8VO9pGacWxRUcfI9ujgnFZMO8cldVcs1kDUA7KhEXnT3m9iv3IwyuFC+na1vl4Wbq2ZTIrcm2fyWQymUzmXLjpppt4/OMfz4kTJ/isz/osfvVXf5WqOndVgFaKvc5JHJyPEs1EZKdx9C4w7z3Ow6jUayemxjn6AH5YVjpYe6+cpBTiwGS1wlqN85F6JMrzziWa3uNCEqfiKA5S886jhjg8NVxLD6KcWecpvLgYFVZTojEabpv1TEtLVWhOLhxaSa/mvCxeWb0fp+dDwhpxP5q3ntJoNqrb96C9j6L2jglr9peLqsKw7GVJaFJZWh/QSrExNnR9ZFRYFNK3aa0w+sznAYohZj4EdlvHkfG+0zKIk7PWsoB0PgKP8xGaHBTetMOC1Kqnd0GU7m2QePk+xFMGVHJtw7hMIqLqw+AQEIjRnjEWMXNpkXuNi0sIt3et/uQnP3ne13HOXYjbWbO7u8u73/1u3v3ud5/1sY997GN5y1vewkMe8pALeg+ZTCaTOTt3Jug+E4vOrxfeQZakGuc5sXCkBNMkrqeHxuU6Ak6W6UUQcbrD6KLzzJue//TC5/I/3/8HjMYTfujGt/LPH/Z/SGR0YVgUnkXrmYwsSkmPMO8k2nprXND7gDWKaWXXYvkTi0TTB47P5d+3zVHBRl2ICIDEzrIXAf1aECCzkJSkZ7BK0aXILXstW3VBYRRXb5QYLXF58r0JpTST0tD6SOsCWsOyayVGW2tmnSMmWTyzRrFqB4xSQ4y1CO8VijD0OKvUk73WYYwMEhMiNNgaQxiivNOBucZdmUmskkOI8nnHdPnNFzNXBpf8Wvzf/d3frX9/vuqDc+VRj3rUGZ8vk8lkrgTuLFrtfLgS4s62RsV6o//0GLzCyOF2YdTaCvXQpFwf4k4qu3aNOsjqYPfwpOSazZr7bY85PCm5brMe7FPjKY5Jd0bnw7rYL4xirxEFwHJQCIcocQthsIadd55bdhs+fnzJzbsN8yGSwWgpLguj8SFybN5x827DXuNYtI6ml+vttB4XRXk8rQ3jUmOGuDaloCwNh8cl123XbE2KtRq67QInF3N+7TXfxtGP/h3jzUM8+1Vv5Lr73Z8+RrFt9dIQ3LLb8rETC0AGAauie1yaU17v+lDe3l4hfLmTXdsymX1ybZ/JZDKZTOZs3HLLLTz+8Y/nk5/8JJ/2aZ/Gu9/97vOOaVr1GqJ6jhybtew0PW0vURPeJ0KSJaOj85Zbdlv2Gses9ex1nmOzjpOLjnm3v4wD+4f6xbCcs3JN0sDO0tF4GVLENCjcnWfZeXxKhJTwab+X2216loNABWRYIwMWQ11ITPu0Krh6WnL1RsVmZSm0DDWMUkyqgsPjgmktjsatC5RWrWO4DxJSYt45li5QGhnEEGFn2RNi5MSix4dI6+R+JrXh8LjiyLRkWluu2qiZ1AVaKTofmbd++M+xs+g5Puu4bdayu+xZukAzuAyXdr+fvqsCkfMRmrROhEY+rNyl1LqnX312aS00OfM1coz55UvuNe47/Ot//a955jOfyQMf+MCzPlYpxb/5N/+GX/zFX+T9738//+yf/bN74A4zmUwmczqjQhaZSquHxSARiZ+JWetOcQHdXfbsNo7dZog5TlLn9S7Sucgtu+3ajXXWepa9P8Vh1AeJt375t7+Q3/ut36AoK37wJ9/Moz7z0WyPC6aVZXNUMCoN41pcpq4d5jtVoQkpsejDOhGkMCKWOD7rObnombUeHyNlodkeFcxaN0RmJ1xIp811Eo2LLDpxuhpVBu8je42j6YLUzdowKQs2R+UQP11J/PSo5JqNms26oLaGupDZVFUgsXhaEcLgtBoSlZXYv5Rg2fvB5Vbek9IaJqURQURVYLWmG2aHK2FCjGkt6NBaoVG3ixw/FxQyl0wJlB6udxnOFzOXP5e8Y9TJkyfXv7/22msvynMcvO7B58tkMpkrgfPdxD8TV1Lc2bQSC9PTY/DOhGJQjFbmnA9xx5Wh9YG6NPRRCvO9xjMuxfnpTO97TLJEtCr2Q5TiGODQuBBVqxeL2LWyQCtiSKc4SRVGobUcVO8u+/VhLsCs8cwazy27SxIKozUG6FxkpX1e9pIfPSoM07qkLjR7nac2mpG1HJlUHF20KBX43Z94Gbd86H9Tjad83ffeyIMf+i/oYmDZeeZtoC4TvQ9MaksXIpXRHDo8pukDm7Wl83H9eqtCn6IivtLIrm2ZzD65ts9kMplMJnNn7Ozs8KVf+qV8+MMf5iEPeQjvfe97OXLkyHldYz4sGykFjRd3Xx+lpy2sodbgfcD34Hwa1NzSh/UuMKqGZaq59FQbIxmWKKWpC1FY22EhKiKuxLNOFOqlMbR9IKTApLT4lNaildJqUkr0PrG77NfDFR9laNG6QOsDCsW4tIwmmpigNAUuJEor/aT0eCv/KcPSeTqnMUbRuYQPYehfFYmE84lZK88XQpQe2GiUlsFUbQ1peA/6oRedN56wmRgVFmM0vQ+MS4MLimUnC18+ytIQQO8kjp4EGulLxSHYrVX1d5XzEZr0p7lLlQfcpQ7GIR789XRyjPnlS+41Li6f//mfv47juRg85CEPOefrP+IRj+Atb3kLAEePHuWDH/wgH/vYxzh27BhN01BVFdvb2zzkIQ/hMY95DFtbWxftvjOZTCZzbmitqKzMTkaFYTY4Qlmjbufs1A6zkXnn1rF4Loib66S0bIzsOmLOGMW8c7ggMc5Wq/W8ZSWSX3SeV7/8pbzrv70dbQyv+tGf5nGf/wWnzIVWkW+jQmYqWim2RwVKKY7POjoXmGtF6SVGe1rbIWpO+ohJZbFaMWs9VSER0W5wK00H5jpKK2pjKK1iseelDxn++WvDKuEknDE6OibpPUJMHJ5U9CExG8QdRzYqYkzr+t4amRMpBUbJ/MVohdWyLFUO8666kMfOW09aOUQNVb4ejASUknlgTCIciOX5zRfDIA6xWlFbs75eJnNPc8kvRs3n8/XvNzc3L8pzHLzuwefLZDKZK4FRYdbKU6vlEPVgUXgunB7vdrnHnZ0pBi+mA0tHSlFZKV5X7kWrqLqzPbYYcqYXnWezLthDivdlH2hcoBwOxNWwad/7eEqmsgtxvYRlFIPa4PYHQ/Olo3MBqxXD3o0cqBd6yJHWNL38/bwXC1iJ1wui4HUe5+NQACtaH2hDJJKIyKGx93G4V0UXAsYoDIrffsMr+eifvx9bVnzdy3+Sf/awT5PXrizOJ7yPtC6ikQP+upCGZ7fpmVYFO41nOhwqV4VeO3Gdi4r4XD+HS4m7kp9+Jq4E17ZMJtf2mUwmk8lk7ojFYsETn/hE/uIv/oLrrruO3/md3+F+97vfeV3Dhcii84OzUaB30tPYJL1a5yK7S8eJRY+LiVFp5bFO+i43uDyVRrPsvAheXOSTuy2HRyXbU1lSSiSaLpBUYloVOJ/YnpQ0ztN5IIAxYFAopWh6T4zSA/gUQUm8eDk4Q3U+sEHBiXkvTse1ZTr0SdujghOLnr3WMSkts95LpJ+GQosTcm07Fq2nd+IKvNs4xqX0Dz7In31IbI0L6ZmUkh4yRGY+4lOk6QNm6DHmLnBi0bM1tmwV5eAmJY5SvU9EIhEgQesSTeeBhNIyOKkL6SMro/EhMe/8XV6OOh+hyap13neX2u+ZVt91LkKTHGN+eZJ7jfsmV199NV/wBV9wb99GJpPJZM6Bs4nKY0xrMfVqKSoOIn8zJHeUw/wDYHtcYLSidQEXPG3vUVozrS3LPkgEs1a89r98H2/7+Z9GKcXLXv3jfNG/+/dnFMuXVg/CcY018vvtkTzHrPH4JOkbktoBhVWMi4LGeXYaB0mzNbYYpdhd9qfMdVZLRT5EYoI+Rtou4KJ8LcREoUUs4UPCak1hlcRVD2IHmSOl9Xt5/+0RJ0pD7wNoRaU1RaEZWVm80kZRaINRCqVlfmIPzE5GpWFcWvl+ZP5QFfvifqPFfVVrNfQs8vytC4zLc6/tZ40sgFkr76tW6rKeL2YuXy75xajt7e31748fP35RnuPgdbN6IJPJXGmc6yb+HXElx52tYvDuTPnpQly7S93uKDRBIK0P3wsjC08xwaL3tH1AKUWIkRgRBW+KayvSg1itVnv4APgYQevBFlY26IuhaJx3DpCv77ae3gcKq9moCkBhFFy/NWK36Zl3gXZQBixaz6xzLPsoB/MpUY4NJNisLaXWoGBUaLTRhJCwSq0XkZwP/OGbX8PfvP830cbyzO96HQ9/9GdRKClqmz4xKROpTBgULkWs1UQSSxfYWXq2RiW9j+haFqFWC0Kj0tzpQfn5fA7n6/J1scmubZnMPrm2z2QymUzm8udiiBX6vufpT386f/zHf8z29jbvfe97+ef//J+f970th+i7tg/owSNoe2yZNYFZ6zg664gp4ZNERHS+pxjq6hAk7qJzkbmS/s5HGXqklOhCYHeZhkUfee1KKVKMbI0K7KDAPjQpsUrjotTvTRdwKbIc4thiTKgEmyPLpCzY63qsUfRBhCspcYp4pCoMV21UaK3YHsOk3VfOgzhSTSuJuSus5viiH7aAEj5Kz2i0YlIXlIMa/NC4xKj9KIxxYSVObxXz4SO3zVo6L+KXSWVJLuCDuGT1Pq1FPiFAWcjQJqSEc4nSSFTK+IBKP6Z0xnj6s3E+QpPVoOhM7lIroYlaC03u+DlzjPnlSe41MplMJpO5uNzdPuBsovLOydl/7wPzLsiijtXoIbquLFYzEBiX++f/o8KiUMwahxsi9SprWPaBn/2p13Pjj/0IAC9++at5/Jc//Q5ryYMOo+PSUlsRfqdkaF3EJnF2tUbE4CnJLOjEQowFtscFfnCrgtV7I45Sqzg6lTQxyFKUT4lF59c1des9UwwxiWvUgdTtNVYr6tJQWYMPPVt1QdwesXSy0NX7yKQu2KztGecPanBHrYflL5DWIaaEi5EKs35/NipLQnqTo65DqX03LqvvOInlICt3XYCtoRfYqO0VMV/MXH5c8otRV1111fr3n/zkJy/Kcxy87sHny2QymSuFCxHvdqXHnZ2JeedZHKg+7yjSzg5xBivnp3FpxJErwbIPElunZbnHI7FyRuv196/sQ3eWUiCGFLFaispxaU75jEQ9IAffs9SvD3ONUhgjUYFhuLerN2pK09P0no26YGfhUCh8CIysRC1MSkPjIyNrKU0ikKiMprCaeedZuiCKa63472/5r/zRu96KUoqnveQHefhjv0DCG7ThqmnFvHWgEhbNuDbSACiwCgqr0UoiDSqjBztcWdKbVpZpZSWz+gwF8bl+DrU1lFaL+5UXV7S7E9lwociubZnMPrm2z2QymUzm8sWFyLz17DaOzgdi4sAwhOGA3Zy3WCGEwNd+7dfynve8h/F4zG/8xm/wiEc84rzvLw6xEwCNk5i6Ualp+og1EoHnXGTeBRa9o3ERq6W3GpUGYzSECDrBgfg7pRTjQvqyFCEmWbCZ1AWFkfp+a1zQOlGlb49LRoVhr3HsdZ6NWpaenI90Q8+ojQIULkY2a8u4tDgfOTwpKa2WmJB6v5+5oyESKFKKKCULQ0YrqkLT9nFQdEsPYY1BK4kOPDQu2BhZypX4BhlwnFw4Tqie0iiWw6BmXBiOzztu22sxQ68m5wSemGR4ZI1CJSgLiyIx3bRs1gXWiOJ9r3Vs1gVNH9Dq/GP1zkdoogZr5tPdpeIQ3wFQG+mjyjv52cwx5pcnudfIZDKZTObicCFFy9PKEqK4Dm3WBa0JNH2gD1Knp5TYbRxN7yUWLxo6FYdaPNH0nq1xccrZulLi9jQqB2MAF5jWBW9988/x6lfdAMA3/afv4cn/59efErV8hpeyvh7ITGNziNVOSVxQXYyU1hCiRF3HJMtb1mgRQgwXGZXDgtNQsxsNKUBCkja6EOl6Wf5yUVJEnJc4wEkpNb30HlL3Ks0Qkbf/vk4q6VEWztP5xLiyVEWiNFocqAq9DuBeLURVxe1ff+8HMb8SZ6hqmD8cHpecWIqj7clFD+h1fT1rHaNSlqjuaL7YDi60q0WzaV2ggCOT8ozvfyZzsbn3p4Vn4QEPeMD697/3e793UZ7j93//98/4fJlMJnOlcHfj3c437uxKYLdxtG5fbdy4cMZIu2Xj1pF1q5zm22aOYqmZDHaibnBsWr1vISVIEaskVmDmHYsuSOSAkYN3EAXx6a5eq0W1zgd6nxgVhu1RQecjvYvsxh6lYNl7plUxuEtB4xzzxrHbeXwI9Gg2tKVzEaOhi3LdQmnGpaUwihhh3jT0PvI/f/3NvO+X3gjAU7/5Bj7zC5/EtLTUlShBrJbif6MqIIFViqumBcaIBa4LgT4kll2gnhhaF9iorQwglOK2vZY+JAojNqrF0KB0w2egtbrTz4EgTYbV8v11ae6WKvlCkl3bMpl9cm2fyWQymczlycllz7FZR+/jWsW91zhaL7EPoLBGUQ+LQYfGBa03ZxUrpJR4wQtewC/90i9RFAXvfOc7+ezP/uy7dI/NWmEe8TGx6D2jwhJT4MSiY9lFjFG0XmLzQpAhhQwBQDt5DZUxFFaxPSpJyNKXuEopprVh3klPt2UsLibmnSMMsXxVoRkXBh8SmyOJOG9dYDREZyx6UbBbrdioLXVpODwpcEHELhpxEjZa3a6PuaMhEojwZlwmZq1fv69NH1EoNkZ23evXhYhaTh9glNawPSnYaQpiSCQiKsLRWSdDmhgptYhQfFjF1MlgpbbSF4JE+127MWJaWSalxRolwixkOUqGZfq8zhTOR2iiFQQ44C6VqKwo1VdLYsUw6LmzePMcY355knuNTCaTyWQuPBdDtLw1xNMtOk9dyHLNzrLHDAkZs8ahlGJSG8aFXS/ou5CwRpb99xpZzJGUDakB68ow7zytC7z7V9/Bq176YgCe+4IX8zXf+CLcMH+4I+7IYVRrxda4RGtNYRTb4xKjxcXq+LyTNI3G40JkUlk2aksXZF6zum7nRHiwojCaWCT2Wk/jAuNSMSoVzieCTSgU09Ht3z81CFLGpaH3hpNLx9haGhNwITIu7VoAMC7tWV2d4uBa1brARlVQl0YWqKzBWvk1AYcnJbfNOlnSUomUFE0faJ243p4p9q/3gdYFSms4MpVlqEPjkioLvjP3Epf8YtSjH/1oxuMxy+WSv/iLv+Cmm27iIQ95yAW7/k033cSf//mfAzAej3nMYx5zwa6dyWQylxJ3dIjqYxoiBM4c77ba+oazx51dKayKZ4C9AzEFp0fa7Tb9EJ8Aiz5wculQGqalLByFmGTJaFD8LnuPG97nmOT93KjFejVEiWHYXfaEBFsjyaI+yME4tfbAokw5qBFmjcMoxcaowMeAUXDrbsOsC+wuHW0MFFYRkZi8mKSZwItT1KQ09DoyHw6dIRFi4v997zv5nZ9/LQBf/DUv4nFPfqZERiCLWePSMqkMIUmkwUZVoLUc7O80jkUvGdIaNSjLEwpxj9ptHCGKta01Ghdk+Ws8LAAt+4BCmgelwA5xhQc/h5X6txsGILPO08d4t1TJF5rs2pbJCLm2z2QymUzm8uOTOw0nFj0A885xfNaz1zoZhjAokAdlcaMVs9Zz257mmo2aIxvlnYoVXvayl3HjjTeiteatb30rX/IlX7L+u/ON6lj1tK0XR6O0dhWSujqkiFZ6cIhKpBpcjPgYUQm0VRgjam5jNJ2PXLdVs1kX8jgfaZz0SIXWjGtxCZ5Wlj6KI5TWoMuCUSk9TG01IURmXcQHEcIcHhdsjUpcSBitUGg65yVig8T1m/VaXX1Hr7txYT1EWg2nthAl+0ZtaFxk0TlikiWr1ZDkmo2K8oA4w4fIXuPYbXp2lj1loakKEbKElNBoZp0jJXBKFsus0Vir0UkMtvY6x7LXbI8LqsrgQ2RzVDAZ+sR5F+hcpDVyz8susDU+98Wo8xGalFbjQli7S/U+0mq/jjOphz6ztPoOhSY5xvzyJfcamUwmk8lcWM5VPH5XRMvTylJZvXaiWnbDtZViUstsRClF03sSitIqic/T4oK0mmmNh/mIC4GxtRTG8Se//zv8l5f8R1JKfMUzv54Xf9cr2GtEQH5HC+9ncxg9U9RyYdRQ8xuOuY6QElUhcdyrpaj5gZnQSjxfGE1IibrQtL1j3iV8jBRaEUls1MUwt5P6VyklDr1WnyJwkF8llntS2nWUd1VoOhfPydXp5KJn3nnssIhWW3n8av6wmmscnla0XnqHlBRGQVL7rr0HY/8kCjDig0RyT2sxABgVhqs3qzO+/5nMPcElP90uioLHPe5xvOc97yGlxMtf/nLe/OY3X7Drv+IVryAlGUZ/7ud+LtZe8m9JJpPJ3GXOtIl/tg3/FZdKLNnFZmX5CqcuRZ0eaSePUetIu2UvxauK4Gzk0LhEK8VosCs9uejXh7FVoRkbQxvkwJ6kaIaD8JVrklJKtv1XsXzsq1x9kAWgVabzbuMk/1opWh+JTU8fIrtLR+8iHinEOxdRJPYWHqUVhfWMtGVjVNCHQOugj45xkWh6sFbzF3/0O7z3jd8LwGd9+bN5/LOej9WKkKAsxCVLwX5MgxKVtQKsVfuWsT7gfCJGKdhnnVsfNgPM24BPYhlbGc2JRcRHODQq6UJYfw5HpiWHJ9XtCvm6MEwOLBLdXVXyhSa7tmUyQq7tM5lMJpO5vDi4FPWJkw3HZq044CLCh0BCxUQMsOw8icS4LJhUhn/abWi9xEOcSazwwz/8w7z61a8G4MYbb+TpT386cNejOlaxDr0TEdC0tsy7fYffq6YVs6bH6AIXIlVhWPYBH6PUD3J5QlSEkNga7ldr2KoKdpYOHxJbo4Kq0KKa3uuYVpaTy55FBKv1Os4PJLJiWhdMaxGPxEGYtOwDhYG6KNAKNmpD6yLOJ27d6zDGcc2GDHqs0ae8bokzV5Bk6FBa6SWoC0allbjyelBpOxkyFUYiuVeOWi4EUad3ngji+pXEpapzkVFlaXoRDEmsX0HjIikmSq3QST6MkBJWS2ShG1y6JpVZ9zej0hKHiPmml8WozgditOflgHuuQpN6+Eyt0WgtffuyF9epstDrRaqVE++ZyDHmly+518hkMplM5sJxruLxuyNaLoxma6w5uRSBQGEUzgUWXaAuNJUyFMZQWnFnClHuZZXesarnSyvziMJqPvSBP+WH/9M3Erzn3z/lK/n2V/4QSqnbRS2fztkcRu8wallJLd36QOcTdtETwr4wPMZEYSWlozoQ41cbjVOJUVkwKsP66z4kQoocGckC0daoOCU+7yAH6+lpZWi8uLUemcjjOxfv1NVp3jnmwyxsY2SZVgWl1WyMivX84eBc437bI7SGnYUjDLHaWsl7mhAzgBASPkmc36hQlIWkjIxLwzWbdZ5rZO5VLovq/eu+7uvWDc1b3/pWnvKUp/DUpz71bl/3ne98J295y1vWf/76r//6u33NTCaTudQ5fRN/fYh6BhScNRP6SmPZ7SsgVsX+6ZF2PsS1i8+8c+tIu43K0oe4LmLlcB5QUBViObq7dMwahzZaHJpcXFuPrtQD49LIQb2Vwj4lmNZ2beXaDgftfQikpId7SnS9p/GR3TbhXGTee7SS51x0snhVFZqkJZ5NN6BGmmbWDQfFCh3s+vqf/PP/wa+89jtJKfLIL/wKvvQ534E1mq6PTGrLuJRFHR8jwUlnUA0HzD4lkgeFYtEHeifqaWMk+sBqyedues98sItNQINYqzKodOetQ6OoCsORaQXIYt/GGZQmWikmlcQ17DX+bqmSLwbZtS2TEXJtn8lkMpnM5cHJZb9eivrI0TknlvJ7A1ijMHp/sd8FEYqElFj0jmXv2R5Jza6Gw/IHH5ms+8qf/umf5qUvfSkAr3nNa3je854H3L2ojtWwYtWr9T6u/xuXFq0UrrQUhcRa7LUehqGAj9LHFUahtbjrtt4zCppjs56rNkq6oWfRGqaVDAsOT0tiFDW5rveFISnKa9ZKobQ4D/VBBhOVNWyPZXlo9dr2Gs+JRU9pFEc2anwKHFt0pFkSEUhlT3ndYVDqj4Y495Wr1kZdoIYe8KpJifeR40tHSLJQteq9VkMukM+v85HCKE4ue6wCO0SsL3tPFyOLxuES1MZSlDLQsVYxHsQ5xxc9VsPVusZ5+KedJY+4/7bcY2nW7gK9j5RW07gzR+HdEecnNJFIwdbF9escleJsDCJ6uqPzjRxjfvmTe41MJpPJZO4+5yoeX3F3RMvzzovrUmHoQsQYzaSGjdquBcIacVJyIa5js+fDAtZGVdD7RAiJv/2rD/Dd3/S19F3Hox/3xbz8NT9OVPK8p0ctH6T34awOo2eKWl66QOcCt83adbLIzsJRWnnMqq40Wur3tLLbRZIxls4BSlykrDizFkbJ7G4U1vOhzdGZ37uY0vp+tsYlpQ90fWTWekalzPV6F9fuU6s2a+Xo1LqA1ZqN2nBkWgMiTD99/nBwrnHd5ohpaTmx6GlcHBbNZDHNKDBWUbI/19ioZSlqY1TkuUbmXueymHI/4xnP4OEPf7g4Y8TIs571LN75znferWv++q//Os961rPWKo+HP/zhfNVXfdUFuuNMJpO5tJFN/IKrphXTobhcZSIbLYXYtLJcNa3YGhf3maWole0nQDMcoI5Lczt7/lVB2/n95amNumBrXO67Ow2P2Vn2NJ1s/K+U1T4lXAgoEtPaYpRhWltKLQWkUop565l3bn0vYj27f5+NC6Rhj2beexa9RylF7wNdH7BWQZJGYbVwU1pNoTUblWWjksGA1atYgMRuI5VxaQwf/es/52de8QKCdzzssV/MF33Dd9H0kWUbCIjKoTCK1oV1U1BYTTnEAq6k3fPe4UMkhERlNXWhsVoWnVofpBEpDFvjgq1RwaSyGC0NkQuRm3daji47dpY9xxYdjZPYhIPDktOprFlH8TUHPqt4Jpvfe5jVawRpGA9NyrXivDBKFClGURWarVHBoUm5XoqaVPYOrYczmcuJXNtnMplMJnPp40Lk2KwD4BMnluulqKqQCLm6tJSFZlxZticl127WXLtVszUqxFVWwfFFz8ml/Hd01vL3t844Nu/4mTe9hec///kAfMd/eikvecm3AxLVsarz2z5wctGz28ggRhavZJDRuchu4zi56Nd916KT/immhBvq/lVPt3L+WTjPsvcibCkt07pgXNrBlbZkPETzNU7cd3cWjmUf1urx0bCgtOqPtVJcs1FzaCz1vBr66WlVsDGS/lAGAIUscDkRv9SFxvm4fm0nh/jxkBILF7h5p+GWnZZZ43FBlnx2lu6Mr7sZIu8OT0qumlZcvVHx0KumHJlWjEoLRrFRW45MSkalLGf5IFGACiCJOt/HRFJQaE1I4tA0KqVna1ykjQmrYDTSXL1ZsT0u0MrQOnELK4zGGhEDhSTx7Dfvtuw1jhDTOoZkJcI5kyjkbEwru+6NNutCYum1Wi92zVrPXuPxYVjAMnqIfZfIw2XvKa0640JWTIlFJ9+/+jnPMeaXJ7nXyGQymUzm7nNH4vHJMFM4EyvR8uZIaq3uwJL66nqnc3ABa977dfxcXRg2hzq6sobCivPntCrYHpfrBfbeRWbDDOXDH/ob/uOznspyMecRj/5s/vMPv4E2yEwmprSOSO59XLtGxZRY9p5ZO8xF7sBh9ExRyz7EtYhkOSyE7bWOm3cabjq65CNH5+wsO8yQsOFCZK91NC4QkzivNkM89HQQcSzbgFGKvcZxy07LzrLn6Lxb9zmnI864mo1aXKU264LrD9UiTBgcW7VWQ68i70Pr5F5jkpnWkY1yvRR19UbF4cmZo+4OzjWmdcGDjkx48JExh4Y+o7JaYr8rw+FJyf0Ojbh+e8Tm0BfluUbmUuCymXS/7nWvQ2s5ZOi6jqc//ek85znP4aabbjqv63zsYx/jec97Hl/xFV9B27aklDDG8LrXve7i3Hgmk8lcwmgtxerBQ9SrphWHJ+VakXpfYuVatFIdKHV7i/2DRXB7QEm6ct1aDQF8TDS9LPF0Pkh0nBN17KGhEDRaCu2EHCSPS8vmqGBS7DcPq+WoZR9wa6coaSqUOjWjujDqFMvVZR9JwKQyXLM14gGHR4xHdn1oPxrsZg+NZQFnUhla5/nEP/4tv/C9L6BvGx7yyM/iS17wfYDFaFFlNC5wci7q8aYPsiRlNdNy/4DZaMnXXrZS6JelvEY1SCL6ENaNzqg0HJ5UHBqXlEazu+xFURwSZSGxEcYolp3ntpksSd2619L0d7wcNSr3P4fey/vQuDM3YPc00+F/c7WVGMLSStOyPS45NCnZHn4+VrENtZVmIisqMlcSubbPZDKZTObSZt56cXDtHMfmsiBVFZraikK8LgybdcGktJRGY424GR2ZVKIiriyJxMlFz8eOLzi58Byb9/zme97DC77hOaSUePZz/gPf/t2v4Ni84592Guat9D57rWPW+XVPVheajdqyNZJlmLrQ61p/1nn2hu/rfeTEvF//nfRMEoXRuMBs6XAhYbXCh4hK0jctWlGpa62ojIg9SLLE0ztPUSgqaziyUVEaTYqsI8+1EmX31rhke1xIRIVRg/BI+iLnI0ZptscFqETrTo1GL7WmHJaKYoQwRFH4GIHEZl1gjSKmeMbX3fRhHYGxYlRKn1doiWkfDcOW0sh7iR60LErhA4yHaMDD05KqMPJ4LctB1ihUSpTW4F3gxKKndREDa/X31tiiEuwsHbtNj9GanaZn0fkhglB6v5VY5Y4iTM7GuQhNRqVhe1KwWRfcb3skr3fAhcRe42id9OmtC+w1jhOLfi2AyjHmlz+518hkMplM5q5zruLxO+J8RMsHF7Ccl7/fHBlGhSHEQSDee/aanp1lz8lFz14jtWWhpZbuXeQfP/KPvOBrnsbOyRN86iP/FT/0U7/I1uYUEHfU3catBQW9l/pv1joRtQ/3uIp8W73egzXg6VHLs9bLzKdxnJj3zJbSv6QQSQq64NlrPUdnPZ/ca/jkySV7Syf9yqLjlr2W3keM1hilKKxi2YlTrlLSD7gognfnIyfmUq+uXvvqPV3Vr0emJVUhfcz2SEQrRyYlpTFrYUlKat3HTSvLVm3ZHkvNXFnN9ds1127Wd/rZnj7XqAvDtZs1Dz4y4aFXT3no1VMefHjCNZs1k9IyLmyea2QuKS6bn8Qv+qIv4rWvfS0vfvGLUUqRUuLNb34zv/ALv8DjH/94vuiLvojHPOYxPPShD2V7e5vpdMp8PmdnZ4ebbrqJP/3TP+W///f/zm//9m8TY1wrPABe+9rX8oVf+IX38ivMZDKZzL3NSrW6UrEezHxesVIL+7B/mH0wa1riFzS9j+y2jkJrZp3HDNfZqC3WaDkcjmkoZKU4VUq+vyo1NYbZYFNbGLFNbX1kXGr6oUnoXMRFuedpZcVlyUuGs+8DIcFmYdClQWlZhFJK4hEUokpwQZQCV00qXIh84mMf5edu+Eba+R4PfNin88zvej2NKuidZGRrFRgVhun2EBuILDytlqJKq3CeYRHJSyQFMCkLfIhMq0oGA0aBkvejtIZl79dNiFaaEAPHmharNNbqQc0QKQe1cUpw827LtZv1GRW/q0P/bojeKK38/g4ED/c4q/z0GC2NC+voi3U8iFKisChybEPmyiTX9plMJpPJXLrEmNhtelKC47OekBJmqK+BtevwHSFOsYZCK2aNI2E4sWj56z//C274j8/EOce/f/JT+a4feA0uJJRK7CxlySckWSKC84/qKK3m2LylNBIt50KUmO2lp/X7IhhOibBQKGXoXMRHqcn94Go7qgwhKiptJUIPGYRMh1iPlGSJxoVIbc26p9scFQcEK5EQEwUSw94dEIdYrZi1CWtg4TwK2BpL1MS4NGtRSRcC02FIs1lbXEhnjShJSeI5plVBaSNGKXYah9GKWeeJw4LY5qgAJNp90XtChMPjkhAjPgZG1mJGaj2oKgtLZQylVfKeKDBGA5oYoQuRziV2lj3ORypjuGqjonGRPgS2R+X6/u4q08pSWS0RI0OvtxIqHWTVTx+ZVGjF2nUsx5hf+eReI5PJZDKZu865iMfPxrlEKZ++gLUSGJRGc2LRc2LR0Q7zjHzA5VEAAQAASURBVFNIEJBF+73WcfPNN/Oq538lt916Mw/5lIfxqp/8BXQ94tC4WNfwUv+FQUzumXdeBB5W0i3qA4tfdaFPuc/To5YXnWfROVqnOdGIk6syitglljHJfMQptJZ46hgSu8Gz23rGlRnq4UShFeNKs9d4Eoq60BijOLHYd4dyPjCpC9Tw3J0X0bqMC+R9WTmd1oWI91exhHVh2PKRpfM0XRjq32GeZY0sUg1920Z97jF3ea6RuZy5rLq7F73oRezu7vKqV71q/bUYI+9973t573vfe07XWDUyq/9e+cpX8i3f8i0X65YzmUwmcxmxtlAd1AtnOuzvT1ueKs+wPFVaLQpUFykqTdMHppUdnKWGjGqj6Xyg6UWdPO8cKEXvZJFno7KiDoiJtpfFqNUiVRjub9E5yqHINVqx6LwsRXmJmqitYlwaYgIXpZEZl5bdxmGNZpXNN28DVeGYnzzKW17xjcxOHOWaB30KX/WyH2eyMcUvexZR/g0tjKgV+pAYFZrD04oQpaE4Mq1QQM+qyQi4KBEGSkmWtixORQql1+/HwQFBHyKdk2jAZR+pbKIoNCEktJKIjN5Frt6U55q3npgSG2ewYl0tQ91dVfLFZOXadqksbGUy9yS5ts9kMplM5tJgFdW9OtRedJ5b91qWXeDorAUt8Q8rhfHZHHQWvdTopTUY7Zg3no9+6G94w3c+m7ZZ8jlf8MV8/+vegI9K1Nt9QEu6N/POUxeG67frO1Wlr6I6rFHsNZ7ORWxlgISPMiZICRatRHQDtM7TelleKowsEdnB2SlWEuWxs+xhSAYPMaELMDpBSmyPCxa9DGxADv5HhQxHVkMVcQ7eH/rcUQy7KM1lGWze+n1XqZH83fa4xId0e7GMi2yOilNed2sCdWFYdoGtsV7fGweGE4nE1qigc0H6ycKsRSo7S1l+CyESYmRUGGKSSMAQEotec8JLTIjVcj0XYFSJw20xOEsdGpXsNj29TzgXCVYW7CqrKAtZHGtt2L+/u8G5DGSu3xoRhp/tFf0gnInxwGO1DIcOLldNKpuXoi5zcq+RyWQymcxd41zE42fjXETLpy9g1aXUYivxg49RROha04YAQ/0WkNmESorFbIcf+Oav5ZaPf5Rr7/8gvv+Nb2Nz6zBGKeadpzTihLRoAx/f7YlRRBA+SP149aRia1xg9b4wY1XHxwNCDJAFJKMVN+821NYw6xyLVuLqYkpsjkSskJA5yEgrrNZoLTVFiCJ0X2jPNRsVfUhUwxJR52UxrAsRkKXs3cbRWgNK0fYBnxIaqV1TErHI4Wl5itPptLK4EE8TEJRsj27/GSkGd6/q7P3dGT/jPNfIXIZcdh3eDTfcwGd91mfx7Gc/m9tuu229KZrOYdi5amJSSlxzzTVrlUgmk8lkMrCvWl39eqaCf+X4ur88dfvHKKD3iRQTYfhPIiD2D/aVSsxbRxcCKSo6Pxxm9wHVSoRCaWXZyWi9jgbYa0UJveg8jY8UhWQ3tz6w7OQgOyHRCxuVpbCaGBMuilq5NFJst32gqgwasZy9+dZj/OR3PpfjN3+c7WsfwLNe/kbGG1uDfasoFkorblfjwcHJpUjbB7Yn5XposRo67HY9e60jRtisxVp1XFpilFi81fux7P16QLAYlsQisjjWmzionO06R9wtOlyM7C4d42pQkGuFVv52zlGrj+/0zzWTyVw65No+k8lkMpl7j4OH5gf/5W1dwIXEyUbixWTJRhTV1RmceQ7SuCCxdEpJb6Dg5k/cxM+97HksZns8/FGP4cd/+hc4tDmWmO5exCIJGcJUdojJC4lz2UuRqI59ByWjFHuNo+sDO63EfxdaSb/kAgowSrFR29v1e1opxuseSsQlpdVsjsrBwXZwuB2Uz1opid+zhtaLs+6skzh1awYn4TuIYY8x4QZBy24jC1JbI7Ne2NJKUVpxMGr6sBbL9EEWgA6+7qaXXlIiSuzQHykCCa0V0cW1Qn/1Gg6KdlZ1VzdEkIco7sLWKMaVRJQvO0UfE8vWU1uJ4qutOCpVhdyvDwkXLZpIXWmUFlepvdajXaDU0re6ECnMhTmSPpeBzKg0Z3WXgrs/HMpceuReI5PJZDKZ8+dcxOPnwtlEy6cvYI0Kw14roonSapqlZ9Y4lAKFGhIqAs5HFOC7Ba/79q/nE//4d2wduYYX/tDP0hSb7LWOBx4aY7Vi6QIfO95QFZpDo5KmD4xLu55D7HWORe/ZGhdcu1FhjaId+pk+xPU8YRW1fMtOK3V2TJxcOHwI1IVipAqppVNiVFpOqJ6mCxRWrXsHkSooQkrsND2FMRRG3KpONo4wCBmsUTAkfWglzq1tCuvrlNawVYtAZJVSctDpNDs6ZTJ3zGW3GAXwJV/yJXzkIx/hxhtv5HWvex0f+9jHTvn7g7Z6BxudlBIPetCDeMlLXsI3fMM3MBqdYUUyk8lkMufE6ariK6GwOqiqhTM7DK3+Xbmz5amEDBmUksJecaqz1F7bc9tex17r0Mj7Ne8kok8ckMQ5abMuhvc1cNus5/CkYOkCI2sIKa7vQyu1VkKHmIhRYQxsjkuxizUK4yKBxKILEgtRRDmoVhBdy8+8/D9y80c+xPTQ1Xzld/8U9aGrGJcWFyPVSDOqwCo1WMtqWdYyGjcooksrtq8+Rhad57a9Fp8Sm7VlUhWkGKkLDQqM0uthwCo+b9WMAFSFoTRaFsqG7OtCy4JUSol55+lCxHqJgxiVluVwDwcbtdVntPqI7q4qOZPJXBxybZ/JZDKZzD3PvPMsOr/+80EnnROLnt3GsdM4fIooFCFGWicRZKPizE5OIe4vDy37QEywd/w2fvEV38j85HEe/C8+lR+68S2MJuN1vIMCGmeYNZ5l7wnJcGhSsuwDldXidHsWRqXEkM/byLzzLF0gJHGOIiX2ek/rokROKOhDIESDNvI6YpKIj25Y6JpWBaTE8WWP0Yo+yMLWbuuZVpZ6WChaLYmNK1mMqktDH6NE3DUSjRdSEmX6aTHsjZP7nLeekNIQ0Sdq74Pvb12IS9TKPdgacScel/ZOI0oqux/xt7Po6XzE6rCOQzlVtCPDFz8MrdogwyatFEppXAgcnlQcW/SQElWhmNYFG7U9xdUrIcObwkoPZzRMq4Kmd0QHVJatUUHTBw6Ny7N+rheKPBy6b5N7jUwmk8lkzo9zEY+fC2cTLZ++gOV8RA/xcL0L7LZu6C0Uk9KgtCzFl4Vmb9Hwk9/1TXzkbz7AaGOLr33ljVSH7i+RfFZzYtmz7Dzbo1LitmedzE1SwqdEbQ1Wi+NrVWhSglv2OkalZ1zur04cjFrunCzajyvLJ3caeh/YGBUSOW41i056KQVs1SXjMmCGOOfWR0gyfEok5k3g/ofFIdYFz7gwmNIwrixm6BlmrScSmRQS6z0qDG2IVEYi9yorIvtDk33XqINkR6dM5vZclotRAKPRiG/91m/lRS96EX/5l3/JH/zBH/Cnf/qn3HrrrRw/fpzZbMbGxgZHjhzh2muv5TGPeQyf93mfxyMe8Yjb55FmMplM5py5I1UxMOQ7J1yQ5ZjLTW15UFVLkNdRn3bovzo0vrPlqX5QByijSFEi4FbvwW2zlr3GierARXof0FrTOo8PcuDd+UgfpCnQSlQEicSkNPS9LEYVRtE6hhi7QOskI9pqiaobF4ZRYXBRVMiF1XSdo3WyoHRoUrF0nuWy4S3f/yI++jd/znhji+d9/09z+IEPJsX9haRxZbh+e8Re6+idKBdiSix6x27bs9v0nFiIklgsca3YuVrD1dNa7jtIIR5W92P0OtKgD3G9FDWtClrnJU5DKWICH9P6Z60qJFJwdWDZ9vKzWFlRUhcjfcrnAKcqujOZzKVJru0zmUwmk7nn2G3ceoGp7cN6uWaFD7LM0/WRpougEgbF5kgU1CmlUwYGK1b1vQtResK9k/z0d/0HTt76T1zzgIfwn3/0zWxubnHgqdZx340L0MkyggtxfdC/OTp7L7mKuFi5zxZasbPscT7gUqTrI4suMKkMRimWXSCEns1RIU5Hab+/KIxmPDgMbVYWozWdWw1pIroW0Ytif4GpMJpJZVl0ns26YA+Jv9tpnPQ/PhFJ1MOyUu8jJxY9LkS6EGVxZ7iXUWlOWQbbjyEJtD4wNZreR8blnUeUHIz4i0ne193WrQc3B3sjrSCwvyDifaCwhpQSsvuVqEqDWii0lp+Pwmi8P9XVy/nhPbSrKZg4LDeD647zstjlhoHOPU0eDt13yb1GJpPJZDLnzrmIx8+Fs4mWDy5M+RBxSF097z3Hlz2Fkei6EBJ7naPvo4gW+o43/+BL+IcP/A/K0Zj/83t+ksn1D8alwNVlybzxhJgYFYYTy44E62X+ujBUQOcC1uw7iSYSpdE4H+m1LDydHrXc+ci4ssxax7L3KAXXbNT4kNbOpKDWTlhaSZTe5sjgQ1rHjS86j7Gw1zgSkGLi0KRka1xihlmQ9xFrFKUtmQz9wdaooPeRWevoXYQStifFepksk8mcnct2MWqFUopHPvKRPPKRj7y3byWTyWSueO5MVbxWW2q1Lhrb4fB2lW98qXNQVdsNauhJSmc8NN5fnjr1MDgOB/kJqI2hCZ7CajRqvRQFcHzRsbcMaAOjQg6ujdFUSqF6T9tFjs96qkKjhhzqSVkQkYFDqQ1WRXqXuK1vcT4gZ8sakNeglBT9nXeklWIa8B6SjegU+JX/67v4u//1R5T1mOf/4I18yqd+Km0fWQ5xFhujgnElMQvXTA0pJmadqJrrwhKiY9FGvPeMSkPfRyoTmVSGaV1QWE1dSDZ3XRh2l/36vVrF7nWDa1RdyMJXiJqGQGEkrsGFuB5UrD6JQmuslaHAOlZisObVWuIBV7EVpyu6M5nMpUuu7TOZTCaTubjMO79eitpr3TrWWnoHcWCVOPC4Hkb0IbLoA5tOvtb5iFLhFGejmBI+DvW9izSLOT/+nc/j5o9+mK2rruVFr/l5Ng9fPURTceD75NdCizLaaHW72Lg7EzjMWhF/lFYza8V1an0/gyuQ0WpQa8vAxUdRbfchMCosdSkLUxJfLrHhWsNGWUCC1on7kx0iwUH6rIPuQtPKrh2zNuuC1gTmrcMnhsWzCMkS0zAQaR2NCyxdRCUZtGzWkUNjcckdFXZ9/cIqOg+DafApi2V3FFFyMOKvsuIy1XSe0hqm9am9eWHFFcoaBU4WnBIBrTQhSZ8WQmRUaZyLhCjvpbGnff7Dc5dDb2a19GuraPnCyrBpWltxAM79WeYeJvcamUwmk8mcnXMRj58LZxMtH1zAWjk9HZt3OC89R4qQVMJ5T9tLXzBfOn7l9d/N3/yP/z97fx5vWVbXd+PvNe29zzl3quqJWSZjFIgmTkA0aEuUOKBG8eeUgAaUYBQxKKg4gRLHKKIoEI1iHFAQZxMTfRQnMuAvIoM+MsnUQ3XVHc6whzU9f3z3OfdWdVV3dVPddtPr/Xrx6jq3zrDPObfp9V3rM/wBxlU89dt/nIc+6mPoQsD7zP5qoLGG7bF54uzSkxI469mbSKrStds1ZuqYd4FF76ms2SSHbtVyn7WZYF213DjNwUrOdY46+edO42icIeg0Grc1s9pw1In5PaZENpkma6yRhNLWRwafsFZxZt4zreXcZFo7qtE4sNc4jtqADpHGyTzWWJmTZrWhtoqY2FR3n6zTLhQKt809/5S6UCgUCvcIbs9VvCFmep8kZtQZmkqcqinni0Z63pM46aq1WhHGqrfZCeVTNW4ar8VTQ0ik6nizXhzUErO63jivrOagGzaiqFsWPQfjn7ecVCBMnSGhaIdIYzTRJkJUrIZIHxM7TebmeUvtZNN+0XtizqDGaj9EDNT7iFGy8B5CgvEAoI+SFBWVwlhxev/Sf/wO/u8f/zesc3zld76UD3/UPyZl2cwPMUs/dmV58KkpRrOpzdiaOPbbgcOVxyp5j0qBtYpd5+RQIMuhy+7E8aBTE466sNkQB2iHQM6SeBWy1EqshUuV1YSUsUaTxt1/H9fvU1gf3IQolQ8+JNy44T+tLe1w/D1c6OguFAqFQqFQKBTui6yTfeF8UdS0Mkwqs5lpGheZNZbtiQEsZxeJkBKtD2ilpDrOi5HBalnDDzFt1vdt1/HSb34m73zbm5jt7PHvvv8/c78HPgitoTL6PLf4Sad4bTUpcdHauIux7MOYnAvLXpzb6/OAnbqiMokz85aYYGdiWQ1pTKuN+JDRWaF1ZKbseWIhPdZX6LH6YuUTkwoqd5y0NK1vPVvsThxGK5Z9oHGGnYmj92ImUkGhVGY1BFZ9ZOklITenTCCzrR1Gw1EXmHeBymi2Jpbt2qFGe8ha9HSy7uu2KkrWFX+VNdQuMm+lwnw2WJw5fi/r9N1Ka9Tocl/5zO7UoTLMasvZxcDMWVolewKtj5Az01p+b9apyWasX++BnBPLIWCUYlpZrFF0MXJtVW+SrQqFQqFQKBQK9ywuxzx+e1yOaXktwFJIjV7nI8tOZpXaiaC+D9KksTtx9DHymz/xPbz5j34bbSz/6gU/wof/48eSxtdJKXOw9Fy9LSImY5SYsLWcM6wXzvsrEUmdmlZcvV1z1Hr6IGlUqyGw3bgxwVaz0zj0uL5PWWaUEKR2ej0/WKOl4nqI7E3deIaW6AcYQiBlMVEoJUm3fYws+0yIUqc9dZZZJZ/RpDKb6uut2rI7rVAKTs+qzeefslSfX6xOu1Ao3Dbl35JCoVAo3C6X4yqW2jNxEPRBVPHzPjCkxE7jNtVo9+TkqJOu2okzzPvAaoijov84blV+diyeWm/WDyHSrtOPqvX9pVbu3KLHGs3hauBgNdD7SG00GWiHhNEao0Fr0FqzaytWfWA1D4SUWHRj8lQXcLuaYRSlTazUNszbwLmlRxtFSJp5FyErJrWhtgY1bqe7RtP7yK+9/Pv537/3WpTWfMnzfpCHPeZxKK3QSeGMoa4M12zXXDWtSGS2K8epqVz/aogYpdibOnwwKBUk/SlDVopFH7hup6F2msoaluMBRQTU6DRpfaIykioGnLcxL8j7m9UWH8VlPIS0GajQUvVXjTUNXYw4qxliwgSp0gAZJuDWju5CoVAoFAqFQuG+xqo/NrqsZ7qdid3MOmsqo0dntKXzCec05Dw6uQ0+KKnq9glbywFHGB3hq27gJ7/z2bz1jX9GPZnxb7/3P/HAhz4SazS1k/+dXJafdIprpdBWbl9YG3chIabNmn/Re/qxxm1WWaxV3HzU01iFtRrfJ2pnqZ2IqQar6XyiDRHtFedWPQBbjZhQupAYQqZ2ipTAjo7x7dqRRqHQperit2pLbTWrXuZfZzXbteUoB9ohEXPGGIUajSSLPqCBfXpar6mcYeosmUS/GFj2cTNDr+elk9Vet1VRsq74O7cc2KodcxcIQ2DpAyFLXYizMinmMRlrCJFhdLjHlJlWZnzPhj5EObTJ8iJDyMw7SdNaz2muMhyuZIZ1RuOQGXpv5lh0gcbq0QBz5ypZCoVCoVAoFAp3LZdjHr89Lse0vBZgZcQYcbAaQMHKRwwQx1rmboCYM7/xyh/mz3/rF1BK8VXf9oN8wqd9Br1P3HTUEZMIqKzSLPpAJjN1hmt3J2igD3E8SzCEKGcMIWUqpzk9qxmCGEGmlWVaGRon5ynr84Q+iAmkC/K+nNFYdTwPTCtLylLRtzupWPaemDLLQYwCKeWNqTumzCrI2dDU6c3n2jiD1Zr5mEi1Pl+qzIU12Jeu0y4UCrfNPfd0ulAoFAr3CC7XVbymcYZJShwsPQetJ68y+8uB7cZxsBq4bqfZKO3viaxdtU1lGFKi94mjNjCt8ub9rheeTWVYdFIvuK4IAHESW61Y9ZGdieXmo452iBiTuOmw4+xqoDaGujGsc5BWQ4SUycCQZKE9dYbtqWM19k8PPrHVOFLKnJ44slLknEf3rQjUWh/ZX/W0PpNywipL7aSDuvORPiT+4JdfyR/88k8B8KXf8N189D/9dIyB2mi6FKksbDUVs8oSUmbbKhFf9R6URLb6KE5voxS7U/kd0RomzjKExHbjxkEhc7DyzEaXd2MMg0/S463FIQ0y5KzpQ6KyhpgS08owbzOtD7zzTE/v5SBhq7EsrGdWW4xWuCTCvEUfN+lStdObmN+LOboLhULhvsJb3vIW3vSmN/GBD3wAYwwPfOAD+biP+zge9rCH3S2vPwwDb3vb23jrW9/KjTfeyGq1Ymdnh+uuu46P+7iP4+EPf/jdch2FQqFwXyalTDsEWh+5ed5vKjGMltTaysjaWY+VdqshstNY5q1nai3LIRBiZvBiknDjQca66i5lSCnxyhc/n794/e9hq4pnvOhlPPQj/hFuPAw5Pa0389SaCw0Uo07qorVxJ1mLovoQN0m+s8qitCJGEWpNaisJt0AfAk5rjFGYqKitIjMm2AZofcAaSUuC8bBDazKZ7cYydWvji75ds48zmt2pfD7zznNumTloB0iSsrvsI/MhkMfPLqRE28uhUBsSizZIUu/oQl92QQwvs2rzma25vYqSrVoOd+ZdYGtiQUniVM5ZPjsZ9Ykpk7LU3e3UljaI+WU1KLZqw07juGWeQGWpHtSKGGWu69eiKL0+oAlyqDRWqu9NHIpxr8DJeyq6qEKhUCgUCoV7JpdjHr8t+ss0La8FWDCeQQ1S/ZzGx80qQ0yZprL8xqt+gj949csB+KJnfwf/+FM+C4WsiyfOUGvFUR/ENK0BDHtTx97EkXImdVKxXRvNxGmMkplj8Ik5nu3aEYZEiEkaPZw5r6IuZUlxSuuKaKNJnL+g3aqtzDYpM0TNaVvhjGbZj6ZyJfV3VmtqnZk6S+Ws1PU5OWtZi6Jqpzef9bS69Wd+qTrtQqFw2xRhVKFQKBRuk8t1FcOxa3cYlf4Tp5l3QURB44L6zLxnCInaGqa1uaTT9u4kJXE/90E29lsfx4Sr40XlaqwPtFoxhMgti4Gc4WBMUALFdmO5atuNTuIMKBEbhcTSB87uDxLjqmRBO4yiq9pqtBYHgjMKoxUpZW5ZDKQkm+91pemHxLSSXum1QEppOVjYmzpqqzlsZZgwrccahTEKa+QgYqdx/NfX/hde/bLvB+ALnvl8/vnnfzGrLtDUBqcVPo6JUVZTGc20NuxNa+a9Zxi//1ltx2qJtVM4MXceqxXbE8f+UhzXCsVikOvRyHtzo9Mk5WOnBXDec3Vefl8ap7hlPkgfd4bl+LtlgsJo8FETEtx02FE7w7U7NRMnv5u105vqxttydBcKhcKHMq95zWt40YtexJve9KaL/v3jH/94vud7vodP+ZRPueKv/f73v5/XvOY1/M7v/A5/8id/wmq1uuR9H/nIR/KsZz2LZz3rWdR1sbgVCoXClcbHxC3znnPLAR9lva3GFKSYMhHwUQ4wKitVEJXV7E0cZxc9MRtWQ4AsCUEZqK3CWcMQRGCVcuJn/uML+ePfeQ1aG576rT/CP/jHj6UyCmc0jRWzxlogs6YyY1X5aKAYxhqLi9XGrTlZzdENkZQz1ih8TGhlsEbc4IsuishKNFdoxLWuak3uxXlujcI5zZl5z2oIVMZSWUXjZH7YbixmdGlPK8P2HaiHn1SGo07mpGasq1tX/zXGkFRmVkmKVUgZraAfMqsoicHz3nN6VpEy+JTYm8hrV2MNyeVUlABcvVUTx/rxwaRNNccQEznJ81RGc81Ww/6qZ3fiOHPU0cVEiJGYxN2elaRVaSBGMaxopXBZBGcTa+hjYlZbTk0cp2aVHPRYg7OKKl082apQKBQKhUKhcM/icszjF5KyJEutRVG3Z1peC7BClKaIRes56gK7E4tRiiFkFr3nD3/9F/nVl/8AAE9++r/nXzzlXwNSv9f6xKQ2dL28fkwZ1zisljMRkHMHq8W00MXIlpGK58aJeWDwid6IGGrVB+yYWmu14paxBeTsoudgNbC/8qx8HEVV8VZnZNPKiglEwbz1MktomVMAyFLVLTNYBmRNPYRMHp0hziqM0hy2nsZpDttxDa5kDmicuc067UKhcGmKMKpQKBQKlyQlcZECtGOV3rQyFxVFLUfnwJpNJGkUodFqiJyaOUI0bNWWLkS6IBGsf1/1ej4mVn2kD/E8ff/EGakE9AmtRAg1+ETI4qIVd60cKOix0k02pSPnFpl2SFy7UzN1hv3VwNllz9nFwJl5jw+RnUlNG2STWWlFDuIUNhp8EGFUzqBVRhlASd2epC8NtENEKRH87FaOSWXYagyDz5yNnpAyPiUWg3z+127XnNqqeP1//Q1+7EXPB+AL/s3X8i+f9tWkBJUz5JxZ9lLtsDNxXLNTY5VmWhnZQB838LcbS3XB95/HT08r+SyumtWyQd8FwjBu1g/i0N6aqDGKFjofNw7zkBI+sqlsXA0BH7NUMFhFN0SOes8wJIwVV3tTaWb1OIiETMyZq7drHnLVdDN0TSpzj65vLBQKhbuCGCNPf/rT+Zmf+ZnbvN+f/dmf8Wmf9ml867d+Ky984Quv2Ov/3u/9Hk960pMueph9Md7+9rfzDd/wDfzUT/0Uv/zLv8xHfdRHXbFrKRQKhfsCFxo98olquhBljX/UeTLiQl4MgUor5q3cT2lFY4zU4wWpRnej8On0Vs1w2LEzceyvPEOIY+oQbDeQkrzOL778JfzmL0gq7Rc857t51OM+ldpINRzAtTsN1miq0RSyZp1OtTZQDEEMFGuhj7rIoUvnpcIijBUYQ5D3mJIIneT5FF2UhNud2o5V6OCTHETgMmcXgYPlQOM0k9pCFrPLOqmptgafZM7bqq1c+x1Q9FitOGo9fkzaOmjFJLMzcZyaWOZ9IqaE1aB0wmnNdEvTh8iyiyyHyLJfMaksp2YVrY9M60TjJDnqcipKGH+2rvgLSQ6QQsps1eeLvLYnjoxUE16z3dD5yGHrN2K6bqyDt40cLK1TtXYmkl4coojaJpUkRSklaVNXbVWshkhM6ZLJVoVCoVAoFAqFew7rSuZlH9hpHEdIk8jaPF6N63o1zgVDkLOg9TbQ5ZqWp7Xh7LInjg/sU+TcStT0tdP8+X//TX7pR74DgMf/y3/Dx3/u07jxsN0IhXxITCo7CvhlXSxiI004ET1bjWm3bBKWoLKGSSVirm6I1FM5iBlC5JZ5kipBo9ibilHBmvWZjcwbKQ9k2LR5rLFGc+12I8KrVkwSfZCzJhSEJP9srAYUZmwFWfeLhwg+BBon53ApA/l8M0vOmRAzzqxnpiv0xRcKH+KUk8JCoVAoXJJ2rX4PsnGq1HH86Unmnd84X/sgC8n1wlNriDkRAiw7TW9kgXx6VtFUEpeact4slO8uFn3YRLXCmFQUIikdHyTEJBUDIWX6UeSlNJjxkCHljI+JSSWb+znLojqmzMHS46zipsOWEDIxZrpehFAhRkKSAWK7slItoSAk8EFcxD4mcTQbTc6yoJ82BmcMzejKmFaWIUXO7Q8AbFVaHBVaFvtHK4/PiXOrgf/9Z/8PP/SNX0POmSc95V/xtK97HmQYYqIySmoPFexOKk5NHZXR5Hx+pK04x2/9/fsg3/W6VttZzbS2m9+BdR1FFyLDUg45lFb40UESU6YZzCYWdt75TWWG1Yr9+cDBJkbWYA2ECGTFucWAUrDbOGZ1DSmzvxq4/+7k71V0VygUCn+fPOc5zzlPFDWdTvmyL/syPuZjPoZhGPif//N/8trXvhbvPSklXvSiF3Hq1Cme85znXJHXX61W54mitNZ89Ed/NJ/8yZ/Mh33Yh3Hq1Cn29/d5wxvewK//+q8zDPLfsbe85S1cf/31/Mmf/AmPfOQjr8i1FAqFwocylzJ6AJBhvxvovSQE7S96YsrM+0hIiao6Xq8TpbbbjjV6tTP4kEk5c3pabWY9nzLzNnG49AwxobWs9X/71T/Nq1/+QwA8+Znfwj+5/skYpahHkc5VWxVXbzfAredJPYp6+jF56rCV555WGnDn1catGU7MFz6mjTBqVluW40FBbWV22akN51YyS2w3lpSgjwlrFO0gz6OQNKmsYNHJ7LPVSHJUzpJ45YzmYOXPqwGE2xaldV5mnT6kY9OHM1RGk1Cb2kANLIZEm8T84bQcNPmQWAwRP76fg5Xn1LRCK3XZFSXrz7i2UuN+7XbDYScHWyknnBGTzPpw6cFXTTi3NPQ+sRgCSsHB0hNzRqMwVuG0HHTtTd34/iJdSJAliaqqNHuTitppTs8qtFaXlWxVKBQKhUKhULhtbmvtWVvNxF18PXhn2KotMWU6H9lpHJ2Rlo0wrm/Xe/4nsaNI/nJNy31IYloAApkUQTtZ677xT3+fV33vN5Fz5uP+xRfxqV/67+i9CIxGrRDOaJQKdCEzcZaQZC6wWuHj8YS0/kQuTFhqnKHz8p58SISUOFwEdmonphGfOOo8887T+0jrA0PMkLOcv3SBPiSMUlijNqb69dp6UhmqpNlu5Aq6EOhD3swrRsFOY4FxvZzFhO6MIpM5aofj73hMobVGWlqGkDbnMcV0UChcHuW0sFAoFAqX5KSgBWTz8sJF1rIPm43yRe83dXvraoZ1NVzvE1lllNK0PjDvNUNK7DRurK1Td5mI5cKB4aj19CFJVV6Sxeqtl/FgtOJw5Vn0Qd63gr6LGCOipNrWtKNzlnEhXjuNU1JvN4RIH2QhrrU4JQYfWQ2Zrcay3Ti01puN/JhEfLXePNdKMTUajaQp5S7Tm4jKFQbZRN9pHAlZuC97cSP70RWelQwKb/k//4uf/vZnEmPgYz/1s/n/Pfs70EoxbwMrHyQBKyasEWHVrJJu66Y24sQeRXHNRdzHF6tvqKxmWskg0vlIbTX1uqZj3Dh3RnEYRXS2GgLtEFDUpJQkOpbMQesJQQadaW2ojWZaOzRQWUVMcHbZkzIkBQftwM6pKe0gByRFFFUoFO6L/PZv/zYvfelLN7c/6qM+iv/6X/8rD37wg8+731/+5V/ymZ/5mXzgAx8A4LnPfS5PfOITecxjHnPFruVhD3sYX/3VX82//tf/mvvf//4Xvc973vMevviLv5g///M/B+Cmm27iK7/yK3n9619/xa6jUCgUPhS5PaNHO0T6GKXCLUTOrTwpizhnWlm2J5baGJklRnFRSJlFHxhSYrt2aKXICq7eqtAKnFGQEzHLjHXYBv7v//Nr/PwPiIv7Xzz1a3niF/5rqYUb6/Cu2al56OktQNKHL+YWn1RmTKnSohKK4KOkyF61Vd3q/inLHLLsIos+yCzm9OhWl4ObnYkTN7UzxAzLPuJDonaGPsrsdvV2zf5SqtETUv+9M3FsN5adidvMepXRbNUWZ9mkb02cuU1Rms+Js4ueo86zv+wJKbE1utnnvdSp55xZdoFIRmU5DFoOEacTWYmAK8ZEVDKzLvrAfPDMWy9CJG6/omTNhXUo67m+HqsTT875VmuOWo8zmnYI+CyzYiZRaQMqs9WI0CqmjDWGq2uH0YrKabbHJKr1973sw2UlWxUKhUKhUCgULs7tGSLiuKZf9oHaGqb1xdfdd5Tdiazxlr0kGDXOXNRgvhbtVCfE77dnWl5f76QynF0OhJConZyvvPOv/g8/+8Jnk2LgHz3hs7j+ac+jSxlHAtQobMo4q+m8pD5tTS2sg5du/REBt6511kpMEEMQc3lKmRASrZami4S8N4WInhprWA0DPiR8SCilmNV2rPLWzKrx/Y4JT/LamSFmQorEmGmc5tTEEbOc7WSlxueSGUspmYWIF3zTMUvDiYbOJzFbRDF23G+3uYPfbKFw36ScGBYKhULhkqRROp9G1f6Fi+kQ08alelIUtXYFnNxczTngjGKrcZtO5d4njvDsNG5ctOsrsmBfc7GB4WTl3+F4zQoR8+xOHdPKbtKgDleemEUQtOj8mK6k8THTeUmKmlWGmdP4lOlCIsaMsQo01EpqGJa9x3vG1zFMxsFk5QPpIoqsmDKKcbO/90ydJefMkY9MnSXVsOwTRofx/gkfRGQUs/yv7yOrkHj337yFn/muZ+H7jkf8k0/mc5/9Is4uJeFrq3FoLZ3VxmqmzmD1KO4ymtoa5r24qy9VGyE1FnnT231SQLU7qWiHyMFqTKOaVpvvxfaK0GSGSm8sGj5mDsdkqFUfN79/uxOpjpg4u6nes1oEdsYoeh9F4CamCrYbx8HKc3oWmFZlqVMoFO47pJT45m/+5s3t6XTKb/7mb95KFAXw0R/90fzKr/wKn/zJn0xKiZQS3/It38Jv/uZvftDXce211/Lyl7+cr/iKr8C5206EfMhDHsJ/+2//jY//+I/nb/7mbwD44z/+Y17/+tfzz/7ZP/ugr6VQKBQ+FDls/aaCuhvrLE5WRYQozmaAs8uBnEQ4tdVYfJCNfWe0CJGQpKFUiRu8HaRGfI5nexS77E4dMWcqo3HaoHVL7yNve8Mf8os/IFXdn/5FT+ML/s2zsUaz6iNWK67babhmu+aoHXDjPNGHAa2gMiLo0VquZVoZbln0zJzFKHl8N9Z1pMR5VR0iDJL3nbLU521VlsPWSwpTlvey6gM+SjKS1SL4CWOFhlGKZUikLIm3tdVMK801O7XMG0aRBjmYcFaz6ANKy+HJLfMekMMeuHj6cB8SizEJN0QRQ23VlsoYQkrsrzwhJXkMmabWxATdkGlH53zOCWPEPX62Hais5qb9DpUUp7fqy64ogTtWh2K0IiHz5VWzmpikdp18bDhqB0n1WouqrFY0ldR9ADROXu+OJFsVCoVCoVAoFG7N5TRfnBQmdSHShXjF2hTWlczrc5bK6vMEUCdRcJvCrJMG9oPVQOcj+0v5p9UacuC9/+9becULnokfej7iEz6Fz/maFxGUQkVAK2aNnJUcLj2Lzo9JsYpV58kZmokI+J05Xm+uE2fXcbQnl6KV1Ry2nhglBWo+BEDM/taocV1rOFjJn1sfGELksItoDSsf2aktS6VY9ZFmXFOr8TtRShFTYn/psVaxZSy7k4pFF6ispu0jO1NLiIlhHOlOhg4cN5dIhbgEFUTy2ESyTqktFAq3TzktLBQKhcIluTBa9EJhzHqDsw9xI4rabtytFsYno0q1UkycZasxHLWB3ic6E2lGx+3u9I4Joy4VH9sOkRDTZrN9CIlF79lfSvzoaogMKdEYw/bE0jhDTCJKamojVXZasTd13LLo8SlLFCqwM3EoRNF/sj86pMTRynO0Xpxm2VQOMWOMbA6jFTrLwjZG+WyMAaukji+mhDfymEUXSTlhVGTaWHwfyFYe46y4EcTVLd9DZTVb1rL0AQOcef+7+dlv/2r61ZyHPfpjeeq3/jCVrSBJCpQzilMTx2Ss0VgNMmDtTaqN+zdfQhQHMlC04+9AM25yV+Z8AdXetBpTp9Im1vea7QnLPmy+l63acbjy3HTU4ZS4L1SWzfXrduvzahanlWXizKaK4tS0ks8hynDRDpF5O7A9qTg7H5heVZY6hULhvsPv//7v81d/9Veb21/3dV/Hwx/+8Eve//GPfzxPecpTePWrXw3Ab/3Wb/H2t7/9g66xe/zjH8/jH//4y77/9vY23/Ed38GXfumXbn72W7/1W0UYVSgUPmT5YCowFuOsAXDUnUzsZWM0WXRBDBpd2CSwmjHByRhNHyJHreea7ePUnnVVt9VKqhl8ojdRRCwoHnxqyi2LgT5Ertmueesb38BPf/ezSSnyaZ/zhXztN7+Ifqwev3arwicxRBwsPbtTtzE5iKMdfBTBTDUmFlmjiOPgefVWvfmcFOpWVR1DTJtZy6GxWnHYDqz6KEIdrYgp46yiCxmtNDFFloN8XjsTS2ZMum3E1OO0HDp0g9RSZNR46GPQSgwh27Xl/fsrYhJH/to0E3MeE7X0RvQz7wIHy4FlH/BZPsfOJxEOKTZz1mScQ0NOGK2pXUJ5AzpjjaXzkcOVp+08i9pKHf0QeKCbsDXOSbdXUbLmjtShVMbQuIwP8NCrZnRe0o1XPkjtYAaroXKaqbUbkR1IUtSkMueZki432apQKBQKhUKhcMztGSI2jGlCVismzsiasQ+knM/bW7+zOKPZnWpSsndqjrnQwJ6SpDyt/yxmBzjz3nfx8m95Bt1qwYd/zCfyFS/4EZJ1qFEYpJRi4jQ5K/oqjYIhSVk1RqFR5NE8vj6jWqfmAjTGbN7PmnXrhVWKg3bAh4xqFLXTVEaPa39p7PAxY9BjepRi5ROrzjPvAtPKYJWYSqQKD/aXXg6UlJgOKmu5auKY1JbTWxVhTIVqh0DO8rldLHQAoLbQ6cBqkNtKSVjBVTNpNZlcIp23UCgcU04LC4VCoXBJlEKiR8c12DrBZ/3ndYVad8IBejG3wMWiSmtrmFZZHKqDCKP6EEnJXpZ71MfEogsctsO4ED/ub14NksRUO83+aiAmcQh0XhavfUgbEVClNX7sga6dEUfyuKgHNn9nlCJkqZfwUaoHzi4GJpU+z5mxM3FsNZYz84GlF6fBkGST2RrNQes3FQNbEzu6cuX9ppRZDZkag1EJPYHFIJ9fiEliXWOkT5EtK93Te1NHZTRdSAwhsvKRWWW5Zf8Gfvz5X8ni4CwPfuRH8ozv/klMNcUZzampY28m6U3OaHxM7E4qTs0cTmvCuFleWX0sijsRQJvysZsc5HNeO4On1fmb3EqBHd3gu1PHEOR97Ewc1ihuPOxwUaPJLHpxUByuBppasds4dhonz6FlsFKK4/pC5DCjMvK/2miO+sD+yrM9qZj3UsVnL+FgKRQKhQ81Xve61513++lPf/rtPuYZz3jGRhgF8Gu/9ms897nPveLXdns88YlPPO/2O97xjrv9GgqFQuGu5oOtwFj/HZwviloLUbRSm7Tf2ho6Hdlq7Gi68JxbHDvNV32gsortpjpv072yhkklBxXdIIIeMTNYrtuR6uv//X/+D//hOV/J0Pf8syc+iR/+8ZdTOYtWklC1TiJKWQ45Fr24qhXq2D1tDM5qWh/ZH3f3t2tHdBkzzoOnpo6UuZUjvqkMBjmseN+5lnlINJWmGT+DlY8w3j/GRBezuNx9IOTEzfOOnOQAp6k0dj1j9ImVj0ycwSjNtLZMRzGPVfDuc0u6IXFq5hjbO5jVFqUkPXddH6gBrTIZxRAzbRdRGrZqtzmgmjWWymhp+0jQhcDgpQ5kp1EwVmo4rTEKhiimFWcU2418LnD7FSUXckfqUHYnk43p6GA1kIHrdpvz0qJjhJ5EJlNbQ+Pk8OjcaEgC7lCyVaFQKBQKhUJBuBxDxHGakJw/hJSZj9XYO42jHSJaqSuSHAWyRpzVlll96ftcaAJZ9GG8juNWisOVlzVlSMzH93njB97LT73g6ayODnjghz+ar/zOH+eq3S16H2FMY0pZ5pxZbaitYn/p2R+k6UNFabAYEsQoa3KQJNecwY6psOtUqzXrs61uNG7knGmcGLqNEiMEyLWfWw0YK8+zvwiEJNdkkgbEhDLEhNVi7PYxMsRECJlZYzg1rXBWvrNTs5rD1jNvA6tB1uZXb9UbM8F5n+mJ85iJk9mPLI0s66O0OxM6UCjc1yjCqEKhUChcEq0UkSxCpSgL7PXCbJ2IFKIsuJVSF120wXFUqbogqnRSmY3LYQhJokN93FQSXIr91cAt837jFPYh0cVITiK06n0ErUhx7brVGK0hw/bEklov3c9aIlEldUkGhu3ayXOExMQZOh9Z9gFnpWriqB1o+8ikNuScGaIZXQ2j+H98f1KNkFn1gUUfsAYGnyHLBr4xipQghIy1CqsUPiZqozcRW9aIQ7kdAvM2YI0iZ0WKsmG9rpW7/96UZe85s+jxIXHTmTO88N9+KTd/4H088MMezve8/BfZ2jtNO0ilRjsktPHsTByTyrA3qWicYWfqNkNW52UQ6HxAoWSjnIwPefzcxwMXp9mqZZN7WpnzErTgOG1s7RyZ1ZbToygLak7Pauat5/37LeeWnoN2kOvTUG1pjFbUVgRRnU/4dPzaJ3u7RZTnWAyBIYrwbVpZzq0Grt0pHduFQuG+wW//9m9v/vyIRzyCRzziEbf7mE/+5E+maRq6rgMkqenvQxi1tbV13u3lcnm3X0OhUCjclVyJCoxVf+wWXx+M7Ezs+Rv7XkRX7RA4bAMhJbYby1bjWAzy//XrOeKmw7WJREwI67V8M85BIYkzel3RkIH3vfsdfPNXfSmr5YLHfdI/4+d/8ZdomoacxbFcW41Riqkz7Lee1RBofZTUW3Ncnb4gkMfrWKcNVUZz/72JGFGQA4d1stNJKqtZ9pHlIO+vdlpMJqO5o8rH9zdGo2Jk3nsRHilFH2GI8lnGbOhC2gjKhiDJw0bCfjlcAmP132KQary/u8VTVZrGSFrVtDZkMhq9+QxDAmulbuOwlc9xqxZTy8oHcfOfMJXMMMQkTv+QM+TMpHGoaWbVW466gdpY4ngwo4C9iaO+xAx+W9zROpTtbcdDTk85txw46jy7k4rOyO9nzhkz1hRmoPXHqVPr97jeJ7jcZKtCoVAoFAqF+zqXY4g4SeMMsyzmhtU4Kxzh2WncaLrQd7k4/WImkJPXvhrNzjFD5wNGK7qQUMDhLWf48W/8Co7O3sw1D34ET/uun6SezrBGM3GWkNNmRspkET4pJSlR0qVNyJCyzBGr3nPYWjEpDDKL7E4cKedNwwiIiGvZj9fXy7lSZTVGaaROT2acNJrlF51nCFIxXjmF78X4YQyYsf4up7Hxw0BWUkUerBgeILPdVDROMwQ5izpq/eYzXA1SBV5ZsalnZG704zkYSGKrnGGF8XOXv7gjoQOFwn2VMo0WCoVC4ZLUVtKEGmvovbgOZuPm9Vrs1IXj5J4LF+TAxrEAx1Gl1bgI10pRGU0/HgpUVv58W46DDxy0nFuKo7j3kXnnWXnZyA5JUqS0khqGlDNGKbYbOSwIKbMcPHEUcp2aOtyYitT7xOATczxWiwOBLA4LnxI7lQimupBFDJYTVmuslmEkZ1n8z7tAF+S6+pAIIbK/GKiMYtEFfM7EKM6EyopACuQQpHKymbzq4uZz0g6WncfHhFIaZxVh3HxWSjaaQ5LErGlled/+Wb7v2U/jA+9+O1ddd39+9Gdfw4c99MEb98hR6zlqvXwuE6k9vHq7ZjHIQc26UmHdVe1TxoeITyIUE4dDAiWb/CYqjtqB7VFkdSHr3xO9EcWd/zuyrnNIZK7dafAx4RsRXE0q+bv1In+NVYq6Mpvfo8YZphuBlGXZhzG+1jLvA9de+tepUCgUPmQ4ODjgPe95z+b2Yx/72Mt6XFVVfOzHfix/+qd/CsCb3vSmu+T6bo93vetd592+3/3u9/dyHYVCoXBXcCUqMLYqSz/OXu34XNPKnCeKAjYmgTOLfrOpnjNS9wbMuzBWVUiyz1ZtyE7W7ZNK1tVaKUmrHQ0ozmoWfeDGD7yPr/qSz2f/3Fk++h//E375Na/jQVfvAiL8SjkzrSwfOGg5akUkpbWVSjwl1RZpTMU6ubk/QdzR1miWfeDqbanTvlTl4Pboft+ZOHZax37raYeAMxqjZc5yRm9er7KaW+aJSGKImQQ4Y2h9QIXErnOsglTo6aCYTSwpgU+JmCTB6nDl6ULgaBVIZLYnjmu3m7GCHGKSedJqMQwpwPskr681/Zh4bI1iWlt2Gkdlzfg5ZKk7NGIKWSdmiVAqslKRyfhzZzVbtWV74ggpcxuj821yZ+pQ7r83YbuXwzVm4+/b7Qj81tzRZKtCoVAoFAqF+zKXY4i4kLUp2RrFURvE/GykqeOuThO6mAnk3HJg2ctZzMHK0/mANXKe0gcRRmkUuZ3zkuc+jbM3vJdT1z2IL/mOn6TZ2sMazbyXsxqVFdbK/YcY2e8TMSdCSlRWMQQxvy+7yN6piiFmjtpAN7ZXOKMJ49mI05oQpd2j9XL20w6RRRcISDrsLcuelDIHVqMQ8VUfE1orQo4cth6rNNdtO0JM7K88yyFQ2eOK8NoZHGIg0EpETo01zGrLtDIcLD0hy9mbGdfeKctntz5TOYnViubE/Lc3dfiY73DoQKFwX6b821EoFAqFSzJxshFfWXHChrH7eVbbTXT/2lnrzMWV6OtkKTtu4io4L1lqLYZaP8/Jur4LOSmKumXRsegiISWUGnuhkyj++zHlKaREbYxEjYae7dqSM2gNO42TDexBHq9UJkQYfKIdBVXnlsOmUq71snkf0nrBbZlUhpgSfQRSZtnLZnpMmb5PLH3gsJNFcW0MPie00sd1Ej4zqy2TWm/q/5yVzXuFwhhYdrKAz+PmNEptSu2kYk4x72ToaNuWH/qmZ/Cuv34TO3unefErfom9ax8gfd3jJrUz4yIbCDHTkTgz77lut5HPbEwFu3Zboly1gnNxYNEFUsporWkqSdsC2ayvKoNCPq/K6E1y1Mm6xWZcsNcXcSLvTsQ53RIljrcx8rPRYbGuSFRanseccD2sD2/WzGqzeR/r6ysUCoX7Am9729vOu/3IRz7ysh/7iEc8YiOM2t/f58Ybb7zbhUm/+qu/et7txz3ucXfr6xcKhcJdxZWqwOiGuHEMS2IvFzUmSEKsVMkNIRFz3mysN5XhoPOgRMizHBLv3V9x7U7DVm03c8OslsrvISTiKLS66aab+Lov+3xuuuH9fPhH/EN+4bW/znVX7wG3drQ7ozfXdspJVV+IIqDJ6XjmG6IYPKxWDDFtNvkn47x4qaoOHxP7y4E0HoaEKIcHjTVs1e6CJGMx48RpwmjFmXnPMNbWTWpDYzV9iGJEGROF7VgHbpUiqczgE2dXvZhYhkBSjDNIJufMVmPx4zWs04i7GIHMqo8cdJ4Y5cClMoa9qaO1kVljadxtb81qBX2wTKzMzo2TQx3gdk1Fl+JSgjOtJN34pBjqQu5o2tTFKiELhUKhUCgUCpcmpXxZhohLUVvDtJJmjXYQYdRdmSZ0MRNI5yPnlgOtjxy1fnNGUGcwlSQnKaW5+ewB3/t1X8773/X/cuqa63jm9/40evdatJamktqI2V2qr+U5QoCQxVww+CSVdSmTciIhoqRuiOznHqsNW41hZ1oRoqzbY84ctp5JZcbZKXDzomUYoHaKPkBMga3xLMkaNaZbRVJW5JixY921MYrGOZpKc9CG0VzuxlnN0ljFtBJB2zpgwIyhA9UYSgCw1Ti2anteM8p6jX6yhnzNtBKB1VHr71DoQKFwX6cIowqFQqFwSfRYY9YF6S6e94HVEMdKN9mMXeuYLpYWNQRZfINswsOYLHViAb5+2Pp5LqWL2l8NG1HUTUcd804iRifOsD1xOKM4aj0pwX6SbmWJ85chYAiR1eAxSqJQtQLUSaGNuA2IMnzIwnLAGE1OGZ8SyyHSGI0fN/YXoyBpS1m6cWMZRFzVJdko7oaIUQpIVFpqBIxRIp7Kkdgl2mDQSjaOV2NyqgKGFlZ9QCnF1FmMgpQSdSXugcZqhiAf2Kob+A/f+Ez++i/eQDPd4pt+5Ge59sEPpx0CRrvxw5V/pKzwMYojA8Ut835TUdGHKMKtVioAQxanhfR3S792HyJdzjitaSoRQK1dFn2Qw5zp+H2vRXHr+NfJJaoe1ocXZ+YdgxKH8cUOeta/MxfWfazRHAu24Fi4VygUCh/qvPOd7zzv9kMe8pDLfuyF933nO995twqjFosFL3vZyza3q6ricz/3c++21y8UCoW7iitZgbG/GpjVdrOhXl8ksXfZB7pBXmM5HkrMlEVZSYCajZv7R51HjTNN78XNvegDu43bVDUYzSatSvkj/v2/+WLe/c6386CHPIRXv+43ecgD7rcRu6x6mSEOlgPnVn4jFjJKbQ51qlG0dCFDiCz6iMqKiZNrXHTh2EBzkRSjYZw3jlq/SbfaHg85xKl9sTTjda2bZtFDVpIEtQqB4KGpJEErJ6k8H3LCBxnOVj4AmWHIYw2hHIKkDEdt4H67irp2pCrTjanGyzZw1IlD3kd5H8NYFRLHlKZbjnq2GidJvBc5pEpZDsVCzkydZlqLm9yO7+22TEUX42L1JhsyxDHNS+pWLi1oujNpU4VCoVAoFAqFy6P1l2eIuC0mldmk1N6VaUKXMoGcWx2LpcRQr8lK9uqPWi9zRlzyo897Bu9821+ytXuKZ/6Hn+baBz6ELgRWXaIbEjsTSaR1VlFlmQ+2aktE1p+LLrAc4mgq14SQObvoOb1VQ1ZUTpGAw9WAdxaNXIMzmoOV58y8w4fEsos4a6idZgjSJNL5gEKhlBrX82JaGKJUee9UUtUXxkXw7sRhleK63ZraGvamFSDr48poTs0cR10gpDwa0CVGanfisEbM8M7q8wRQJ1k3kEyq4zX6HQkdKBQKRRhVKBQKhdthWoswqqkMQ5KN86M20IeIM3ojbDq56EpZNoTXoqjK6WP37wWL+PXD1s9zEX0VPiZumfcAnJ0fi6Ku2arZnji0UrQ+YLUmkgkJKmeojGLZR4YQ2G89ldGkHEc3tKGy4updV7PVVnPUebohjtURGZsTCtnQNwqM1hx2AzllZo3CKOmaNloxq6xsmo/CncYatA6Q5HbKMKs1GY2zUt/X9nFTI2GMoh8S2sjmvtUKsmJWyabyueXAVmPZqSvyGMc6xERKiR98wXP433/033FVxdd//yt56D94jCRCjQcR601qtCyyQ8oMnSex7uOWw4qQMrsTx6S2nFn0HHZ+dBQnFr1nUmm2asfuxOHMcQ3huvJjHed6sBrwcUzEqtZpUZfeGNdaYY1mq3FoHaiswo2HDevEKK1kOKjtrQ+RNr974xb/+mChbMQXCoX7CkdHR+fdPn369GU/9tSpU+fdns/nV+SaLpd//+//PTfccMPm9jOf+cwrLsy6+eabOXPmzB16zNvf/vYreg2FQuG+x5WswEgZ2iFu5q4LBSs+JlZDRCkRNPnRtFFbzVZjN+vnU9OKkDI5wWTqaIfRbR0SB61nWhlJvLWaISZi3/Gir/1X/O1b/4qrr7mWX/613+YRD/uwTS1a7yNn5h19TBwsB0LKTCqD1evaa7sRBYGYO7RWm/X9rK7YmWQ6n1h5eZ8+Jk7NqvPX/KNwp/eR/dWAM5qYpBrj9KzCh8i5lWfeibGkNgZnFQpFZkz3jYmUpJJ8q7JiHMkKayAjM0dVaZICg6ZyihAS/ZA2deZGa1Y+cMtRL8Iqa/i7s0sesDeldvKec4Z1zG+MmZgy7RAYQt5U1Rstf7d2z1dWMXEWNQq9Kqs2phONGHoqo7HmOKHpjpx7XKze5LYq8LoQ6UK8zQq8SyV6FQqFQqFQKBTuPGvz9W0ZIm4PrSQ19a5ME7qUCcSniFZyLnDLoqfzCWukKnw9FwyD5xXf9bX89V+8gXoy42nf9ZNc9aCH0/rIdu1oTOJgFZj3Iu4yXnP1dsXMGnzMEDRDCCIWMgonC3oGL6KniT02VXdR+jk6n7jJd2gt5w7GaA5bT86M50WZeRewKrE9scjXkIHMqgsE8mbGmuEYTGZSaUmV7SM+JZTV+JiZOHkNSXw9PsuoTNp8J9PK0sfErLYijtKKzsdNqu6x6UCEVc1FTAeXGzpQKBSEIowqFAqFwm2ydhYv+8BO4zhCFrmdT+OGeyaRWY2L4LXDeL0Iq5xme3QGT6tbO07XG+TrRd3FFvmLTirq+hA3tXFXb9Xsjqp7YLMoPWgHfEpU4+tI+5xiffRgUSg1um+HiE+ZDKjWU1st4qSQOLPoANnoT1mcANuNHVX9CYsWF2xlMMrgjLyXnEX8NRsdzOdWw0ZQNm0MoJk6SyZjK4uzYdNhbaImxIxOMHOSxhStxLWmnGgqw1WzCqM1mbSppHjpi7+NP/it16CN4Tn/4Sd4xGM+nnnnCVkW3d6uV8ZAEifFUetpKqlxOHPUM+8CV80cRmlWvccnETzlJDGxK++ptYHx84spM6kUjZNhZO1gOWo94DffY1PpTRrUtL70AdBayLSuEsnAzqS65P0vxXI8fFonSV3MeV0oFAofiiwWi/NuN01z2Y+dTCa3+Vx3Ja961at4xStesbn9kIc8hBe96EVX/HVe9rKX8V3f9V1X/HkLhULhUlzpCgwRL+VNrfaFc9PalDKMlW5oxVTLfHPhfaeVkblDKbYby7SyHKx6hpDJZJyWug2dM9/3/H/LX/6fN7C9s8sv/epv8JiP+ocbocyiD5w56lh5mWfOLHr6mNgaq7a1lhSsneb8ervGmfPc6iln9pcrVkMcHdNa0qC0upVwJ6VMyjIjtj7hrEIrOfgYUqbtI72PksAbj99zGOc+DUysIQO3zDuc02gUMSusVujxPjknBi+HExmpy+h8YkgJsiKkxFHruXqmOew8s3bALzM5ZWonJhcfpFZPqhIh5kzfJbTqGWLCKM3ezI0O/kxMgUllCCkx7+W79zGyUzvqSuozanNcLX6552MXqzcJF0vWjXljeJk4Q1OZTWrYTnPrtK9CoVAoFAqFwpVnbYRYpwDd2UriuzpN6GImEKsVrc8oFIetpNIqoHYivndGQ8r8xHd+PW/+sz/AVjVf8M0vYfch/5Dl4NFac9RGJpXCOUWIMgukCIfLAWcM1siaPSfYmToqp6X1Y3x/U2tBwVGfuHrLck3jxNwdI4s+cNSGTduIzBKKbkgsB0no3Z1ZJpXMKmlsEuljZAgy36mxHcMnje8StdUbg8TuRGar3anbJEZd7DvZtLFw/N1orZnWlukd+A4uJ3SgUCgcc48XRl1//fV322sppfj93//9u+31CoVC4d7CVm2JSVKgdhpHZyI+JI66BAqWXWDVy2bzetP9ZHoQQDPWIpwk5WOHbGPXqULnL/RTks7nDBy1npDFgbwzcRc8l4h12nFBHpKIlJzROK2AzKITIVToAs5oppXUAwyjE3flIyqMDuuY2Jk4fEj4JGKnGDPdMNbnTaQWT6PwSd5DHxKDj2itcUbRhYQziqXPpJhosoiplILaaYyGJjuMkkU+yJCQMlI9YWQzXSuYVg6rErPxfTsjHdSv+vEf4nX/5T8B8NUv+EE+6nGfylHrscjrVFZcvBpFQoRLXYhEZJN+MXi8T1TJEGJiWjliTpvPddEFhhilJi9lrI8EJyliYZXZbjJbtcVozbwNzHtxWVTWcGoUWoWY2J1WtznEbdeWdohsN1aqJ/pRgKYvf/ALKdGO3892YzfPWygU7jmUtf1dR9d1592uqssXl9b1+ZbBtm2vyDXdHn/0R3/EM57xjM1t5xy/9Eu/xM7Ozt3y+oVC4b6LJKLetRVgV7oCY1234EPCWn1+Ym86TmRaL+X3aofPaVPjdqE4SoQvYsyorCS3dj5ilWJWGw5XkZd8+9fzhj/6HzTNhJ979a/yzx738Zs1/WHrWXSes8ueg5X8s/NpnFPEWU2Ezif2lwMKSci1WhPHWvDtZkzPUoyPkZoLa/SmjuI8YuaoHcgZcWSjmFaWnEYjSy2zVRw/b6v0Jn22thqlpRLekzlz2JOAELLMPxmu2q5Reny8VsSYmPeBeetlHkzytlCwGAIZmXu1Vtx42LI1iocOWg9krFVYo3BZszetODPv6UPgqBUnu7WZg5WYORqrWQKtlwOjdoj0MeG0xkzF8a+VzNW3ZSq6kEvVmygls/famJKypFn14+/rvA8MKbHTONohopW6ZHJUoXBPocwahUKhUPhQ4ML0nzuaFrXmzqYJXc6sBNzKBFIZxRAlVWkxBBbjOc1WY9mbSBpszpkf+e5v5vW/+2toY/nKb38Jpz7iY+mGxKKXteesUnQhY5VG24xG4SwYo9mdOBTSGjFrLEetxyhZJ2ekYUMhZu48GiP2VzI/KCT9da/RDDniQ2bwmSElYkxUVurOt2pZ96/PSNbV3VpnhhDphsiRUmQUO41US4fx8TFnmTdCuvBjPe87WcfLrr9bH9N5RpLL5XJCBwqFwjH3+In2D//wD1F3w7/I642SQqFQKFyc3YnDaMWyDzTOcL+9Bg4l0nUIkRhls75pDI0x53UhTytz0f5qcT7LZnJlNQo2C+vNfXykD7K4XI3O3+0TVRBrcpb6BTl8EHGS1YqpMxijmHeBbkhoAymImEv+3oouP2dWPqHH6rbeJ1ZaHLrWGGa1ofMirKqNPnYNAD5G2iFx0MqG/8xqWQQjyUUzZ1gkSWnabhynaoPVhkimNopqJocHMWZQGbKijwGXNTlLxVyI4t5OMREUzGzFL//sK/mZH/sBAL78Od/JJ3z659J2MnA0tWarttRGb9KzWp/GTXfDaggsxpoJo0VU1uUogrMITWXofaZxUk9YGcWksQwxSRpVskwrOLccWA2RiRPn8tRZeh8lKnZ83Qy3u4l+elpxy6JnWlkqI7UdhyvPVVuXn+97uPKkLNGy08qilTxvoVC451DW9ncdFyZEDcNw2Y/t+/682xcmSN0VvPGNb+TJT37y5jqVUvz0T/80j3vc4+7y1y4UCvddfEysepkvbnUuMFa1rSshaismijvr0L7SFRhDSjTjDGE5f/O8G0VYPiS0lsdNG8Oyy4Sc6UPazFl+NKYoLSKlxq0FSppbFr0chPSBV3zvC/iD334dzjl+6r/8Ip/z6Z+62XBf9IGzi57VEDm7HETEM0SpyWgUMedRoLROGo4MMW7mglPTikVMY2qRHz8rOYCZWnFYWyMioAuFO4etpDUtu4DSUhNorCL1iWSUiHt8IpNprJHnsJotY+l9QiuIMTEkSeE66gOVNcycYVoZrNK4SoGCs34YZzp53kUX6WNg6iyVFoNNO0S6WsRT1+1BzmLKATGzXL1dc9QG5n1g4jRDMPgxbUqhJIHYKlql0QZuPso4p7BKM601O2N1fEyZaW2xY2X7+nfqtrhUvcm0kkOfC38fG2eY5Uw7RFaj8/8Iz07jxn8n9J3+96FQuDsos0ahUCgUPhRQ43Jy/Z+aO5v0dEfThO7IrBSSCIBSZmMCWT+mGxI+SIX1rDJsN26z7vxPP/xifv0XfwalFM/8th/iYR/7BM6tegyJoZdEplNTx1Zt6cJ6XQ/Oakl21YrGafZXAzFKmu41OzWzytCGKLXZMK6fE84YotEMMRIjoMBZiIMm68QqiEEiZ82sMuQEXZCmDsWYKmUktTakTKwzWUViSiw6jyKPbStxFF9Vm8/rtr6T9Tq+2YjMErOLmFlui8sJHSgUCudzjxdGAZtIucvh5FByscfd3t8XCoVC4dJs1bJhvl4gb9UWNwpvFmPFXT2KohQSDTq5SH0eiKNgNXYbrJ3Ttb21M1ucCeOBQhJn7cXqJzJr1zD4kKlcprZyLashYrQ4C7ohbRbuRmuq9XMphVGwHAIhZAKJBCyHiDOwNUhkqgImlcVqhVKK3ksVwbq6QgH9ID3RPiZyylizdvgq9leDiLUaxcxZea1xSOhihLEW4rCVLmtnDSpkhpTZquzmAOT3f+NX+Mnv/TYAPvNpX8dHPvEpfOBcSx8ik8rQGEXvzeYAZJ34lXJmOUgdgjOKkGDwCR8zlRFHemUU243DmojRbERtIWW2rKUPCaPk9sRqQkgop3FjTYZP4wHBEDk1raiM3jjcL4W1Url42Hn2Jo6bFz37q4F6dK/fHovOs7+Sw/VTU7n/du2wZRgoFO5xlLX9XcPW1tZ5ty9MkLotLkyIuvC5rjR/9Vd/xWd8xmdwdHS0+dnLXvYyvvzLv/wue81nPetZPOUpT7lDj3n729/O533e5901F1QoFO52Fn3YiERA3LVdiLeqamus1Dx0IdKFyKy2dyop50pXYFh1XD0N52+erzfEuyjJPrNKjCS1M4RBEoOsVhitNsKo9ab5ek6Z1ZacYdF7/tOPfC+/+yuvQinFS1/+U3zWv/jMzVrex8SNhy2dT8x7z7z1dOt5wsmsZpRU0B11InpS4+fQ9on9xcDNRx17Y2127cTQsfSRo9YzdXFTPbF9wRzQOEPnE6tBhEg+RI7agYlzLIaE04qrt2oOVp5lH2mDXINCoY0kQPkYOVh6Vn2gGyLKaKYG9maOWW2ZOKkZXPkAUT6nlBSdT3RB6vvIkb2pZd6l8X3J5z5vA4mM05qrZhWMFeRTp1n0kqpb20T2mZjFfKKU1Lf3KlJHs0ms2p4cm3HWqcO3Zyq6kIvVm+xM7G3WOa5/F6xRHLWB3ic6E2mcYdVHdqdlvircsymzRqFQKBTu7WiliIx76THfZWlCJ5OhpMEhjslQ8vdruf/FZqV558XonaUe2mm1SYBdJ0g1Tgzf69f9hVe+lJ9/xY8C8NXf/GIe9+mfww1HHY0zxKSpDLQhsOgDE2fIGWona+OcM13ILDsva/CopALcSFvFYhhfe0goEkYZtifSOuKM3rRpSEJqRClP75UY9wGtM4shsNVYfJAmkeqEsaUKkhg1qaTlow+ZEBPLLpGyJ4/PnRCxlrvEmcT6O5nUMnPURpNHcVk7xIuGC1yKywkdKBQK53OPF0Y99alPvd37rFYrXvva15LHiDqAvb09Hv3oR3PNNdcwm81YLpecOXOGN7/5zRwcHAAy3Git+YIv+IK7xRVdKBQKHwo4o9mdalKyVFZz01GH0VK1N4RE5wO1lY1se5HN/3TCgQqyEb5e2E/rWy/c1nGt6wOLyo4L2SQOAqmGgFsWA6s+sOxk418rSWLqvNzHWU2MIm6ySqoZ1uKgyhgyGaMVR10gkGUzfIhAJqTEjfOWakyKasbOaB/SZjG7dgtXVqFU3gwAs9pybuWpnSZGiCmx9LJoNUpTaY3SMM2GW871tF7StzKMtRbQBtnkF5d05g1/8N/4ie/+RgAe9+Qv57H/8ul0fSSTsUaj0HQx0y8H6cGeHEe3rvpI6wOrPjKtLCknfM6EIbO9YwkhoZVh3npWPmK1Zm9qGUImJnF+W6XoY6Z2isoZKiMu7O1aDi5slu+ncSKKy8hAdHsL+6u2Kw47z860oh0HshuPOk6FJK7xi9TqhSTJUmtR1Hbj2B4PWa7aLmlRhcI9jbK2v+u4sH5uf3//sh+7/gzXbG9vX4lLuih//dd/zROf+ETOnj27+dmP/MiP8MxnPvMue02Aa6+9lmuvvfYufY1CoXDP5bD1mzqxboiberpbESU51mo1Vs0Zlr2YCnYuQ6x/kitdgVGNqbQ+JsJ4QLLePD9sB8xY/Qaw1YiAqLKaIWmpsxhFYSmLIWJt9KjH2SZlmXt+/j/9OK9+5UsA+Pbv/Y983hc85bw57cyRVOb1PrK/FFFU44wcoChJQApJPseUIITEakj0MUCSA4lhNJBERDjkjFyj0QozVZxb9kyc4eqLpMcaLfV5W43lxqMOHxN7U6nma4dAQg42INMNURJlrdoYaG6aD6x8oPOJoy6yM1XsTiomzo4JU4YDL4KuDLRDYPAiRLNW4ZIavxOpEgkp0YdM42A1BJzV1EaqASurxKSjFKcmjoOlxxrFtrWSUtUYnNJ0XubKyii2p47GGaajKUYrec9aycHNVbNRUHYRU9FJ1vMyHB9OTU9U3d8WKUmasY+RZR+Zt569mdSfaCUz7gdbNVko3BWUWaNQKBQKHwrUVosYyhp6n654mtCFyVDzTtb0KUlt9bwPhFHk5MbqvPU6cj0rdT5ijWbZBYzW2MZuEmxTzpva5pjlWn7jl36OV/zQdwPwr7/uW7j+87+U1RCZOoNValMdftR5DlaeEKXJQivNpDZMnWFQkS5KcqxRCmMUoNCjOGjlZcaYNiJq2pnIeYLTCmNEODStLCEmams4O++5cS5nMc5o+vH8QmslddknPm9rFcFLBblPidqJyX41BHwrZpPaGPoh4bb1RdO5Tn4nU2fpiJvXmfeB1RCxRl3Wev1yQwcKhcL53OOFUf/5P//n2/z7v/7rv+YLv/ALSSmhteZpT3saX/VVX8UnfuInXvIx/+t//S9e/vKX86pXvYqUEm95y1t4zWtew0d8xEdc6csvFAqFD1m0Vhvx07IPnJ5Vm3j+DBy0nspoUauP7tYhJNkEX0eGOr05YJiN6VMXsnYkrP+ZcuaoG1Co8xJJUxLXbcyZPibyEFh0mpBkI7kbIih5zKwx1E7SlHzMaCWHBlL5Z1j1x3GrIWWszhwsA1tTcYubcfG/Ef30UqUXc8JHETqtax/S+L5jzEST8RFCiPjR2a2UCKQOu0A7SNyr0ZohRRFnjQcY2RomteKv/+INvPK7nk2KkUc94XN43Jd+PeeW4ugwCrYnlpQzCUlvCjlzdjkQYmbiDLfMO1Y+YpSW4SFIxV7O0PnM4AOTmDBKbb6nIcjBgtEiitqd1sy7gELeW2MNKeWxpk+Ebo0z9KMLf+1yn91OK960slyzXXNm3nPdjlRCzcckqMN2YFJZZrXZODyWfZTDj/E6txu3edw12zXT6h6/zCkU7nOUtf1dx8Me9rDzbr/nPe+57Mf+3d/93Xm3H/7wh1+Ra7qQv/3bv+X666/n5ptv3vzs+77v+3j2s599l7xeoVAogCRFrUVRJ+vE1pv1F1a19UFmgHkfGFJip3G0gxgv7khy1JWswAgxMcTIakishkhtNctekpC2G4uPYA0sx+SidVVaO0S2KsuCwGrcbFcKdhqZRdaHLkNI+Jj49Vf/PD/zw3Jg8eznfwdf9OVfcd6c1vu4MSScXQ4MIdJUkvjkkyZGEeMMYeywAHzKhJzICYxSVFqLo3qdKJuluq8LMl9NKsst856jLtD6yKlZNX5HIg5b91KE8fP0UQ5wamuJORFTZr5OM3aG3geOVn78MsRZPYyCLWvkA+6HCJO8OVTwo/mlHQLzLoxVGpraKKIOxJw5bD2TyrDsxUxSWYtKGXIWN3pK5KAZghhzrJF50zmZZ0IUMVdjDTvTY7f6Op144gzXbldS8T5ElFJsNXYz+1zMVHSSdqxXHMbfZ6WOD00uxVpsN4yiMKM1KUtVSD8eft2yFDPPB1s1WSjcFZRZo1AoFAofCkycmDMqq7FaXdE0oQtTdA+WA7csepZD5HDZM8SMOrHHb9RYVR0UstQVM/S8CzirxjMFMZfPakcXZd3qRoFODIn//pu/yg9/1zcB8AVf+TV8/tP+7aZ9ZGfiWPaR/VUPKCZOE2Jm2QdWg0JrmEVLZwzWyu21ASRnONv3nJo6DoOcz0wqmRtmlWV24mygtnpzVnDYemaVZeEGYgJtZCYySmOVwhnNcojUNm9So9xYb260wqAI49wRM+QI4vtX+JTHtNdbC5Qu/E6MWguvFUOS2sCjNjCt8kVrr+GOhw4UCoXzuVefGJ49e5YnPelJvPe97+Waa67hda97HY9//ONv93Gf8AmfwCd8wifwjGc8g8/93M/lrW99K0960pN44xvfyOnTp++GKy8UCoUPHbZqu6lp22kcnZFauZAyfZCDhQuxWpzE60XbpDKXPGRYx7cqBV1MxCESs2NWSdxoF6Vir/NR6hCCLDC1hoNVQGnQwJASKSm2KkdlLVOnqawsLtfXGcdUKqcVk0pzsAoMPqOqTFbimtVac9gGyGAaxbz19DGKAxpFbRWV0zitqZ2Ixu6/O2FIiYPW40JiWlsUYFD4kGmTJ+fM7rRi3geMguTlsCImzd7MsTtxfODtb+anvvNZBD/wEZ/4qfzTp34zZ456PJBiZjLWUMQkw0MmE2NCG0XvEzcetMS8PgBSLNqwWcSvu7KzghDEnUGWSglgFHhJhUJKyAFMSNROvjtnNY3VTMfvcS2GWleHXO5B0HU7DUOUFKjrdhqmTrO/8gxjf/nJwW1NZTSnpsdJUadmxwKpQqFw76Gs7T84PuqjPuq8229/+9sv+7HveMc7Nn8+deoU97vf/a7Yda155zvfyfXXX88NN9yw+dkLX/hCvumbvumKv1ahUCis8eMaEs4XRa2FQxduNjfOMDux2dz7xBGencax7MNGSHU5XKkKjFvmHTcd9aChNiK0yWSpXwuZo9YTc2JSWXKW1ztoFbsTR+U03ZhYBCJMWr/nZR/Qym4OJV7/e7/Nj3zncwH4sqf/O/7N13z9rea0s8th4ypfDQGl4LrthpTBRc2+7zeipN4n5n0gjpXg9UyuZRgTf1MGlWUt70OgGxK9SoTU4qc1p2eKM4uOkBLbjRsTlCLdEDjqAzHKQcUt857eahF7hURTaa7daaRmow+krLB2FGP5RGU0rQ/4nPEhYWuLsYouJM4tBmaNoQuSRHwwVgE6pVCIeG5SGXlfMWGNIkSp3chAU2sm2tL1ibbrSUgiFgqchkmluXq7ZlZbloPHexhiJvlMTqA0KDJ7E0ftDJU1hAQ+SSX6du0YYmLibl+QtJ7DuzE1qj5RBXIxlqNwbo0PiS5GOh8YxkSrrYn8jk0r+0FXTRYKdzdl1igUCoXCvQWtJTWoC5GJM1csTWh+wjDSDZF553nfQTueq0R8kmRaRaYdxKBROWnbqKwY3Lcnx+vAlLWkntq1kMiQxzRYrWX2+NM/+D3+4wueTc6Zz/7ip/JlX/O8UVCURUBlFBCpjGaImcYaOiK9j4QEzihMA2vRkUORU2bRDQw+sfKJ1kcqbURE1Uh6rY+JeSfistrqjShJ6sPXledr0wab66mciKOGlDjqAjEltNI4I+vqEKU1xYdEyBmVM8qKuCnkyKSqiTlzYXDTxb6TWe0wRrHsAzuN4wi/MUW0Pl6R0IFCoXA+9+rJ9dnPfjbvec97MMbw2te+9rKGmZM89rGP5bWvfS2f8imfwnve8x6+/uu/nle96lV30dUWCoXChy67E4fRsohbpwUNY1rQugLvwh7qNbe3kaqVGjevE4x9y6vOE2LcuGVBfMNqFBqFJHUNOcGssWP1QcAYceBOnUEpSRjSSm2EUSsfCGOcqUmaWWOIOUES94Idbd8pSWXdwWpg3gUSWRbRio37QlwEEaf1xs2RgUrDapBaOmc1IchC32ol7uqx1qOxip1JJXV1xnDTe97Bjz//6Qztioc95hP55K96EUdDovfiwHZakZzGaDUKvqR/+9xqkGpBLZv2doyNRUECcoJpY7FKMas1KcHEaWJWBMQxDOI6j0kcIM5qtozduMC7KD8bYmI6fh/rPfcLK0QuhwefmlKZjjPznu1JxfakYjW6tUMUIZfR0lG+3djzkqGu2a6LKKpQuJdS1vYfHHt7ezzkIQ/ZJEX9+Z//+WU9bhgG3vjGN25uP+Yxj7ni1/Z3f/d3fOqnfirve9/7Nj97wQtewLd927dd8dcqFAqFk6z6443/tShqZ2Jv80BBK8WstlijOGoDvU90RgwCqz6yO728DecrUYFxw+GK9x20Yt5AMx88rY8sOnmO1kdiyoQUOeqk8s9qLWKczDgDpE3a7ax21EbTxUhjJK1IKfg/f/56XvTcZ5JS4rOe8mV8zfO/nVlt2Z0cV1OnE0lMR52Xz7Jx7E4qzi37seI6cLgaJCU3RQYvppCdiSUkUDqhkmIY0kawM3GGLias0eSxOvzssoMsVW4pQTskppWkFBst5pQMLFpPSiLi6UcTR6XFPW6NZnfiCE7Sj0LK7C8HthvD/iqPznmFtYYYMnaqWPog/+sih30gZ3luZTSzWmakdd1FOx7W6NHFP4TEkDJOBWaNYdFFlkPEji7wTsGpaUXt5PoeuDuTtOMhEkaR1spLulRG4UMiO8OsktpDZzQhJrYaSTC+PdLmwGesQbmNg5KTosHeR7oTVZMKJYc+ITH4xGH0kuz1QVZNFgp3N2XWKBQKhcK9iWktwqimMlckTSiRGcb13nrtd8O8EzG9kiSoECIZTThR+dYGcCoxqWUWagfH7tQxhEg/BJTREBnPDUS0U1lJl3rT//4zfvB5zySGwPWf/QV81Te9iIiiH8VZVkvttE+JWe3Qw/Hc4kNm4hTOamaNI41JVt2QOOhkJsox4ZyhGxL1TNb+1Xj2IQ0YkZASIcmauvOSnrs+puiTmCoWXaSuLHlc0/dGkldDSMifIkOUdfX6s+1DJueE1opqTNWqrWZ3UuFHsdjtfSfr9NW7MnSgUCicz71WPri/v89rX/talFJ8+qd/Op/0SZ90p57nkz7pk3jSk55EzpnXvOY1m97wQqFQKNwxtmrL6VklIqYhshqkizqm48WmVbKRrJBu69Oz6nYXbdJFLdH/Ir7yzIfjGojKivBoVhl2pw5nRUgVUqYLif3FQBu8bNgmqK1UEGxVBmelTs4aETw5LYcD9eiCuN92zVXTmlNbFUYpInINe1OpcyBB7RRTa9iZWKaVoRrFSX58401lNvGp25Vjd9bwgFMNe1NHTpmVT/iUOTvvWHQBZxSnZ5artht2JpaJs5y76f38+PO+gtXRAfd/5KP4jK//fjCyIT6pFFu11AI2VqocfITGGKpx83vVR84telY+sGgD+8uBPiRJrTKw5aRC0CjNpDJMasdWY6jHqkAfxalQWRGRhfEQw47PnzepUMff21oItZ7R7sD5DyDJUQ+/ZsZu49BKavau22l44KkpD7lqxgNPTSVRqrJoBbuN4+HXzIooqlC4l1LW9leGz/zMz9z8+R3veAfvfOc7b/cxf/zHf0zXdZvbn/3Zn31Fr+l973sf119//XnVfs973vN40YtedEVfp1AoFC4kJal1AxEQgSRFXY7LGsRVPR3dvO1mAzxuhCa3x8QZFGwqMHI+fp7L4abDjhsPe3KGRRfZXw4cdaMRpVLUTnFqWrHdOBSKZZfoB6l4e++5lpvnPfNOBER7U8epqWOrMlijuHpWc93uhN1pxbve+pc8/5lPxQ8Dn/qkJ/P87/4h7rczYVZb6hOGltZLalGIiTDOEo3TLMfZbDmIo3o5BM4tO84uB/ootWw3H/XsL3s0kiQ1xIgf67pXPuCjCGt2Zw5FpveJZQgcdYFblj1DjBx1nhuPOm6e93KwExJDFFNMBoaY0Eqx6ANDWH/flmt2Gu63O+FBp6bcf2/C3qxiWlv2GsfOxJAToBVWSepv20USkuC0rvNoKqli32kss9qy01gqLe7tlDLD+NnEmGiHwLnlwOFq4Mxhx/7K0w3yeyPzssFoSQeujGZ74tiuHW50pyslCcZudOWfmtVs1SI6Ukqx3biLHpBcyIUGlUsJ8pZ92Iii5r1n0YdN9V7tNFuNZbt2TGpD7TQoNlWTa4FcO0QWF0n2LRTuKZRZo1AoFAr3NsTUIOcmO42TdRiw6ALvP7fiveeW3HDYcsNBxw2HLe89t+T951abNNiTaUKVlWQnOBZFLXpPipmdxtL7cS2PJERtN45T04rGalKW9fq5Zc+iD9y86DloB6zRLIZIO8haMkQxPmTECPL2t/z/+ZZ/+68Y+p6Pf8I/599+2w8wjEvY9VlCzpnVINcbUsJaMeDPKsOpmQiwdsazgS4mhpCJJGoja+YhZ2KMRBIxQEgwqS17UzGb+9EgMoS4Scu6+ahjf9lz2HqOlp4Qs1TsImcdIWbmrccaaQPRSCrtMCR8kCQohWJv6mgqi4+ZRRcJQVJiU86btfpR6zm3HM4TRV0s4Wl34jbfdeMMp2YVuxP5zp1Ro0lCUTsRf52aVRtRlMwmxaBQKFwu91ph1Otf/3r6vgfg0z7t0z6o57r++usB6Pue17/+9R/0tRUKhcJ9ER+TRK7GRO302L/MGPWZpYotipPXGb1RxN8ekqQkdQH9WJO37MIoAMpSpzdWMmil2J06prWhMQarNZ1PnF3IArTzEa0UISS2Jg6nzUZ5b41mZyKO51ljuWq74urthp2JLMBPbTkap7nxsOPcsqcbAj5lKqOZVJpJbXHakHPevE7tDE6L+CrmxN7MsVNJjV61ER1FDtvA/jKQYma7tmw1FVNnSUmxf8stvPJb/g3zszdz+oEP5198w0vATZhVlp1JxaSyaNSmt1prqaRofaQfxLVgDCitGYZIFwMpy0FGN0S6QRKYtBLBWj0e4BilqZ2IxNbf73qA6vx6ihn/cZFUqPV99ehmviPO+DXTyvLgq6b8g2u3uXa7ZlKZzcFSZUXEde12zT+4dpsHXzU9LzmqUCjcuyhr+yvD53/+5593+5WvfOXtPubC+3ze533eFbueG264geuvv/48gdY3fMM38L3f+71X7DUKhULhUrRe/L1DSBuhx7q24HKZVJKotE4EyhyLrG6PdQUGiEgKkHq+cPuPP1wN3Dzv6Hzk7HKgC4GYM1uN5brdCQ+7eosH7k3ZncrG+AP2ply1Zamd1GPHlDlY9aQsVRZ7k4qrthr2phVXb1XsTSXx9x1/8zae9dSn0K6WPP4J1/P9L30FV29PNtXfkxPVf30QB/i6ujzmzGqQGcEZxblFz5n5wLzzHLWeo9UgdRNJ6i1WQ+SGo45F78cxQkw0XZ/GVCWZkZrKMGssVmuM1qgsn70YcAKLQQwvh63HWS11gSGy6qQuox/d7bPKMnHHbvo4urWX/ZiylTOnJjWZTNsHWh8w4+zkjJHaDs1oQNFYpdmuHY0V1761Cq1EQFVZI1V9IXPYefaXA4shEnOWwyENjIcqIMlRldHEmFGANYpZZZk1lt2JY6txm7pyBWw1ht2JzKNweTXlFxpULvaYtQEGRBS1ThGYVIa9acVW7WT+MoqJNWzVcki2Fgz2Pm3EUcs+iDmoULgHUmaNQqFQKNwb2artcSqQM5Bh0XmW45p2fzlw01HL+86tuOGg4wOHHe/fX3G48uN5zJguNdY+rFN0pZFBRDjzzrO/9AwxsTUaI9bzRGUNs0rWpEZLO8VqCNx0KCKp2mmWvRgYYpKzF58y7/rbv+abnvGltKsl//gT/ynf8oM/iXWO1SDipPW6tB1kXktJrtUPEUXGR4hZ3vPezIn53Gog0/VijgAwQEbRD1FaP8bnWnRSebf+7M4tBs4ueo46L2Z6nwgp4aPMd0rBwcozhLEqezx/ar0YJiqrqSpNXWmmtZjV+5BQWUz9iH8ejTSq9CGx7ONmfrJasd0cC5gulvC0Dh1o7LG5Zqdx7E0rTs0q9qYVO40bU28vP3SgUCicz73235iTNQynTp36oJ5rb29v8+f3vve9H9RzFQqFwn2RRR9YnnCIhphPRO/LocDJGr0hJs4th9ut0QMR4VRGk2OiG6RHGSUbzMs+EKzeLAi7EFEoUpJ42O1GFverITB1UkGw6hN2rFeIWQRXM2dQWpFz5qj1srCcVjhreNDehPcfdsyqCkXAB0lbGkKGnKndGHe6CkBGjMWZKoPTIgDrfJTEqZhIWlFZ2aC/8UzHQTtw1EaGlNiuHAEReqlK0a2O+KlvezrnbngPO9c8gCc/76WY6RYxZqKRxbYxGp8DpEyVNEorVkPAGqmaMxlCRNwLfcBpjapg0Xsqo3FWE7Mc0lRTTWPFGVFZhR/kc3RG4WOmjwmjFCGNG+sXbLaf3HRfx+02dt1jfue12NZqrt1puPZOP0OhULinU9b2V4YnPvGJPPrRj+bNb34zAC996Uv5qq/6Kh72sIdd9P5/9md/xq/8yq9sbn/WZ30WH/7hH37R+7773e8+73me8IQn8Id/+IeXvJYzZ87waZ/2afzt3/7t5mdf93Vfxw/90A/dkbdUKBQKd5q1U3dd2VZbfYfF+uta736sCa+s/HlWX97jL6cCI43GiiEkMZOEyLvOLlm0kXaQzftpbblqVvOAvYZqs76WRKvOjxXmOeNswGkj4iHksGFvInXYV9WScLtOff27d72Lr/6yz+fo4IB/8vGfyA+/8udoJs1GPFZbszE5gKzx1wlJqxAhy8+OWs9hG1j0gX6sO+9jIgRY9YlV36E11OY4bYic8QkqrVAoYgalJRFpb1KTSaismVZSKxfGGnKl1MZVnrPMTTtTy+EqYJy4u0FEUSgR/viYWIwO8aPWozVsVZajPmCsZm9WkTMcLD0xQSBhUGgl89ZOI2lOMSUW42tbrVnGgEFja6iNIaRMbRUhRUBvkoynlRiCKitOb4DFENgaTR2V0xil6FcyMxqjMGNi1GysyPBJfm/uSE25VopIlu8wZql1dOcLAzdJaD5uRFHbjd38jgFjspd8P/Ler0zVZKFwd1JmjUKhUCjcW9mdODofOVh5ULAzrThqB25ZDHRj5ZrRYIxmqxZjQEiJGw46/HamsYZ2CBijNwaP9Ug0hMTZ5YBPib3GAWpjiFZj88e0MjTO0nlZiyoyB61n2XsUkJJiiJHGababCr9/A9/69C/i6GCfj/rof8L3/PirmG5tsRwCChEUtX1giJEhZJRSdF4M6FYprDFYq9iqHForjlpP6xOVUcy7QEbMInZQtGo0hZBxSkn7RZZUqdaLcF9qrxMhARmcEWFUzBGfxHifcpbXNzAf68krp2UNr8X8DyJ+iuN1DjGyv4pA5vSkIqTMxBqclnYPZ84/D1tzW+dhzmh2p5qUrJjeQyLlLJ+7kvV9baXS+uScVigULp97rTBqtVpt/vzBDiEnh6OTz1soFAqF2+ew9XTjorobIq2PG1HUeUSpRLBaieu2MlJvl/Ml4z7X9Rc5Z86tPLXTJCwpw7wbyElRGYXW4mJNOWO1RmtYtJ6YJYa1soZpbdidyKb37sSK+l6LcMeMC8nWR67eNmzXlt1pxbL3JCsJU50PaKVoB6lmkL5sjXWyQJajB4UfEplMsuIMHkIc+6sl5SgDzigWXeTssmfeDZv6u606EwLUtSYOHT//wq/hxnf9DbO9q3jy836M0JxivvRMK421GquhQXP/nYbVEMgJBh/plaJKCjNuYvchElMiJRhUpk6ZIWaMSuioaFMYO7hlQ98ZLaIqlYjjrrtSir6PVE5jjaR/KcBYEZUBmyGhHeLGDbEWrU3cHXPnFwqF+xZlbX9l0Frz4he/mCc/+ckALJdLPudzPoff/d3f5cEPfvB5933Tm97EF33RF5FS2jz2e77ne67Idezv7/PP//k/521ve9vmZ1/zNV/DS17ykivy/IVCoXA5rJ3I6+q7y0mrvRhrMdT6eS4nrWfNugJj2Qd2GscRUl2xGiLzzhNPzE3rdKtzy56jlacPiXkfqKymtprTW+48wQpI3cOW0Uyz1HffcNChFXgScax16GaRq7Yrthq7EYbddOMNfNHnfRY33XgjH/GRj+JH//OrmU5n1E5vxDPT+vzXylnW+6sh4kOCnHnnmQVhNER0g9TI9UEOLiqjMZrROS61H+uK7JgT3RCxTUXlJJkpRjg9FRf0vPcEL5v/1soBRz9EGA9ocs7U46HPvI00lWbj0x7r6JajGOpk7ZyCTbIvg2c1ePYm9ca5vhg8KYlYSWnNtFI4p9Ao2pg377X3IgDTWgRUMWeq8X61smityFlBzseVeNOKnUklBy8hsUDEUb1PbDeSBlBbI0KsURQ1HQ9N8hgydkdqymurRQxlDb2XlORZzpvfgTSmoAGbeV4Seo+/94sZXtYHOyLMy6yGSDuIMEqqJm05qCnc4yizRqFQKBTurRyOwv9TU8f+cuDGo55FLz+rnEaPFXM+RllfGxH2X7tTkzO8b3+FUgqnxWyQx/Vgzpll72mHSG00CUjjuq+26zYQWdMZnfFB0XpJZgoxshwytTHknFBK4VPmnX/3Xn7iG/8V587cxIMe/g/4jh97FbaZ0vnIxMn5zKKL9DFzuAr0IaKVpD7J+zH0MVJpResDyyECCaUMZ+c98z6CkrMdZzSaDBraPrGMEbUcQMk6dZ0ONbGG2ioO2kDjIluNI+XMvA2gNApJtk0R5q1nd1qTgqTC1rUYGKzWG4MDiAHnYCVm8hjl/GnWWJpKavCu2qrZm1akJAaY1RBxRs7E1oaY2xI46dGIcLlmnEKhcPnca4VRD3jAAzZ/ft3rXse3f/u33+nnet3rXnfR5y0UCoXCbbN23sJxPzXIRm1tRVW/dkH7KJuxIWXmfWBIiZ3G0Q5SO3cxpXzrJYp12Ues1ZggC8iDlcdoTciJ5ZBQOkqE6ZDGqNdEHyCMlXHT2jCrHc4q9iaO07P6PLes1P0xbt4rrFHceNTiQ8YahXOawy6jdB6r6TSLLtCvazQag0oiHjo9c2PFX+Ko9XQhUWnNpDEMIbPoBxTwd2dXtEOkj7KFXzuJr92eWLYc/Ofv/Abe+ea/YLK1w1O/6+Vw1YM5uxzQWqodJtagjWz4O61RSjr0zLhwTmR6L4v4WWU56jzTSioeameYWIUzeiNwAnnfMWXWX0VlFa3P+CjPE3PCB9htHIOPm2qQZqzbEzd93NQxXMptXigUChdS1vZXjs/5nM/hWc96Fi972csAeMtb3sJHfuRH8mVf9mV8zMd8DN573vCGN/Ca17wG7/3mcd/3fd/HR3/0R1+Ra/ixH/sx/vIv//K8n/3u7/4uj3zkIy/7OR70oAfdZiJVoVAo3B4XpuvcmWpnOBah3JG0npNs1VYSZn1kp3F0JnJ20TPvTiTupiyzUkycnfdSQR6l2q22mu3G4oNUV1ysPlorxXbjMKcV55aGWW05u+zH+jmp2VBZascPD87xRZ/32fzdu9/Fgx/6MH7iv7yW3b09aqc3hpVZbW8lJFNKHNLnlpKgu7/qGUJmNgqosoLGWYbgScCkUsycZeoMyyEQRnPJEMVIo5AEpZzAWkXjJG03JjkayeTNjIaCkDMpSlV4TDJvNkpz81FHBmLMVDZTW8MQ0viaIkzSKgMyn3Yx4axiu3Jj7Z7MfCFmFl1AKeiDIkXYnlqGmLFaDi+sEfFa55O8RytJUIPP7DQVIcg1GyMiLJ+SVOPVInayY3rwog/4kBiMpCMftH48dFGb+ryT8+qdqSmfODEiravIQ5Iqwdk47HVj1aQ/UTV5YaJU58WkZLWkEV94n0llNsaoISQqK0kEs1LpUbiHUWaNQqFQKNwbOXn2svKRxRAxWowGPkhtndJK6rTHZCFrFENM3DTv2WsS/ViRF3NGo5iOzRk+JFaDnAsoBSEmrNHMKkkGPckQpD55NUSs1tTWsOx62j7gk1Rr08159Xc+g3M3vper7v9gvvyFr+CGzmLbgHOS/NRHqbSeOs3No/GkcpYhJjF35CSCLZ8gg1GKIcAqDLRjW8lW7cbk2Yw2itbLewxdQmU1rlcV7TDW2fko9dwKaisJU7NGkrW2rOZwNQCKlCPLASobuWZWMakMKclr+JTwJxqjQ0xkBduVxRpNyJnKaE7PaqwRA/+yD4SYxCQxOTaoxDHhysfEsg9iNqjNnTbxFAqFO8a9dlL9p//0n27+/KY3vYmXvvSlfO3Xfu0dfp6XvvSl523an3zeQqFQKFya9eINzhdFTSuzqYU4SeMMsyybsauxz/oIz07jxkWgvtUC8NxykGqIsZJhvRF7aioVe2nsyo4xswpjotNYp6dNZsvYcRGNDA214aqtmphEQKQVGKPIGXqfMFqGiP2V3xxcnDnqOGq9VDtkxcRZQBbwSY3O7iEzrQyJzMpHnJZ6uhAkKSoraPuIT57aaEJKxJQwWmNzAK3H9+WY1Zqf+w/fyJv/5x/h6oanfcdPsPPAR3K4GmiMImlZbB92nlllyFnRhURWaUzIkkMXp404r3NiWhlQ1Vg1CBNrUEoxayy2z/iciDHRDpHtxsF46FFZIzV8KbEa3d/OiYCq94mtxm0273OW7vF5L3UKSoMZZAg4PauIy1yiXguFwiUpa/sry4/+6I8yn8/5uZ/7OUCSo17xildc9L5KKZ7//Ofz3Oc+94q9fozxVj975zvfeYeeI4Rw+3cqFAqF20CJuua8uuc7w/phdySt50J2Jw4FnF32nFsMo9s6s+j8KHpR1Fac1lorLIqjFgKRvWlFNRoR2kGSjbbqiyfuTiuLT4neR6bWEWLksPXklFn1kRvP9nzDVzyFv3nbW7nm2vvxil94Hfe///2ZjJVtIGKXi5pWhsjBaiCmjPeJw9aTYmbVDRhjaX0gpozTiqwtOiuZS6xmq3G4dSWhj6SUMUYTkohuthrLtDb4II7zDCjkYGMtGAKp6JtowxATtdMsOk/vM85AzOLePr1lSBlSlPlkuRzwcTS8WEWlNTs7tSSBjTOsURmnNatBDmt8zqiUCSHR1CIsikn6/jQiUNp2hqmz5JS5atcybRwqSVrXECJtH9meOHYah9YapxU+ps1n3flIP1aoL3vPzsTRrOv1rN7MTHe2plxrRW2lynHiDPM+yGGWkZ+vn7Mb/5t9MhUA5ABsXbXXVMdGmJP3+WCrJguFu4syaxQKhULh3saFZy/7y4F+FKDHlBiCrAfXLRXrRKN2kPpoHxIHnazXO5+Yjeu5jMwSXYyEnLFG40Oicmo0Apw/7CyHyNFSavvmnReTdRLxVUhSWz20C373B76WM+99B1unruFLvvMncdNTnJsPLPrA/bYbdqcOlTWrQUzj27UlK1j2HlBihAhigphVFg2s+kAbAm0r50PWium7MUYq8JJU4E2cGA9u6Xv2l/1orjBklQghY6ymUpp2EEHT6dSwN9FsTwy9l2TeM4tMjpneR5Y+osfPoQZyVnK+ZKSWz4fM1BmamSWEyFEfODVzPPi0pGM1zmC1fD9DkFrvlE5U4p2o2OtCpAvxNiv2CoXCleNeK0F86EMfyhOe8AQAcs485znP4bu/+7svewM9hMCLX/xinvOc54wx24onPOEJPPShD70Lr7pQKBQ+dFj1x/V56w3lnYllVttLOli1kjSjnYks8nqfjl0P/fmHqD7KohFg0Up93e6k4tS04tqdhgefnnLtTsPe1LHVOK6ZTbj/qYb77zVsTS3XzCY01jCpDZGMVYbdsaKgcWvxlqb3eXP9ISVyFmesVnBm3nFm2eNT4vSk5tSs4vTMcdV2zaS2kBRKZepKkpJ8SKgsm9fTymCU5tTEUVlxQjfOcHpaUVnNVu1GcZZUTOw0lllt+OWXvJC/+MPfwVjLl33rS7juHzyGeRvISM2RswarFDFnQsqbiguDpnJmdBxIutWkktqNISpyTuQkhwbOKhQQk7igp5UlAa0PGMVm4Q4iJtNK6viGkOhS4nDlxRkcM0pLLcbh2G1+sPKELJUNMWUaJyKs9fd5y6LncOXxMVEoFAprytr+ymKM4VWvehWvfvWrefSjH33J+z32sY/lf/yP/8GLX/ziu/HqCoVC4e5hPZOsBSZ3dv15Z9J6TuKjrJ87L/PCENNYq5BIWerwnJFEntpoZrVskjeVZnfiNolLi0H+myhVfJf+7+PMyTzW+UAbErUxOKuJceAF/+4recv/fSM7e6d4yc/+Ch/2YQ9ja5yRQJKiLlZzfth6hiDrf63gfQcrDpdSvbH0mS5Iii1AHyNdCPSjuSUlSdN1RjNx4tb2cW3WEGNNbWRm6GMaa8DzRoA2hMQQM/POM28D886z6AP7y4H9cfYwRotZQ8GyC9xw0HLYBg7aYWMOqZ3MopUzhJBRaCaVZrtxnJ5VXLVdURkRMKkM1mkyiggorWgqg0KRUuL0rOLarYbaaa7arvmwq2diEGoMldaQ5DGVkbRhq2FSWTIi3qqtJpNZDIGD1cBasrdO5F0n78IHV1O+nhWbylA7+X6O2iAO9rHGMV9QNZmyJJPNO0mVrJ3eXNe0uvXrrqv17kzVZKFwd1FmjUKhUCjc2zh59rLswmhotiKaD7LemlRGzkZqS22llnlvWnG/3YadicOM6+shRM4tB3neIRJiYvCSzqQ1RDIxH6/r1iz7wC2LjsPOM+8C81Wg7SOJDCRqo8mh57//6Ddx8zvfymR7jy98wU+we82DyKjxWhMfOGy54bBFKTg9c4h7JTPvB5a9zA1GKamebpzUWIco63AUVaWoncaqzLIPnFt5FJlJZajVsRF/6QNHncfnzNlVzy2LnjOLgXPzgcNeUm9XXSLmyBDhqI3EBBNnacx6Tklj/V1giJnOB5SSdN9550cRmaapLLXRGK25alqxN63ZX/UiFAtSG76/HDhsJVDARznL8VHOog5bEbt1oxFh2cu1FwqFuxaV8713Yn3LW97Cx37sx+K9J+eMUooP+7AP46lPfSqf8RmfwaMf/Wi2trY2918sFrz5zW/m937v9/jZn/1Z3v3ud7N++3Vd8xd/8Rd85Ed+5N/X2yncCd7ylrecd9jz5je/mUc96lF/j1dUKNw3SClzy6InA/vLQQQ6lblDkfnLtWNVK07NKhRw9Va9OXA4XHnef9DS+sAN+y0hZ+6/M2HWWEKU+oIhSvLSEBMhyMFCJnPUBo7agS4ktmvHygeGkDg9rbhqu0Yrxe7keMPfanElx5Q3EbUpZ/aXA0NMnJqIGEuPSUq3LAY6H1iObudZbZhYx5AiOSFJSzniQ6YPMmxopdiZVMScOFp5zix6zhz2ZCWf3d6k5k9e/WP8P69+BUopvvAbv59HfOITWfXiNu6jRNUaI44CPz7nrDbiAgf2JtVG5NVUGms0bR+pnCL6zDIEOZCoDEYrDJqrdioqpVmFCBl2p3IwYJQkai2HSB8SbR+YD9LxrY1iu7Zcs9OwVVlaH6mMiLCaymCUogsRN8bvXuiEWFOcEIVC4SRlbX/X8eY3v5k3velNfOADH8AYwwMe8AA+/uM/noc//OF/35d2j6bMGoXCPY+UMq2X9em6LkIpEStdmE667AOLXuaAw9aPG/HVHRI2pSzVcTlL6pMYHOxlzz2LPmyc3iEmbj7q6WLkaCXCE5/SZo5qrBHRT+fJCgYvKUfTytAOspluLVJ/gWJn4kRUdKK2ejXIockQEmcXPYftIK5rq3jZd3wdf/o/fofJdMpP/vyv8U8+/hMA+fz2phXXbtcXrXBYv4dF53nT+w64+ajn7Tcv5EAkJ3LWOAt2nCmGcU6TNCipu1gnRCklQp/BB2ZNRYyZq2YVe1tOZpyUWHaBzmcap5jWUsU3rQ0hQT9EnNPccjQQssw9Q4hMrGXIEYNmqzGgFF0fWfYy180qMcxUVuag5TBWs6fEzNlNCu4t834UBYmre6txaA2NtTSVphlr+kJOkiCV4drtCTsTK9UgUWoAb5r3LPrAbPx+Kmu4drui9YlMpjIidvNjZcmpqWNv4tiZVOfN1X2IHLXy+7O9NvlYw+704olht/c7eDLp+WDlsVrRDiKS2m4sIO7/zXrK6U062aXm/fU1rud6rRTXbJfIqMI9jzJrFO5JlDmjUCjcFheevRysPFqD0YpFt14bulsJmU6yngvWIvxlF7h6u97U5d1w2HLUeVJKLAbZx792PDeBtSiq3zR/HKwk/clZqePLGXIK/OoPPJf3/N8/pprM+MoX/xQP/4f/CKMVq7H2zxlDjJlmNCTElOiDpGH5kCSdCbhup5H68dF43vqI0ooQpLa5HU3pnU8YpUYDgIKxWcP7SFbQ9fJaQ0hscmjHWclaxVbluGa72qy991cDRyvPpJHqvD5kQopU2jBtDGQxLzijMFpjlMI5xdZYPd64tQklkzI8YLch5LxJepUKP2lK0UrEYj7KZ7BWZ1xYaV7OSwqFu4579b9dj3rUo/jFX/xFvuRLvgTvRUn57ne/mxe+8IW88IUvBGRQmUwmtG1L3/ebx64HIICqqviFX/iFMswUCoXCZdL6KBVyQTa8lTrf1Xo5TCojqUNJnAOV1bRjHKwsQiNKiStCKakNsHZcxBrNltGkLAr7ISZylcelLly11bDoPDfPexRymHBm2W/cq0ZL5L/Sx3UEh60n5sy89YQEB22PD0k6p2upY5jVRurjjGY1BG6ad6yGseZPw6mmYtkFYk4sOo9Bs+wjk0ozcxajYd4G9pficPY5U2k5yHn9r/4Uf/RqqTn6/K/9Tj7isZ9O20daH2l9YDUkjInURsPotsiAD5GQQStZaDunmFpLbRVtEOFY24Nfu9JR7FlLZcA5qTyMQGMUQ4JF5zdVg43T5Czfs8+ZxolDeVZbdqeOvcbRDlKZcGpSkch0g3ynk/EQYO1EZnRDWK2YOENTGZZ9IOV8UVd6oVC471HW9ncdj370o28zOapQKBTu6fiYWPWRPsRNus6GzJiamsaKbhHSTJysNysrVWghiZv4jpg5Ppi0nsPWb9JxuyFy8zg79CHR+oA1it1JvTnQUEhVWeMsh61n2YexhkFhNHQhEb1UyzmjN+m67SB1dTFJddz682q9OKCnleGnvu9b+NP/8Ts4V/Hil72Khz/qY1j2gZ3GsjeKWVofbyWMOlnh8b79lYjSYmRSKdo+E5GZap04q9bVheO80pGICQxSdTdrLM4onHaknKkqMV0owBqFj2LM6HwEZbEmU9nMaoi042c3LET45ZwhRhEonVv1kopUKREnaVj5IAcrChYelj5itGZWa1Z9oraJq7cbfEhoqza/V84YdhqpATy9VUlKlpYK9ZQz1sBe3RBypDJS1V4ZTcqW/dXAvBMzynYjLnJtFFrLPDaEJDXlSEKxQjFxcjiVMjROyzx8ooIe5LBkneq1ToG6XLZqK4dMY1V8Z+JYkSfO99UQ8CmDkt8/kN/3ZpznQH7nL/XvzZWomiwU7g7KrFEoFAqFewsnz16GKOvH3doxb+W/X5PK3KYoCqS5YtWLED+kzMpHPnDYsl1bOh8IMZJzJiuFQaqrh5BonJH6vDYw+EzXR47GxFatoDFGUlVz5Hd+7Nt5z//9Y4yr+YLnvYSPfMzHsDtx7EwcZxcDZ5cDzih2GkvMiXYIpKzQZGJMhAi1UlSV4bDzDD7RVEZSXLPCac1hiGIQURrGuUErxbwLKMbmD61EjBUiPmcImdoZGqvZbawIscaErBADvbccMND5hLUarUU45sb669WQaZOnC4GJs1Rao5ymMopqbMfofKIyWowBwA2HHduNk6SrKMKoabVuLVG3+m5mJ9b7vU8c4dlp3DjP6osaVgqFwgfP/8fen8dbltb1vfj7mdaw9z7nVFUPoA0qg4naQYgBB3IxGEEThxBvJJpoHCKo8RpMa+tl+F1+EXAizuCQG73iENQg0SviEMT8hCCXRMkPtBEiQ0Dphu6urnPOHtbwTPeP77N3VfVY1V1NV3evD/Srzjq119rPXnufOt/v8/0MD2piFMCXfdmX8Z/+03/iG77hG3jf+963a1K2Co6+7+n7/rxztpa3OWce//jH87M/+7M87WlP+5ivfcKECRMerBhKnEQfykat1RcdKaGVkJOGkOiDkGuGkJjXZ4v/mMRiVBlRgPuYdpuz22u0laHljpvDe404Fd26GiTSzRpMaRgap5k3ZyP/jjZjiXob6UKkHyI+JpzVzJy4M9267Om85agLpJSKw1XF4dpzuPF4n1hqTcyZMxsPJOa1RWVFCJloE92YufmoYzMUhTGJEBT//U3/kTf90o8B8IyvvY4nf+GXc9wNYlM7jHRDRqmM6I8zNgoZbQhiH2t1Zl45YspopVi0hrayuGKNu+7j2XuuFYvacKJ1Qk4b5V7XruK482yGhE+BxomyYr9xzAsxzMfIqVnNVfs1J1pHRrK1F7VjNUjz4krDsVVN3F4JEVJmOQTGJNfuxihrnpQQEyZMYKrtJ0yYMGHCHXGu4w3IgKAP4ty6c4w6x520D5E+CAGqtoY+RFpnWG4da406r6e4KwzhLDGlsZrNEFBKcdtmvFunqu2at6So414i5zqfCmkkM68tc2epK72LWwhJCECbEBhC4rgLhCQRdLUTUUg3JLohFncfoBBaNl7IRI0zMkTxiW6MKJV5zU99P3/wm7+C1ppX/Myr+Py/9wU7hXLMsta7qsu3ER6nVyPHnZDOQsy0lcPHkRgyldW01qG09Eiph1GJQrvrI15laicEKhcNVy8q6fdyprHSsxkjfcl6iIQkUXPkTDcGUJmcFDEnNND5hNWacZTBx+gj88px0DoO1yNKK6yCECXWe1EbYpKIv5TEFVgpxRDEufdgVuGMEtJc41A5c9j53XuwX/pKqzWzSvoiAIM45fqQ8CHjkzj6OqPolKj455WhdRatISV2hKuxiIvGIM7HY5De0RnNceeLa5M8z+0V5PdmSHLQSoz7lmzXOBGwrAbPGA25uEjVTlyx7DnPcU/O0Pc1anLChI8lpl5jwoQJEyY8GHDu7GXwCWeUxFMnIeo29yDUCEUksRnTbr5itDiqmtI7bbxce4gSiSf1cdoRqXyWaDpJkxBS/7wWF9Wc4Lf/3ffz3rf+HsoYvvB538+jrv0MQpSouPUQqa1mUYkjboiZ/ZkTEUOGlA1DzPgYqJ2hj4nNEJjXjrokZYw+oSv5/ZuByirimNHIOlPKpJQIGWzpiTSK1ilA+gGnNWQhM2UUWgsBDCU9xbIfOJhZQpldNJW4syqtGH0Ucb2T/jKpTJ8VOQeaWmL/UobNEIgx44yIaEaf0Fqx39q77TklCcRijeK4Cww+0ZtYCG2Rg9lEjJow4f7AQ2IK+bmf+7n82Z/9GT/90z/Nz/zMz3DDDTfc7eNzzlx77bU897nP5Zu+6Zuo68niecKECRMuBlvnpVR2he8tg31LhtpeZ3vdbfG//f5+5YhFdZyqfEGbrVop9puKUDa/T84cClFYp5RZ9r4Up5nNGEApblsHlv3IEERt7WPGKIVC7YYPQ4iiuB0TqLJWBashUtlcCEWRnDLHfUeKUFUGrSU64ba15HBvRiFfffQdb+LNP/f9ADzlWV/H5zzr60kpMQQIKeEjJUYPTNb4Ek9RWcXoEwEhfUUyIWb2Go2EawgBbFZZGQABpkQhNJWhcpqTs4qPP2Hphsjh4NmrbYnQyzgn6owTs4o+BPZqxcGs5eq9Bh9FEeFzZq9ybMaAUYoTs4pFYyclxIQJE+4Tptp+woQJEyZscXvXpa3j7B1wF+6k1khN2lSGMSWpQbvArMp3WrMC57n1hEJQWeZMHyIzZ3akHlWip6tCjGqd3bn53D66bPCJxolzlZCqFIvWFmKVIVXi6LPsPZteVNnOwnHniWT2SpxZQiL1Upelp/ABZzW+EJRuXY1oIGa53n957c/wul8SV9oX/8CP8bnP/OIdkcUXMta2B7t9Xb518fUxcWYtUR5KgVEaSFwxr+mLg5fRgNK0lSKlLZFAFNy9j0QlZLAUE6qQh2pjQSliyKQQOe7FjaqxEm2ntMTztdbgQ6bR4jZVO0NKifUI685DlliMTZ843ASaSqLDK6dRyPAFhai/fSCmTGUUrjIc9wFjtESJG82i0sQESknfFHNiXllOzivmtWUYI4edRJnEmNl46QW3fYxVir3GFQJZYtE4ZpXlxMyVHiiy1zrGmDjuPT7KEMdoEZMs+7MEQKtFBLQdfLWVuU9ikkVtqa3eOa/Ni+NzbQzHvURNzir5TKriHjWrzidJ3dnPyhhLlHsZ/NT34F4wYcIDjanXmDBhwoQJlzvOnb2MUfqIrUC9ugeB+jZCD8BZhVZCzKdEkmeQ9AnAWc1RF6DKaAURzfEoTkzLzksvkCIUUtSsMijg9//9j/Gnb3wtKMXf/99exqd95t8hJnGgTcBVRtONQcj+iPvtMEaOfcJYRYgZUkJpMFrTak3K8nXKGYPGWYNVhtZlFAGrNMsYSABZ6ufOC+lrjJmq0qAUJ1rLGLPMlbQ4C6sshChjxIXKKUUgs4mRdS/OsbXVzGpH6xR2VKwzKJVxypB0QmVFVkLQWtROYvW0ksj2DNoozmwCJ2c1i+buSVHnoraGWXXWIbdxhiFEUrLnCW8mTJhwafCQIEaBWN1+27d9G9/2bd/GBz7wAf7rf/2vvPvd7+bMmTOs12vm8zknT57kr//1v85nfdZn8ZjHPOaBXvKECRMmPGixVa9u/7y3qtDtabe/3rb43zLt29rsItp6H5lVF/bra1v8i4rZcGJeMSvM/4Soo482oygohsjp5UggkWIiAY0VxYABjotS3VpFzkoytbVi3liO+8Dp9UAuqo2ND8ScIctmNjmzGRM5J+a1YSjRGR/607fxln/3YnJOXPt5X8Zn/+N/yXoIDFExBsnXDlFIWjkropL4hz4k+iBKBqs0ldWkmBljROHQVmGKen1lZPPfJzjRWqyVTfFHnZgzqw0+JBatxAUu+4A2Hg0siqNW6wxKwamZ4WDmaJxhv25oa1MIYnEX2TEpISZMmHCpMNX2EyZMmDDh9q5LQ3G1UYodeeee3ElDPEui2m8cx8h1NoVkVRmppZViFyG9devZjAEfIlpr/CB193EK5HOcqpRWNMawcZHKBGaDASUb730RAwDUTqGVYTVI/MU2+qIbY3m+vIvLWA1eyCsx0A1J4rDnMowgQ0qJqBVOaXovLkujTyUKTqFUxmh422//B3793/0QAF/1bS/i8/7BP+bWZb8jdDmrySrzkcMRFJyaOWa1ZT0ETswqQompW3aBkDIhCgmothpjLDFn6spgFHSjqMu1VtS1iDaUFmHKR497YkJU10qx7EcOaktSGR+iuOnKiIO9ugLkXjiruXJeCfErZjQSZ1fnRD8UJ+EEQ0ocrT2JjLMigll10rfNKomly1lEL2MRvyiVWRiz+7uj3ktMhjFUhVg1+ogPGVMU+rXRLPYss9rSh8h6CGSfd+9nY6U/Wo8BoxWP2GvZn8nr2X5e1xp6n5gbiUjcb/Ku59JaCGPnup9tMa/tJXHYdUZzMNOkZGmdwR91GG2EvJYzMWb25pbG3Tlp8Pa4L1GTEyY8kJh6jQkTJkyYcDnj3FlJTInBw3E/4kNmlhKhiA2q4iy7rduWJdEBpK9Y9p7NVtShQRuptDdDhJyxWmMN+JBxKrMa5DmO+5GjTkj8mUzKUBsIKfOW//h/8bbf+DkA/u4/fyFP/Dt/j95nDlqpH71P3LIcilNVYvCRVZ/ZbypxYNKa0Udihv1G4qSHIRBjQltNiJnKGA6cRRmFGi2dDxwPkjgyhsQ6SeJHKlHiCai0OEXFBDGWaGhr6EKUGtUa5pXMhDSa1mi6MXHUBVqnaJxGpczMORSBkES0nlXGaRGP6zL3OV6P9M6SUqaxkiBismYMmeXgOZi5i3q/28rsBEBjSFRW0/mLi4CfMGHCheEh+VP1mMc8ZmpYJkyYMOF+hJJEtx2xaUtkulhsT9te5w5EKTIxZ1a9kHtWQ+C48+w1VqxVzyn8UxaV+LmDhc0QuHU10FrD/sySkUiD/RKzkMv/xpDYjKL8rVAo40QRYDROazLgUyIAhyuJiGgqzXE3cno1kBVYDbd2HpUVPicp4rUSNXJji+pa0diEM46/fM87eeu/fREpBj75s5/J3/n65zPGSEiKHGDVjbsBhKLYwSqFVYqoROGhUBgj3x+TZG33MTKOBlMrfJR1O6upleLKvYbGqF3MoNGKtnX4KIMMsGUMUYY1OWON4sCJy9SpeUXjDKdmFUcl07wrw6pZZSYlxIQJE+4XTLX9hAkTJjz84GO6g+sSSM15T+6kqz5wuB457jyzypIzOCOpc5XRuMrQFxLVENLOrfZcdD7uNuzHMQAZrzNDf9btFiSGoraRxmqa4iY1hMjJWbUjZc0qwxCUbNqXAQFBhhX5nD5qCJGND/iQWfWe9SBuRj5IBF9f3JvWfSTnQGUtKOkXxpAJMeKsxLv90Rt+k9/7ye8G4O/+k2/myV/81bzrw8c0lWHLt4k5U2mNc/KN0UeuPmjIGVonrlVjSNxyPIASUpJRirYxkIXklTJU1jCvHUMIHHeRmMQ5acxCXjrROsZQhjFacdh5nNEUsyVQQlaaV4b91uJTIidkoKAUx5sg/ZYS0tCitjQWIVgtHMcbcdkaYpK4DGSI4ZKmtgmLIhdX3MZpMgmjFUOQeIzBJxSK+dwwc5bKgosKjUKruCMt7bVWhkdaYUZFbQzLwe+IemNMDCHijOZEazmYiavMyVm1c106NRfC2WoI3Lwc0Cqz3zic1cwrw+yc4Yei9E21ueTOuvJ6HCmzc0Jblp83o9UFkaLOjZpst+5T1kz93IQHHaZeY8KECRMmXG5QCkIRTBx1XmKQg8xJhPyTgVwi84QglbI4ywKsxoAPInJQSgTQOUucntOKISaOOy81fs7c1nmOO8hZoXVm2Ue6MTCEjN+6rWrNO97wGt7yy68A4G//k+fxGV/wj+hD+XujWPUSR62BprL0oxCMNLDRQmzaqy17teZMF8vsR1EZI8WvAu9l3dZaKjRaUeL1AqBEEDMmeh9xxmC09CjWaNrKElJCxcyYEpshklWmstJD7rUV/RDwOaHZzjEylXVorQhRYsxnVU1MA4PPgMbHyJmVx1oR0iun0Ebei85L32SNZq92ZQYEqz6waC6MgqELyW0okfHblJX5ZFI5YcIlx0OSGDVhwoQJE+5faKWIZNn0jCWD+V4oQ7cxDtvN0+0GbEyJZR847Lwot5NEtxmj8CFx20ZUC1pLlEPKYsuqAVvUuGNILDtfVANSxDolpKAYEz5l5s5yi+9LoyCqh6qojEPItFbTVOKYpJUU8+LelNn0Er/XxwAZYsq0zhAjmAxBQ20khzqmRMqJWWM57j03fuA9/M4P/SvC2POJT3wqz3re9zCiGcdI0tL4DEEGNQlRETujyRmyhlppfNC7qJAYIm2tCTnRDZmbQmS/dkQyscTeHcwsbaU52VacmtcYpejGSK9k8752hpAk4kKjcFZhtOagFQLafiNKh3ltCemsoj2UBmu7GX6hmJQQEyZMmDBhwoQJE+4Km+FsfN6WFHVP7qSxKIZjyjvCBlDO0TijWI+iGK6spraakIWstHWA0ro4Dg2JmGWoEKPU4zH7EoWXSwQdhJi4LcqQYVFb5o1EU4++F7JLLTHTW+erzRBZjYG9xmE1O3LWZgicWY/4KPV1JOGTKMHXQ+Qvb9vgtEYXQg9Z0VTiorTXVhgtMXJHq5G/+JM/5Pd/+sWQM5/+zH/M3/jib+C2pQflqaxCaU3OmZkzOKfJZAafOdHY4rRld46wQ4xsCtkrpYw1mkVlWA0RW+IjcoIuRkKC2olq/WBmxf2qD1ROc3o1Fkdb8FnhE1RK4vLa1mGMwWTFcghYpTi5qIp4ItHWJc4tZUJxB4tJnHVThsZZFm0irBMhJWpnylBI7m00ohh3WuLxKpPY+EDnI4vash7jjkBnDFy116C14ubjAWeqMiTJOGPIOeOM2IspBTnJPQohs2gt+40rkXfSO91ZFJ010q8etI4YM7PakLPE2G1JSXWJZ7y/SUaz2tCHeK+jJkHe8+1ewDZKcsKECRMmTJgwYcK9RzdGcWxKGTL0Y2AzRtajRG9bLU6dtdNURoOCISRmlbi6+jJzUVocQ61S+JTpx0Qzc8y0JqRMNwROr0fWgxCpdHG+7cZIX4hVPiSMNvyPt/4O//lVPwDA3/zSr+fT//5Xsx4jkMnOsB4kVWIMEVCEFPBRvqeVps1y/VAiySWKTno0rxK1FjFFUNJzxFxi8JQIMfx6lDUVtb41poj3JeLOGUNtNToqosnEIER+rRWLSlMZI3MSpzFJE7PMs8aYqJ3U50ZrQkyELIKM/bYqYnyNtUW4UEmU3qqPWAObIZOR9A/vDD5EaidzDlUiCC8EWzLUVoRzb40IJkyYcPeYpo8TJkyYMOGiUVstZChrGLyorOc5X1SkXsqSkQ3Q2K3CVEu8XbFqVUWZPHrZpA0pcdh5Bh+xWmIzQpTIvMYajFasx0CIGVNiNYxVNNaRc6Z2FqXUbmP/9HpgOQSJXTCqWKxKETpGcaiqKs1+JefFlFkoxenVyBASSsvzZGDjJcKitjKwWFhRIcgaEynDeghsbv0wr3nZ/0a/XvKov/4kvuz6H8TWjugzrYOjbsRoGRIYJYqHbBRWadAZtMaQWdQWpRW1M8XByoi6PIiyXCVFXWs0ir2Z41Rb09SaK/Yqrt5rGELcxROOQVQWx53fuWrlDDNn2GvsbqNbNvktt61HgF22eX0P2eZ3hkkJMWHChAkTJkyYMOHOkFIW8g8X7k66HsKOqOGsuL6e6Uc2Y2C/cSituGJRMa9EDCDuPnLd/XOiDnxM3HjYMQZRGccoJBByJimFJhdC0DY+besUJOKNjyx7TswclZH47UceNGilONx4lr3nzGZEIXW+UpqQJNZvCOJ4NAZxvNr0qZCxEmTFmeOBWW1IMbP2Eac1+60lUeL/UmTVRz5wwx/zn3/iBeQY+aTP/AKe8I/+JWufSWqgsprVCJU2aJU5vRpQSI8UI9y67DnqA48+2ZKzqLxXfZC1hYRWmc2QqKyhG2W9/RhQSrPfGJxRjDEz+kQqJlyNtRgghsSQJYZCp0zrlLhMjYm9Qk4aUsQqg3OGECOHPpGKg62IOgJNJWQpiQRh958xipPzii4EDApdWXxIjD6LiEZrkpbhDgoqY3BaYZTGGDl/iAkQtblW0mdlMovaiWpdK0ICawyVS4whsWgspTWiMpr91u0+p60zdzoI2TotaaU4WEhUeWPNRUduXAo4I+S99RAuOmoSuIOA5lI7W02YMGHChAkTJjzccNR5ibAGyHK8GgKZ4oqqNG3ZPx9iwihFSCJgX/YBrWHmLFpLH5MyuNpCkr39nIXMfmYzsuwDRkn/ddx7fM6kMhfRSqEQIceH/+RN/Nd/992QM5/2+V/OZ3zZN7LxEWc1RiliTKV2T2il8STwCWOE9G+NEIc2o4gTZpXhaOMhV8wbS+MsToPWiZg0qYhX1l5e9zBGfMoy60FTG4k5D0D0EYPMUmLpI43VuJQJhfx0YlbRVEJ+qqw42A59wlrFQWOptKbShgwsxyD9hVYidgcWtaGphEymlTjLtkXEIUJzQwhSBys0mzGwqB2bMVJbfQehxJ3hDkkqEy9qwoT7BQ9ZYlTXddx0002cOXOGzWZD0zQ85SlPeaCXNWHChAkPCbTOsB4CldVlg1gK7Ytx++lG2cy2WslmK+BDYigOR6thpC8qCKXAx8x6CDJI0IrT64HOSxEMMsRwVjGvRWkbgTFm5sowRimKG9ew7D03HvbUVhQVM2dJKnMUPUYLwcmHXBygpAFYj5GYxSlKFBMSY2FRtJVl0wcUCkoBnlTGRkPjNIOPBDIhJM7c+hFe9X88l/XhrTzyk/4aX/OvXwnVDB/FYlbiJTRWayqdwWS0EaWwApyRwnszinVsbSTf2ipIKhOjIuckqmYSp6qKmOT9amrNJ14x52RbAaKcr63Bh0QfI5s+YJTCGMWsls357SAHZKN7Ud7frWJhq2C4txvgkxJiwoQJF4qptp8wYcKEhw86Hy/KnfTcqL3BR3ofGWMiBPGN7UPCaolkayuD1YqZk7gGidSWjWulYNlJXLXTcPOxZ+OjuNIaRW0VWsmG+MYn0hALgUu8a2PK3LoaufW4pzKGeWPZbyyL2tGVIUDKcNx5DjvPXu0QGYjCaYMikDJoo8S1FlFor0s827KLLIcg98Nl9CAqkmUXJPLug+/mD1/xXUQ/8nF/46n8zX/2ApLRWCWOWDFmYoYQAlllQpLojCGMNNbgtGbVe457h1KaRRJi0aoPHA2emTU4K1F0TiuWXWLdJyqXONoklNIoLXHklTsrmvBR+q0zq0F6rMrglEZl2G8MkUxbWzTi0LUcAkOQnrCtDEZp+hDpQmKImX6MEoFuNcooUkpUxpB1RimLDxlnEyhxMqqdRmZL4nprFWQF88rQNpbNGPEhUc/EpXeMQkpb1BanRV2/31hmtbhg9SGilESzV7U9z/04loHNorZ36I0vV6elRS0OYb2P7DeO3kjc+d1FTVqtaCtzBwHNhAkPVky9xoQJEyZMuBywGgK9jzTOcPOy56jzDCESkgjUtRJHo5SEsB9igpK2UVtDSpnOR/Zaqeu2CeC9lxnLorYYBTcedmilODWv+aszm51wOhShuipi89FnPvznf8L//2dfTE6RRz3lC3jC//ovWQ2BmKFJBqU1vZceQBuJo9uMgS1NyMdMU2kOGse8scSoOOqC9FmdB6VoXObkrCZ0QaKuh0RWiXGU3myI0pPNKlPqVtAKHBCKUKLvA8lp1kPAOYNSikpLj5NzxmlJyIhRROw5i9hbaS2R4VoIXJs+gpLjxmm00hzMLZURF+AhJLoQ0Shx71KK2lQ0trjUOs3gE85EamvYjJH99p5nJ9uxyJYgdZEa9AkTJlwgHlJd6/vf/35++qd/mje84Q3ccMMNxHjWOv3xj38873nPe857/DAM/PiP/7hkqxrDt3/7t6Omf20mTJgw4R6htaK2YrvfOsOyKLRlYHDPm7pblSycHXKEmMnIpquPiXUfztq3hkhtDPW8Ytl7ln0kJXFTWvYeyFTGMI4ZqyMn5xWV1tQ5Sza2EleqM93AGBIKxenVwGaUTffaiQOW1orlRl6HREokuiHS1obD9UhMQgZyWpGUoh8TPiQ2vQxgQspgFIvKEhP4lECLGnp9dMgv/utv5vDmD3PFx30CX/l//BRNe8CmKLBBIgQ1MqBYVJa1AqcVKCWPSZmNjyij2K8Ms8oWJbK4Ri2HiNWZIWQhg42JttEcNJaPP9FyalZx0Dqc1XRjZAypDDdgNIm9VrNobCFN6RJ3YZjV5jzy0+2VCxfrFrXFpISYMGHC3WGq7SdMmDDh8sR2w30I4uizi6G7RBFg3RjZDIHbNiPdGKmsQSuPVuLK05xz/fUQdqSo5eAZy9dGK+aNxKNVRjErpA2lRPUcRok4ODET0UBbGWZOav5M5sajjvUYSTlTOUPK4uw6jpkxR2I8G71X7gohJJbDQErgdKSPkffclIk5c9R5+jHTjZ7eB6wxxCzEr9YZ1n0gIfXwXmM5NbfctvKcCeIwJartjEZcjULKrHpPjBljNGdu+p+8+RXfQejXnHzsp/OEf/b/xVnHQeU4mDkyIvYQRXnCKnGt0qrEcXtxYQI43HjmlUUry3IYONx4ep+ILnO1qznuPGMIbEIgpMjRMuEM7LdOojxSxtWKxokiPfhEDOCcoUYxqx1XzCsWjeWKmeOW9UiI0nfZItSoraEpJDbI1FZixbdOYiKcSdgSN06W+AxnNJ2OKKU52niJEclCvHLKUDlx++29RJe3CWqjqZzexSQebjwnZxVWK07MK2JMtJXFR4n/rqz0Ra2TQcde61gOHh8yqZDNtkSjB4vT0kHrxH15COJg5cyOBHb7qMnGmt09gPMFNBMmPJgw9RoTJkyYMOFygo+J9RAAEQusyrzhykXNR48HiZnLEaWEbFQ7gzWKdV9i9gYRhzRWs+oC3Sgus5XVDGRUVigUIctzVUZz3I2MRUzSVhaF1LGdhxjg8IN/zjt+7kWk4HnEE/42n/5PvoulTwxeBCchQlVlKqNQMaKSRiEkK3IWklDIIiZfD2yGyKw2hAzr3gMwbyydTxx3hpxlbpPIjGMuAnKJ32trS07ST40xE0tP43OmUYqshJQVyZiYMMagMqAhFCcrrRRLH8TdVon4RTye5N4YLfMcZ2RWlFJmr1WorPAhoaAICOT+ZeQ6s9oUQpqjLnVyPwoxaozSM9/T/GQs86FzRRcTJky49HhIdK6r1YrrrruOn/u5nyOXXYZ8u+nq7Y8B6rrmt3/7t3nTm94EwKd/+qfzzGc+8/5f8IQJEyY8BDCrhRjVVIYxSdTdcReYVaICvrPi7a5UsiFKAW5QHPdS3DqrMaUQDJu8cxOyWmOUlqJ5iMwbUQDMnKF1hlg2xldjoHWWa0428hwpkwOs+kAfEqNP+JRYlLXuN45lD2srG/K1tQwhcdR7DrsRVaL5+hJ7gMqElEgofJJYhlhiNHLO7DeOECQz+7ajI/79S76JW//yfSxOXsXXfPe/Ze/UVWQlzk2rztPHhI9SYOeccZWlRrNXOw47jyoKZ2NEydzUjtpCbRROKXxRgZMV5KIWyZFHLVraynJyVsl5ZZDkWlGYHG5Gei9qjMpqZpVFK7hqr2a/cXc61JL87rPEpnvr9DQpISZMmHBnmGr7CRMmTLg84WNiU1yS7vCvcIZI3m3o3xm5/kKvf+tqELcaH4kpY4orawR8lF6ishqj4PR6xMckLkNeaulZLe41W+KK1Zq6xG6fmLldPzL4xDGe/caxHgJjiJxeDxx3gcON58za4wxsjJEIajKpNBvWGqyGFDJZwzhEOp8YQ2Y9ymb7FVTklOFmOGgr+hDoY2LwQnDqxkjtDMs+sOw9zmpqo1FiZgVZSEJ5hJS2zj2K1gpxZUiJRKI781He8srvYFwdsnfNJ/NpX/MSktaFyAIJcX2KKYPR9F7ccIUAo2kxLMcgcRV9oDKem414WWUyjdPcth7Z+ERtFEopujFTGU2vAikl1jHjU+ZEazloK3zp7zSKISW0VdTIC2udRAjOKxmKnGgdMcq9a6w4bVVGehWNorLiTlRZjVaOZR9Yj4HjbmSvdoSYWI+Rk7MKpSR2T2vFiVmFVuBTlh5LweAzY4xorZg1Buc0Oko8oo8JHzN+DJycVTsBz7wWctntCYF7jQMlrseP3G8ASvz7g9NpaVFbaqt3P+PnksBuDwX36md8woTLAVOvMWHChAkTLkdsBpmX9GPkzHpEKZhXFp8SWkOMqYgiZA+9LrOTGBMhaW5eDnRjxDuDswbInJpV1JUhhczBzLGoLbdtxhLzJjMSaxRXzh2nofQEkg5xfOP7eNu//S7i0HHy8X+TT/knL2KMQBRHq95HjM5YY6kqQ04iQNgUoQpKEULGKDAZkgJPphsTiYhPEkU+xsRB46iM1Mi6vLbDjaSICHdJobIITiTiT35Pi4g9sRkz3ie0URityFpRaUXlDE4pQswcdgOLbNl0Hm00rdPEqNA645wBlVmPicaImGLwWXoha3YCki0k1jDTFkddgP3Sf+YywwlJnKls6b9m1V3X/ClL1DuIuB/YEawmTJhwaXF5dN/3ATfddBNPf/rTee9733unTYtS6k6/v8U3f/M384d/+IcopfjlX/7lqaGZMGHChAuEM5p5bVkPgf3GcYxEWGzGSOcjlZGN1AtRyaIUTiv6MqAAuHq/ZtkFOmRT9sxG8rVjkkJeASvj6YMmJzDl+UShm5jX4ny0VV6DqHpvOu7ELclLjrTSjs6LAqD3EYvGabFIXfaeMxvPchOonCIlcWJaVAZrNUZLLAfyfyFfFXKPVnB6M3KqUfyHl/8rbvyLP6NZHPCs5/8EzRUfh9ZKrHHrs4ONfoxyfgZrdFEeiGJBGy1uVQqcMhgloR11ZbFWY5HBRTdE9hrH1n9r2UX2aifqZTI+JXI85/1Asd9Wd1At390GvVaKiGSXE2UAtt3cvxhMSogJEybcHlNtP2HChAmXJ1ZD2CmYgXt0k+mDxE9fqJvMuddPWSLklkOQOLycGWxEaUVjDEpJfN6Z9YjWsvndFeHFonZYreh92sV0z2vDHo5cNtLntcUaxXEnZKreyOb+X3xkyen1yOn1wK1LT+cDpxZCpMqIU5ZWItQYfGQZRIwgJKBMpTXei9tVSkCG6kTNpg+cmlUiflCaRauIKXF6M7JfuxIpnnFGeoBI4rjzRdks8WzdKK9/r7E0lUUrxTBENmdu400/fh3dmY/SXPkoPvVrX4KqZowRlp1HFeV05xPGaJb9iFElyrwMCVylqbShC561j7jBM8bAGDLKKGqjCDkSQua491y5aJnVmZATIVqM1gxjIubMso/0vqO1DiPzGFAQikuvNZraaQ7aiisWNWNIHPcjMYMqJKzaGlqncdad1x/EGPExM68NRim6ITAEISuBvN66MjtxzaySQUXcinCUSE3yKOpuV1TjvpDUtFKsBk9t9Z3G3Gktn515ffZze9Vefd5nd1bd88/GFpej05IzmoOZJiV7v7rCTZjwQGHqNe4f3HDDDbzzne/kxhtvxBjDNddcw5Of/GQe85jHfEzXkVLij/7oj3jf+97HTTfdxMHBAddccw1Pe9rTOHny5Md0LRMmTJhwMUgp75xRjwdPN0YWjZU6c0ycmDl0r1A1DKMQ8MPas9dYKMkeOWURg4fIvHG0RkQJOcv5+62INhRSJx92I6m414aYIWUqpehUZn3rTfyXV3474/qYU5/0aTz5uS9DVQ1kCEn6nxgzCpmptNYxJpkR+CDi720B2VhNVQlBCSX/Vo9RXH3HKAKOBISUeOR+SxckKcQphTKKMSSsAaXyrja1WnqkPqTiJCvRf05r5o3BaWlEjFYkJUklfYkQ7/rI3kxhlGbtAwrp7xaNhQxNpXHGYEyitZq2slsNOgpoK3BJyxqt9EqtMywaB1niymPOGKXoQ2RhNGNIFKPiO0U3RnIWEUVltTzPvZi1TJgw4Z5xeXXgF4lhGHjmM5/JX/zFX+ysaz/1Uz+Vr/3ar+WzPuuzuPrqq7n22mvv1tb2i7/4i6mqCu89b3jDGz5WS58wYcKEhwQWtd3FBOw3jt7EYid64SrZ2mpUsWzdbmrPKsO8tqw6OXZaCsKUcykwM0MZDpycyc70qg8MPjNvDBWGvdag0PiQMMhzLgdPP8ayca1otCHnTCbSjbIhvh4iChhCoKnkeTOZZR8Yoww8cmVotKZXyOv0SbK8i6rBWk3IYFLkV37gBXzwT/8rVTPj2S98BScf/TiGMVIZgzWa4BM+J0z5XSWqeAVZ1Ng+JPZbS+9l3Uormkpx0Mg9OjGvSDmTUkZhycDgI6CojaapJF7i9Kqn95Yza182tQu5rbLMG3tRquXaiqK6sYbBy/s8vxtL2JTlMzKGRMqUew5HncdpLU0ckxJiwoSHO6bafsKECRMuTxx1nt6fVTB32wjp2yNKFLXVsjncVIb1EEjFTfVCr3/ceYaQ8EHqfh8zSmWImaONJ4SEcxqfEn4UhyZbCBuDDgxRCFSZbUQ3zKogDj8FtTXMqiyijjEy+MgHTq+prOao86yGEWMUgxdhRkhCUspoloPEJ2yH5zFntIYxJZwzmDEScyIlIXdpoxlDxmhNzolT84qPHvV0fWS1CSid0UjNXlnpi457j9Wa4z7gY8QajS3OsSFlYoykbsNb/+13sf7oh6gPruJTv/b7SM1JulDEGwR8TPSjI+WMyuIY5bTERBgkOnscE5GET5mmEImSERV4GmGthNC1ifI+xRTZbx3rPhKckIHcnkSSL4eRGDM9ARMVYxJRSeU0RmtO1I4r9moWjQhs5rUlRaic5hEnWhG0JHHdHXxxnVJb1yhL5wPWaEylaJ0o3rOC0Se6LMOJvcZRWRlWzBsryvlUIttHUZqrEssXuwQJIYQZBVhmlb2omLuHotPSnZHAJkx4sGPqNS49fu3Xfo2XvvSlvPOd77zTv3/qU5/K93zP9/D0pz/9fl1HCIEf+IEf4Cd/8ie58cYb7/D3VVXxpV/6pfzgD/4gn/RJn3S/rmXChAkT7g06L0KMMSRWfUAphUKI/c5qFsaxqJ24zGp5jM+JM93IZoglug7I4uI6+MjMWXFOVZr9tqJ1mluWA0YrTq97DtcjzmhSzmx8RBuNSonx6Bb+8498G93RaU5e8zi++Pofpd07weA9R5vA8ShkLXGCUqQMmzFSVzInGIPMMIxSaKOwRgMZYw0a6HMEEjlryNIjBZ+4LWRC7NhvZL5RFcHDqvd0HqyC0Qc2IZKTZjMGfBDhtlUKq2WusV87Sf5IGafl/m3GQFfSRcYU6b2E5/UhyblKUWnDYs+y31iONh6jDAczd4ea3UfFagiMMTGvHFcuKuaNw2qNViL4iTGTlDjsAtxZ67zFEM6mq2wda2s7iRAmTLi/8KAmRr385S/nXe96F0optNb80A/9EM973vMu6hqLxYLP+qzP4s1vfjM33ngjH/zgB/nET/zE+2nFEyZMuC+4vXX9pFq8f3Gh9/ugdRitWA+hxDGYi1LJCgkpMQaJHVBKisCUMtYoaqdZdp5ZZag09EEUFH2MqMhOEexzIWFlTVtbZq4ik4lRIu46D7cuBzJQG4kBPOoH1oNn8BEfoN+qvZ1mM0ZOr0e0go2PrHsvKvO6EqtYJRvoMYpBqspQO1OIWDCzit/+P7+Xd/8/b8S6in/24lfwqGufxGoIqAzOQEqaRCaETEqSa61QzCrDXmNRGWaNYYyZ2umicoZFY2hrx0HraKzZuXIZFcQJqqg1bC3vT4iJ2hpx0NpazmohRm2bLlPiJi5Etdw6GXJVtuR8FxX7/HbnhigOYuc6hW0hzUsi68xqkK9PtHc9MJswYcJDH1NtP2HChAmXH1ZD2JGWjnu/c3fdxjc4I647KYtCeCg1/XIIjCmx37idG8+d1ZnHnefWZc+yD5xeD3SjRPElMjpLX1A7cao93PhdbPXhcS/XNbLR3RhNW9f4JGpnHxKjjyilqBpDN0aMVpyan5XqtpWh85HDTshWIcJm9Ny66jnuPAeF/OOT9ERkdvENRou7Uyp17jBkfM60VnOisUL2CpGwysQITq+FBJSkfzFa09aGM5uBMILRct0+wrIbd4KCzeClf3GKkETtbKxCxZE//Mn/ncMPvQc3P8Gnft33Yw6uYgyRlDNRKRSOMUbGIDHlY0hUTnNqVqG1LkIWcTqqrbjVdjHR+8jV1jD4uHOh3a8tZlR89Gik95ErFkJi2m+NOEaFyP7cMms06yGwGYVw1FqNyorWWhaV5bGPmFNZIV2NMWJ9Ag2bIRQiXUQpIRu15nyVtEL6F1Xca1OOhCixEz4kEpmcbRlMbAM25H22UbEZ5TOplcIaGYQkLwMThdp9Rq9c1LvzLtTRaXJamjDh8sfUa1w6xBh5znOew6te9aq7fdwf/dEf8fmf//m86EUv4iUvecn9spaPfvSjfMmXfAl//Md/fJePGceR1772tbzhDW/gF37hF3jWs551v6xlwoQJE+4ttuLyruyXV2W+AnBVqU27MZIyuOJ2u/aBYYh0pSbOCozSaCNkqJQyzigOGkfrRKgxFEepw03YxWZvxkhKiZATy8MzvPFHrmN1643sX/0o/sHzX8ns4CTOKIxypKzwKdIN0iOkFDFG4QYhCw1B3HOHkKkM7NWW2knPWGmRnxulSMbgx0jUmYqMMQpSiZRLCa00YfQs2gqtNNbInCErTcqJkCNaaZzNoKCxGmsMtRWH2lmtZf4zRlZDoPNJRPYomWWERK+kD2icoa0N+zNXhOSGEzOJ5q6L2GYr8lZAUhJhuNcIiaqpLG1l0Er6iTHJnGtVHGXnjUXfCTEq5byLeAfu1LF2woQJlx4PWmJUSokf//Ef3x3/xE/8BN/4jd94r671xCc+kTe/+c0AvOtd73pYNjQTJlzO8DHt1Jd3qCEyRGQTfj2EB4X68nLHvbnf90Ule9t6BKAvdrG1leHKZpQC3WlNyKIEpxShPsqwo7EWo8T6dOZEWeysXNfHxJV7Fccbzy1rjx1lkDH6hFKZZe8ZgzhMSWWb6QZxhVr2HlB0PgFSzCqliGXjfTMKWSpncFqxV1tGK+2EQoYab371j/Lf/+A30Nrwz174wzzuiZ9NTInWyvMpJQQoY2A9GAafi71tZuYM1ijmleFgVnHUeXxIPOKgobKGtjKSUV0cpXIJ3Asps2gszimGMVEZccyaV1Ys4cs7ui3l87aiP/vHBUEXi94+RFpnWA6BzRiFyFZysNfle1uEeJYsN4TEeohorTg1d+Qsb8Fh55mnfNlFSkyYMOH+x1TbT5gwYcLlh23ND+eTomaV2W3+novGGebnbPAOPnGMZ79xpXfQuz7Nx8Tp5cD/PL1hjInV4Heb/7XTO0fUw86zHiMnF45KG/YbcQk67iKRRAqR2hjqyjB3Fm1UIWhFunOuB4aU2LkUgZBVQkx0YyjurJ5bVwPHG+mDrFEoBRsvjq7SJwViyjhrmNVnI7uHLHESKZZ+JSWsNUVB7TmzVnRD4sTCidNtSGg0GoX3kaBBZYgkDjcjIUOMCb8VSKAYUyRbUDHw+z/5Ij7ynv+Obeb8jX/+vVRXPoqUE3G3Za8YQ8BaTechFkLQltwVQsJUmpjzzgG3djJAiSmz9rHEhWeUVhxu5P1bZs+yg0RHay2VhUVtaMvwJiRxvrVKoR3MKysCjLnjqr2GxhoWjSXlRO8Vq9FLtIXPLBqNUbJOpzWz2hbCnfSfIWdSFnfcxmkiCq3EZWyMMkAKJcJQKcVeLWvqvPQgSilap0FBrS0rH4hRiHyn5hWNM8yq0ofdy5i7yWlpwoTLE1OvcWlx3XXXnUeKms1mfNVXfRVPetKTGMeRt73tbbz2ta/Fe09KiZe+9KWcPHmS66677pKuo+s6nvWsZ51Hirrmmmv46q/+ah73uMdx+vRpfud3foc3velNABwfH/OVX/mV/MEf/AGf8zmfc0nXMmHChAn3Bak0FZuhzGNKYoZS0mNppaiMzFuOO+iIHBgHjUMpUFqhxswQEynCojKcmDv2mgprlJCiYgDE4bcbIzElei/1tdaabnXEG3/s2zm66QPMTl7FM7/jxzm44ir2a8uQJBpvr3EsO09VUkNSEcuD/K6NEXzOKA1ag1UKlUW4HozEktfW4nJikzIkSeFodMW8kVp82QcWtWZEsek9lZUZxiaIS29lFCEpmkpmLMZIT2qUIsYk4o6UOMrSZww+E3KUXmpItNayTh4bFKfmNUZLvLjWIgZpKysEtSTi+ep2c8bDjSfnMh+pDEqpXc+zGSN7tWMMifUIg5fernGS/LEVt48hnSckr52+KMfaCRMm3Hs8aCePb33rWzl9+jRKKZ70pCfd62YGOC/v+oMf/OClWN6ECRMuEVZD2BVXwD06EfUh0od4rzcyH+64r/f73qhkt4V/Kp6i28JvMwZWfeS2bgBgrzac2YTd91PKGBVZj5nGyma8L+t0RrOoDIvacfPxIKSclBiDDCtSoQZpg6gRQPKblaL3AaNlPSlGxgTrUSJAnNKsfMAoQ2XFHcvoDGiySsSYaJ3lHb/1Kt70H38egH96/ffwNz/3meScOdrk0qzIc1VOiESn5jVH3UhtNWNKHNSGyoldq0FxonWEmLFWIiNkrZJ/vc24howZFD5GtLZUOuOsKtnXht4HnHHSKGVQCYLK1EBlRE1xIVEnW8xqIUY1lWFMMkw57gKzSqJGxiCrGkKkL/GKqQxetq4DTmuJJ4kjjzhoAC5qDRMmTHjoYKrtJ0yYMOHyw2Y4G2+3JUXtt3ZHhL8zaCXEEGsUx11g8Im+qJo3Q+RgplkNgZuPez563O/UtKfXA6OP1FYiE9Y+0Fq7i9tenhaClbPiotpWGh+FfL+N7osZGnN287q2iRBls3/tAyfnFZtRRBzOaEIhxYwhcXo1crgZGXzEGHBW04+JpCSKwhlxlE1K+gYUrIdIrTVNrek9ErdntNTCEUyOWGVY+sAYMos60TpxWOr82Xi3yknswhAj/ZiLYrw4HimpmWOSpsr7xFt+/mXc+M63oF3Fk5/7vcwf/dfoYkJFjVUSO6gUxZk2oTX4pKiNqKnHkNAKdBSnrxgz2spzxSSvL/iI14qZ0ywax21rjx/kfmUSh+tM7yLzxtCFs/1jW2vmdcVxH0hJUVcKqzSLyvHI/YbaGg5acf8CWHYRrcURq3HS03U+EnMmZ4mfqAykrHd9hFZw1AX2KsuqG4kpM6aMjZkQE8f9yKKy1FYRk4hCUioCHWdpnIhH9rRhjIrBi6NWZWUNj9hvpr2ECRMeYph6jUuH17/+9bziFa/YHX/ap30av/u7v8ujH/3o8x73jne8gy/6oi/aRdtdf/31POMZz+AJT3jCJVvLi1/8Yt72trftjr/8y7+cX/qlX6Kuz7JTn//85/PqV7+ar/u6r8N7T9/3fMVXfAX/43/8D5qmuWRrmTBhwscGD9VEkZ3YIkp/MG77hCIgB3Gr3TOaeWVZD14cekPGWs28MpDP1rx7pW/yUYTTknYh11n24uykFSL4MJroO97449/JbR98N/XigC+6/hXsXfXxpAQbnzAGEZ1k6ZNmtSVmOd8oTe/PknwUCoOooHOW+YW8SJkrZaS/QpXIOAWVEfKXK+khSsPCWTadx2c4Wg8MIdFWlsZalI7ock9ilPjASis2IXK0HLBa4bT0Ol2IEusHHG8CaxNFUGM1rdNnPy+S3C6zKq3EhbjcPygOTz5y2InIf68xpVfRRVxRRCc+URshQuVyD3zMLPuzPdMWVivayuycoi7GsXbChAn3Dg/an7D3vOc9u6/vq/3pwcHB7uvj4+P7dK0JEyZcOhx1fkeg6MdI54VccQdEKTi2G+JiwT+RKy4Wl+p+X6xKdls0b//USpQGZzaemDI+RJZdAEVRM2RCioSQqazkRXdjZDl4Kqt5xJ5sZGslgxJfGoptLINV0jDtNZbjLhByRgMxnRsL6OmjxDqkKBvyPkoECElys7OS6DmlRPF+0FpWfeRPfvdX+MNffiUAX/4tL+Jv/71/hM9iAeuMotKWutIMQZTRPgYqK3EatdOcMNBYS1byZ+fFWelk63BamqGQM/OSs71F72NZi8JZ0Cozry1Ga2aVZa91nGgkWuLcqJOUueCok3PhjESarIfAfuM4RlwEbl0N9GV4NIaI36rmY0IhzdCitjirqa2ouJ0tDVRxFLjQNUyYMOGhg6m2nzBhwoTLC+LyKb1BV3qEWWXulhR1LmprmFUSzdCNQowaQuTMJnN6NbAZI+s+cNSP3LocGVOiNrpEMkj83Bk/kmKm9wlnFSmK689+69ifOXxI3LYad+6uPiVS1hKvFhKNM7hG4WOGJPVobSVWz7VCdFLALauR4042qo1VuCy1aRcCWYEmc9x7uuJoq2pLpRXBJzqd6KLCaEVtNMYoVr3E/eWsGFLCaUVMmaNuBAXz2lBpxaw2rPtMnxLKiktSMELcEofcjNWKsTj5xhh5+6/+KB942++htOGzn/NSrnj8E1mPEY0iFxIVSpGy1PlKq7IZn8hZU8dIhRHSVw5opK5vraY2Gh8iOWdCac7qytA4S1sllhu5RzlB5RRjzBxvAiFmKiuRhyFlamPYayvGGHFac/V+zSP2W9rKMqskJhzkPRp9pKkNp2Y1bRkIhCzuwKsS1b51FG6d2Q1Wlr3ELVJiDV2Sv88oep/QKjIsE1bpXTz7woijVDdGrIF55cijxylRnl9zcsa8diwq6XEeagO3CRMezph6jUuDlBIveMELdsez2YzXve51dyBFgThrveY1r+FpT3saKSVSSrzwhS/kda973SVZy1/91V/xyle+cnf86Z/+6bz61a/GuTvuA//Tf/pP+dCHPrRb+1/+5V/yEz/xE3zHd3zHJVnLhAkT7n881BNFlKTM7dIetn3Pnb0GrRV7bcVeW5GKkOCWZY/VErudyRgNVSEH+ZhYbwIJuHU1cmYzElLCoKisxuTAf/zh53Pju9+Oa+Z82QteyalPeBxWK2KW1AwbxKnVx4xPhRCli3AjpR3Bpxtl/98YTVtZcYGqHbXRtLW4Am966cFShpAi+03NyZlDa7kuGYJPzK1jlTzz2jCMlkQAFErDzFi0ylhtmM8NY8qsB08CNJFuTHQxEVKiD4nKyPp8ytQlqcNoWA+JR52qmTmJzOvGIA5PRUAfYsJoJU5YSZyGAVqn2W8rlFKcnDtseZ/2G8cSz21rIVQdtJKUYYyQvu7MeGCLyehhwoSPDR60P2W33HLL7utP+IRPuE/XyvlOBv8TJkx4QLEawo6kc25sg1LsIhi0UucRPELK94rgMeGBvd/bwn+bxHHUjWxj3o66kY+cGRhzYuYsY4wMY2YMomzuvGz4zyvDzAmJ6LaVp62kkOy8bOz7kBjLQMU6g7OGW5YD2/3sBDiVmTeWISbaZMk5QFS0paQOSaIwyBmtxYnJlU36RW0ZY+Zdb/5N/vBVLwfg73zlN/O/fNlX79TOMQsBKEU4mFUse7FdDTGTUMydZSRhlOZwPYBSHK1FSX1i4TipNfNG7m1lNUbpMuCQeL/Bi4K6Lgr2vbrGGk3jNLNG1AZKq13BfTFRJ3eFRW2JKdP7yH7jWOE52ohC5MzGM5Zh2lb9rZXkeDfnDNWqucJqfa/XMGHChIcGptp+woQJEy4vdF6GDmOp+5USBevFoK3MTmwxBhEsdEu57unVwM3LgS6Ic1JlNFft1zTGkpXUqLeuBoYc6UKg84pVH5g3lsoprHZFQS1xDVsXpOMu7AYKlTXMyxqcUfRj3BHzQ5T4gs0QWHW+1PaK9SikrtFLHF8uLq0+SOx1bcTxKaRMH6V+9WOirkQxnGIiZGgricnrQ2LROnzIbMZQRBuGISSMNjinqXOGrJi1Qi4yHRx240793DhFjpk/e93/xQfe9B9BKZ74VS/g6ms/h3XviVHy42IWZ1xSeQNyJkYFBEATyCz7yMzJQCCNqZCeNM5IxHfKmTEKUajziRMgiu3aokHy/lTGGYOPgJbYOl+iIJpK08eIQdy7Ts4dV8xrcs60TiIYJUpdIj20ln6zLfGM3RhZVJYVAV8cooYQsVqiQxQSk5FLHxNixhrDiZn0eCFl9morzro5k5WsT5fBjlJwci7kJ20UzSB9yKl5RWPFZfe2zfiQHLhNmPBwxtRrXBq88Y1v5E//9E93x8973vN47GMfe5ePf+pTn8qzn/1sfvVXfxWA3/qt3+K9730vj3/84+/zWn7qp36Kvu93xy9/+cvvlBS1xfXXX88rX/lKPvzhDwPwYz/2YxMxasKEBwkeDokiWikieecONYZE7QxS/d79eW1lODGvyMBQBCIhbcUtitUQd/HUY0iknIrLU8TEyO//1It535+8CeNqnvVdP8o1j/sbxJyJKTGvDb0XotGYMgoxU5L/Sr1dnG59TFgje/8nZw5ntIgnrBC0RPCt0Q2kLtN7j9CoEpVTDGMgZ4WzmtaJ6L2uLdZojFY7gcTMGfZai9NGeh9AhcQYDFYrVhm8EyJTzCJsUOVeLWpNbTXWyWxlMwZWQ+DErCouwdLvdiHhi5g7pEzjjER7x8ysMpyYVQDsN5a92xkzaKXYbyw+ihsXCk7NqzvE0ENxtJ36igkTPqZ4cPxWuBPM5/Pd1+v1+j5d69Zbb919fcUVV9yna02YMOG+Y7vZCOeTdGZls/T2RcSlIHg8nPFA3+9d4a8Vm86TcmZRO25dDxyXYx8Sg47kpLAuUyXNQGT0CaVg7MTKtXYaryW7WZNpnEUpVVTk8nzG6OI6lXBGivPOJ2KCbhN2xKfGGRaVYuUDMWYalTnqokTgGb3LmNZalNg3/NEf8Hs/9a8B+Jwv/So+/6u+hW5MZBKDD+QE80ZUAocbjyojm+KMKzatGZKGVBTJY4goFD4kNj6SUZyYWebVliClGEKSQj+JUtsaycWeN4a2REWovH2OO977e4o6uSecddkKpHyW9LUaA04rZpUtFriKxhjcOUqIWSW2ssB9WsOECRMe/Jhq+wkTJky4vCBxbtAXovvWtedioEvdPATpN3ofxd1Iwy3LAZ+EzHRqXrHfVuydM7iYV5a2Mtx83OFj5nA1cFT6Dx8TZ7Rnv3USSRcSpzPstw6jNIvG7EhRACdmbkfw2m5wH228XGfjiVk2vskSh2e1AQ0bH4hRXJOyymilMUrcdUOMdF7IXhlF6AO+RLfVTlNZJyIMrVAJGqfJ2XBi5thvLJtR3Ih0lgiInDMn544QLb1PHDQ1IYkT6zAm/vz3/wPv+d1XAfDX/uG3cuoJT2e5GelKfJzKCaXEUdaHjNEKo8Q9KyQwKmNUJqVMSJkKxFkqCfnK6USM0nfUtcHniEGhlKIxQkDTWjb9xU1KMa81Rsk4Y/QJrxJKWU4tHK01ZRAi70HjDIvGshkDOUPvAzEntBXhRkyJWWWJOTP6xKKyjCYxjFEcpM5xAt6KdYzRzGpDSnBiVmMMxJjZax21lQGKj5mcADJVcXuqnSFmEXcoFHuNpTaGo85zclbtCIEPtYHbhAkPZ0y9xqXBr//6r593/JznPOcez3nuc5+7I0YB/MZv/AbXX3/9JV3LJ37iJ/IFX/AFd/t4ay1f//Vfz8te9jJAXKP++I//mCc/+cn3eS0TJky4//BwSRSpS+xd40Qo4FPCZb0j/twdlILWGW7bzlBiRGVYdolZnVgO4hLb+8hQkh2sUYxd5L/8/A/w7rf8LtoY/uF3/hs+8dq/hcoyc+g959CyMjFs0zUSSmkqozBWBN+qbN8rFFYp9tuK3keJ24sZZ6CuChlpgKwUxmpUEk3HqqR6VBaM0jitWA2B1mlWvcRsb12ZQnGVckYEGSEkjFIsKs3KZ4wB7cVJa15rDFLHG62YN5bRJ/ZrR+uEuKUy3LLquWJeE7N8hlQRYoSY0CiUClgt/UxlRRDTVoar9s6PTBmC9KvWaE7ObYkxFPLT5EQ7YcLlgQdt9/6IRzxi9/UNN9xwn671J3/yJ7uvH/WoR92na02YMOG+YzOcLXa3JJ391t5tbMOlIHg8XPFA3+9t4W+VohslDu7moWdTcpezzlij0ChmlSHmxMyJtWkum/JHfWDde4xWnJzXpJQZfeZglunGIMQrI4VniLmQiDStNecoMTKdF4cmpxRJS6EdoxCKrNLUVkhTbWXZrywhJ7LP/OWfv53X/pvrySnyGX/3S/lfv+WF1JXFh8Rx5znuI0YBWjNzUghXVmNQ1AaMVihlWfUBnzKLumI9eGpjGFNiGBOHeHwTSVncoazRjDHhYxQFfkq0lWH0kRMzx6J27NWWUDbz4Wxc4e3htEaROeo8y95z0Faivk9JlN33UKQvaovTimUXROeRMosyzJpV55caCnG8aqvzlRB3FbeSkp0ahAkTHgaYavsJEyZMuLyQSuGYyuDh3gpNKnuWGCUup2cdpOaVqHopG8O3x7yyVNZSWVE7pyx1/BgSUWf6ZSLmxNHaYzYjV/qGvdpwMJvRunNcUmvLMnshu8SIs5rVGAgxSf3bBYnqTgqnDbd1A8ebwHEfSq8kgorKaGaVoXIGpRVjFFdanyJk6IPGKkXlNI1V9GOiMbKpbrTBWVGBN5XEjneFjKVjZAzQDVHqZ2dkqGA0cQi87y2/zZ//xk8A8Ni/98+5+jOfRV8isWOp9bVS5JxKVAOkFIlJ4jis0btojpASPimGMeKcxmqFVYCCoy6glMJQ4vKspjXyertNIqVMWwm5SaFwBqy2nJxVGK3oCokuJXGDiklcZQ9aR11i8sYSTzdE+VydaqoyeJDP3F7t2KhAN0YRo7RC7upLU5ZLPGBbW2JIdKjde31qVombbkqEQQhwrdU0tRWleHG22pQIDGc0+43ZuVLtzyRy/Mx6fEgO3CZMeDhj6jUuDV7/+tfvvn7c4x7H4x73uHs852lPexpN0+zcnX7rt37rPhOjPvCBD/Dnf/7nu+NnPOMZqAsgbz/zmc/cEaO2a5mIURMmXL643BNFUsp0Pl6S+OXWmZ3gfNsfDcVx956izLWS2UIfIsddwBgRMmzGSIwRXRyXUt5GWSc6n/gvv/IK3v3/+3VQimf8i5fyuCc+jajyzkXWac0QM6nMUpzVWA2jM6QcCMisIaWEyjI/mVWWutaklJk3jhgz1mrIim6I5BxYek9KYFEEJdHavYu0zjD6TGMyKYn775WLitoFspJZw2qMDD4yxky/6enHjDNyj2OJ9K5azX5t6UOi95lMQqOZ14aPP9EwhCQimsaedYWK4lSrS7ygLmLv4z4QUiJ5RW0TTeU4OXO0zrDfno3QS+eYCIAIZZrS/5yaV5Npw4QJlxEetD+NT3nKU3Zf/+Zv/ibjON6r6yyXS37v934PEOXA3/7bf/uSrG/ChAn3DillhrKh2pXCd3ZO7NY9QcgVxfKyFCJDUXpOuCMuh/vdOoNCSEhWK9Z94OZljy1FbW3E9cloOLmwzGpL4wzGaHwUq9bGSDxCiDDEyMZHhhC4bTNwy2qQoYSWzfDOB3yKzKzYroYsquLKamonTVVVifJ4jFkGOT5wPAScEXVBbRUpJ1KCv/qLd/GLL/lWwjjwqZ/5dP7xdS/joK2wSmO0KDDEGclx0FjaSvGoEy1X79XsNY5FY5nXFmc0i8ZyalGx31hOzCrqSuOKYj3lTO8TR73nxuOOjxx1bMYgjYRWzCtLbTSLxtFWloPW0ZT3Zrs/dPt9Ih+FuHXbeiRmCEmGFWOQgdWy96yGwK2rYaeqvyuElNlrRTFdWY2zmnlt0UrumTOKeWWKI4C704agrYyQ18rAK3P2czlhwoSHNqbafsKECRMuL9yeWH+xblFbKLUdGkiMXO+F1F9ZqVu3kQh3dv3OS19RW01TSZ0ec2I9eJbdyHE37BxkFZT46sx6CBz3XjbHC+FqGyedS5/iY+IjxwM3L3uOeiHCrEfPLauejx71HK49g49sxsB6TCw7z6r3HA+BZSdDmpQSISd6nxiiDBgoMeFHnZcovqzL3wXmlRXlcZD4inll0SjZ+DdaRBcZFq1DaenTPvT2P+SG1/wbAB71tH/Eo5/+lYQYySnjfSTEBFlcoVKJsxMhCLsBTcpJ3GoLgSqELOrtJEOOzZhYdoHOR5SGfkglTFyRyLuIiT5IbHdlDG0tApOYMocbudeQySkTYyKRCTlJ7EVxnAIZmPQ+YpSoyRetw2npHfpdPyq9zDY6zxrForIsGsdeK71OpTXLITDERFNZ9hvDXuN41Kk5jzo5Y7+1hJg57iNnupFbltIXdmOksppT84pHHjQAjDHR1paU5bVuoyMbp9lrZC17TXHiLb3KsnzGQPrg1TnxLhMmTLj8MPUa9x2Hh4d86EMf2h1/9md/9gWdV1UVf+tv/a3d8Tvf+c77vJZ3vOMd5x1f6Fo+8zM/E2vPkiMuxVomTJhw/+DuEi5OzSv2GkfjxMmzcVIHnppXuznF4NOuVlsP4W73tO/N2o42nltXA6ty7ZjyTsThY7rg/fQttFbUxYmoqQyNEfL+qg87wcpdwRnNzcuO9SAx4IOPjF5cekOmkMYiqfQCRive/rpX8e7f+/cAfPY/+y4+5XO+gD5GVFZU2pBLFF/vI9ZqFrXBGcWyjyKuL68pZHDOYIzZEVS9F/H1eghURnqdTKbzidUQ8X7r6Cq9pjMKrVQ5v0SJV5oTM0dlDa0Vx9fGaQ5ax8HMURtxyR1i5HAzsvaRVe9ROpeZRMWpecPBzLFXO67er7nmxJy9tuLKRcNBicKrrWbuxD3WKsXJeVUi16W+r60mK+nV5pXdORI7q7FG0fu4m62cS4raiia2M58JEyZcPnjQ/kR+0id9Ep/yKZ9CzpmbbrqJ7/3e771X13n5y1/OcrlEKcXTnvY0FovFJV7phAkTLgadjzvr+u2GZFtdGElni4lcceH4WN7vlGRIcdt65NbVwC3LgVtXA4edZyxDksYZln1gCAlTBhzWKPYqsSkNMWOVYiiRGTIYCQwxY7XGmsxqE9iMgTOdp+sDOYnKwOfMOAT6MeFDZlZbKmOYV5qUQWk4Oas4tRC2/6KtpDhuxFKVmLBKkzMsu0BMijM3fYB//5J/wbBZ8YnXPplnf9cP4lyFNZrGaZy2VMZyalbxiL2a1hlOzhtRK4dM7RSN07SVPH5WWa6cV1yxqLh6v+HjT7Z83ImaK+cVByWbm5RpjEFraK3m1KJmr7Fi5erEiWm/cew1EhkCoqoGOFeksh4ChxvPUN6zGKWZWPWem5cDx93I6fW4e0/7ELltPd7lpv82bmVMibayXL1Xc+Wi5opFxal5xYlZxay+e/enbdwKnI1t2V53woQJD21Mtf2ECRMmXF64PbH+njbk7wo5i3BijFk2r0sN3zhdXHzk2pshCPGo8xx1npuOO04vJUpOZVBoYkxshkDvE0prKJHTPma6MXHUjazGyBjTbtP/qPPF4ejsegD+5y1rPny4ofORzRD4q9s6Tq9GjjtPjIllP0rfEBPjKOSn9ZhY957V6DncjPiQiUmi5EigkWGI0rAeIyghcjlr8KGQhLQiIZF9+42hqTW1k0FDztD5RDcKKevGG/4b7/jFl0JKPPJvfSF/7Uv/BTFJf6TLdVKWeLycJBYDlck5l7+T16qVRimJtnZGgcqkEh943AXWo2c9BlJKVEYRlfRcldEcbkb+6raOVR+ojQHF7j0DdrW9NYpF7dBaFNejTyhElLIewo6YNoS4U+7PG1uciIVk1Y1x179Yo9lrnPQQldkJVIYyJMvl+eeVxTlNSOBj5JZlz+nViEKz31haZzCIAOagcbS1OCNbI5+n5eBpnMFpxeATrriCPdADtwkTJlxaTL3Gfce5Dk0Aj3/84y/43HOdpc6cOcNHPvKRB2QtTdPw8R//8bvjd73rXfdpHRMmTLj/cFcJF1sR7p1hm3Cx3woBcvBpR7zfXu++YlVmG304O1M57qU3OLMeOdyMHPf+gvfTz8WsNjTO0FjDvBGizmoInFmPd+jFUpKUjMPNwIduXfH+m9cMPuFDZNlHVn1kXhtOzUpNWxkM0ovc8MZf409e+5MAfPqXfQuP/uwv4bb1QOcDOSXObAaJLw/i9tuX+VFX3JqsFTclozU5QT8EBh+KO624aPmY6MfAagz0PlA7cZtSWdE4Q+00WmtqazhoG6xW5JQICeaV4cRcHGkzMtfYqy22RLs7o5k1ZwXhIYswwznpKWaVpa1FiG+0uPlWTosAxEcUcNA49msR4zurWbS2iOE1JxcVJ1uZxVyxqPmkK+Y8/hELTs0rFNKT5AzHXdjNsXIW4fpeY3ekqLYyU+T2hAmXIR7UP5Xf+Z3fyTd8wzcA8LKXvYyDgwOuu+66Cz7/l3/5l/m+7/u+3fHzn//8S77GBytuuOEG3vnOd3LjjTdijOGaa67hyU9+Mo95zGMe6KVNeIhjS4LYkiLqUvBcDLbkiiEk+hB38Q3z+p7PvdxxKS1a4WNzv31MbAaJJ7jDOCVDRAr5M+uRTGYssQobnwk501iDc6q4QCViFlWCNYrVkDjeeBJQG401Gk8mkzneeHoXyREWjVix+gwhRrQRtr6Pmf22kmK/qNXbylCbSB8iVoHrNcdG4jUSUpw7oxmOPsrP/x/fxOb4DNc8/lq+4gU/jnE1dXGe2m8dmz7gjAw4lFJFMWDwMXPQlpg7hABWOyE0Xbmo8VGIaiEmblmNdN6jld4NCrYb9iBKZq0kszokGbjst3ZnIwzQGHnslnR0rtJm2+CElCGBT2Id5a0m5chR5y8oLuJSx61sr3Nvh3ATJkx48GGq7SdMmDDh8oFWSuKotYIodeU2DuBcpJTFBSpKtNvZ/kRqT4l+TsQoEWc+ZhaFiLIlAm3GgNWaWS3X70vdD3DUe3woj7GaPaN3ZCCrFZ2XviClshE/SG17Zu3JOXPQVru4bhC18odOr/nIsocMHznTcdh5EhlTyDlDlMi5BCilSEQ0UqMOEWYxUzmDUVLLuxJVp41CK6i1RuVMzokhyNqkJwjMqgZrithiiKy7yJjirqda9QOnN56/fM+f8v/8ny8kR8+V1/4vPP7LrmP0iTEJeSch5KFc1p1yJsaML0OYnDK69Ikqg9YZlbXU+hl6n4RspBQxKjKKptJ0Q9xFknQhkkZRXc8qu4vzOJhbukFcv6wV4UbKory0SrEOkeSTfHYyu/PWQ2BV4tIrp2mVvJdXzGv6IEOvZe9pKxkKaaV2MeYtsBw8LiqCUYwhctwHnFa4CMvoUSgWjSWROO4jMWUZhhjN4DNKRU60MmTxMXNrN+4IYClLT3bVXk1b3fVW6aWMlJ8wYcLHFlOvcd/w/ve//7zjT/iET7jgc2//2Pe///088pGPfMDWsnW+uv11JkyYcHng0iRcSJRcN0qdJgkXdy/YvSccdX5HtOrHSLfdT7897mX8sjOavdaxGgILHEMTOdN5zmxGfEwsaodSkijhQ2KMiWUfOLP2KKXZ+IBP0i/MnGJWOYzKzJ2Vni0k3v7G1/Gffvb7AXjSl3w9f+0Z/5T1IM6xWSlA4sadNuKKm8RtKsZEyBKL57TCF0dgaxX9mIkRGgtYRYqJgYQx0gvEIpafVZa9mSqOTJnG5VLvi6Aj5Czi79ZKL2kljaOympQ0CcVBozjceI77kdFLmgdk+hA56QwxU0QgGaUkvcKXOG5npC/ZayyVVTSVozLiCBUTGKOJSG+yGSOL2uKM9A0KuHpfCFxhK0zZ9r1a0VizE4KAOEVNpKgJEy5PPKh/Mr/u676On/7pn+a//bf/Rs6Z66+/nte+9rV8+7d/O1/4hV/IfD6/0/Pe/va386M/+qO8+tWvlvxTpfiSL/kSnvGMZ3yMX8Hlh1/7tV/jpS996V1ayT71qU/le77ne3j605/+sV3YhIcNJnLFneNCyEXbzebaGma1uaB7d3/f79UQdra3ICqKvkTtnVs89j7RVIYPn+mIOUGGrDIqS7QBWYOCdScRDiGejTnQRqGzEItijsycIYbM4CMhJ6xSLEfJwz61V9ENMiTovCiXldIolGzAlwJWot80x5vA8RhwCurGMq8NVgHDMb/w4m/k8JabuPrRj+Wbv+/fsThxkhggKXFfygm6kKgrw1X7Na2zmDK0MaWx6H2iNqJADuV4jInWbSPwpFnbjNIQ+Jg47Mad1H3RSJFtGlE3LDsv90SJletWreBKDEVT8sq3pKjl4BnPzWd3GpTF6jJUKC5iF5LPfinjVu7sehMmTHjoY6rtJ0yYMOHyQW21kKGsYfBJhA8572o8H9PO4efO+xMYQuBoI25EVitIGaOk51BZyPrIfrlE0xXHpXUvDk9DSiXmOZGRGt4HMEaUxjOr2WugMgZrFeteIiKOusDoJHJv1Xsa51gNvghLEp2X59gMnnUhdRkFPichE5F3JDCnNRtkAzyHgELIRaaoko2SzXKJjBOCUeczjVU4rWU4ERONs6gsDkozZ6gbI1F2JAYvDlcpQTdmznz4A/z+j1xHGDpOffJn8Nf/yQvQJZ6i1ooQM0kJMWy7xpAlPg9S+V0ovYRCXKKUFnetHMRNt7KGVKIrrNEYLWQorRXKSJTFEOT9bZWlSYmQZNN/Zg21MeSkmDUyaNpFFZLoCxEtJcOZjadyho8c9ew3DqUUlRPByOATtRVxy8JoQMQb3RjpfaIyGmflNWyKkGY5BI47z7IX8UZtDZlM7QymEKZCIeAppfAx4VNm5jSbMZAznJy5MmDJRIAxsmgsBzN3t6So838+7p+B24QJE+4/TL3GfcPx8fF5x6dOnbrgc0+ePHne8XK5vCzW4r1nGAbq+iGgpJ0w4SGES5VwsSUubWO8Ox+Z30uyymoIO1LUuYJjpaRvckbvxAUSXZcuaD/99ljUllPzipuOeq7Ya0AhDlBDKP3M2T33wUdOr0e6MeJT5LjE9u3Xliv2appK4704wnYpc8Nb/zOv+eEXQs486Qu/gid/+TexHAIuS51827pn04uYPOdAIpOzIiohN6EUzolT7BAi88pSGcWZDMMY8AnGbsRaRYgKPYrwYK9xrLsAWQhDtRX3qMqKOCFEua8hUYT/Qh47aC3dmDAaWmdYDoGuGLSGIAIVrTJWSS+ktCLFzDhmnJWeI6aMKmnnMUNC1BCDlx5W60xKIthRQAwiQnEmFbcpw5V7VkQ8zuyi3neCIIAibndF0HGhc7kJEyY8MHhQE6OUUrzuda/jcz7nc/jABz4AwFvf+lae/exno7U+Ty3wV3/1V1x77bXceOONu+J5a739qZ/6qfzSL/3Sx/4FXEaIMfKc5zyHV73qVXf7uD/6oz/i8z//83nRi17ES17yko/N4iY8rDCRK+6ICyUXbZnpfRC3owthpt+f9/tiVBRHnZfhh4+lgZBYispoUsisg7hCHXcBRWYMmY0PKBQHrcOWmIoxyqDAp9KcoGhrUTdXTmOU5qC1rMdQXqtiNUSGMaK0qNqtUegEY8rstZYxJBorA48QM0O/4ldf8k3c+uH/yalHfDzf9WM/z/6pqzjqQomqy9x42LMZAicWlVxTSfO10JbOJ3LOdIPEiKQktr611bQzw5nNSOcMrTMlMlAaKmc0Vx/UXLlX040RqxUHs+q8e7/9uveBMci93trKWqNYDp5bliM5S2MWggxN9lvHfuuIKZNzoDJiZWu04sRMGrdNsS4+xrPfuELC07tCv8SAX5K4lXM/U/fyIzlhwoQHIabafsKECRMuH7SFUF9ZLcrYlOlG6THWQ2Azno2j8CHRx0hOQmzyUZxfQ0yEIvDYut3OG8tmDLROiD45JfohMuZESJqYRPQRQqIPiWFM+BRx2tCNibUP1Fmz3ypsiZqojGxaL6q0i28YixBh2Uf2mkDMuQgIICXYjJ4zfWAzSA2vNcSsaa1EXYcEisyyD2iV2fiMUVY214EhJlTOhCTq5kZpcrEdGkLAaBGrRK9KDJxmf+5IUVyrei8OWzNnCTGV+5ZYn76J1//AtzKsjzn1SZ/G3/y6lzIYGdjmDEkJmUclUFqITBFZq1YiilBKCFqVURilxfWqDAtIClQhmqFxVtNYibOYWcWQQefMvDbEJOp8BSzHyELBo062xCTKblNJHzB3FmsVq05iDrWW5x1TJnSeK/ZqqixkulNzR0wQirPtXuNwRjGGzKJ2OBPpR+kbhxAZggxibl72DCGxGaPEF5YIvhiEIFY7zXIYd4KX2snrtlrTOnG2qoyQl/qQuHU1EDLs1wZf+rGTd0GKuMufkUs8cJswYcL9i6nXuG9YrVbnHTdNc8Hntm17t9d6oNdyX4lRN998M7fccstFnfPe9773Pj3nhAkPZVxuiSJbMTqcT4qaVYa2MndYW+MM85wvaD/9znDFoiakzC3LgSsWDZXz3HLcs+qLM2wWB9j1GMraPIedZzUGnFHMqooxJnIPkLltnXj/O97Gq7/vOlKKfMbn/wOe8fXfyelNgCwOThoRc3c5EJImZxFWNE5qcaMAlVmPiUHlXdRfF7K42TpLTOJklZJCkVnHSIxAIYOFmDBK0dSWSisqI3X4bavIeog0VlMbjTGwGYV41fvEGCIxJ5ZDRLocxVDmJWgRzFsl5CZri4gnZMa47fOKKGcT0Bp5zTmLQEQbuhjZRnqEJIL5k7OKtrLlfsp8CBklnYN89ht3+LsJEyZcrnjQd+tXX301b3nLW/jqr/5q/uAP/kA2gHImxsgHPvCBndvGMAy8+93v3jUxWzzjGc/gV37lV9jb23sgln/Z4LrrrjuPFDWbzfiqr/oqnvSkJzGOI29729t47Wtfi/eelBIvfelLOXny5EVZDk+YcCGYyBXn4/62aL2/7vdmDKQshJwLUVFsmfrrMbAepShXGvZKtvZR7znejFilGULAF1VCYw0JYfvXZSiy6hPGAEZjDZxsK1LOGKl8CTlzMLM0lSYnhU9n4z1y3rpfiTraaoV1kNAsGkMYe37hZd/OTe//cxYnTvFdP/ILfNzHPYqYhcAmedvyWsecWfWRk3PNmBJWy0b5dvAxhEAfRE1gtJKIiZSZVUaGT0aRsijiVRSHqw+fkXxwlQE0ISasOfunUqKqWQ+ZeW0LGUyx6oNEY4zy/GPJCAdYVHaXiz2GhFJZnKNgF79xIXERFxq3ck/YxgVuldb3lqw3YcKEByem2n7ChAkTLg/o4sbTh7hT6G5KP7L9p/fcSOaYSqxDEhGAj0JiMUphtdS1/Rg56kfmtaPaM4wxsvERbUAFcV3VWshC6+RF/OAScVT0IezcczMSXxBCBgcnZhUxZ5IRV6QhJjRQOcu6CxxuIlppUk5opcvvFeiGiLOaECWGbq81mBJB7Us/0FSGlDMhBpIWl9ecZa3rGMkobPnd5IxBF0W70Yr1IBHg4ti0dXIVN9eYpS9xStM4Sz8kwuY0v/qyb2Z15hZOXPNYnv68H8S2e3Q+surFLTcnyFliI6xVkBVOA2W4knIiJtmZN1qxqDQpQZ8zNomrbKUNKUkPVZmtu63Gas1hN6LQ1M7iQ2K/tcQswpTaGo77sIu8uHpRi5o/JYJXWKtpnQUVWZQhkdESL7jfOKoSN3648ey3jiYYQspYrbGVDEBqKzEpIcoQKyf4yLonxu28Qd53q6VPsruhksJHUZznlJkXt1+FXLeRDw5kidrwxWV3iNKnVQ/wwG3ChAkfG0y9xr1H3/fnHVdVdcHn3p541HXdQ2YtAD/5kz/Jd3/3d9/n60yYMEFwuSWKbIazs5ntjGO/tXcb7Xdf45cfsd9gtOLMeqQbxYlIozgaArE4FC17icAbYsIqzam2wlklQpMxsQqepOCW9/0Zr37JtxL8yCc/5fP4gm96McY6zJjRPjKrhNS0HAIkcf7NOVNZieS2Wu+i053R1E5TKU3IkJKI0StrGGMApxkTKCUR30qJe5YmUhvDaojszRyL2vHR4x5nxO1piOLcG7M4Ce+1TowAnOa2zYhSGYPi9Hpg9Ik+SUpIDImYM05rYkp0padURdhDljlMXYnL8F4lsdrdGFHOMORAP0ZxoK0slRbBQ5fEkcpqjY8iQJnX4hwVdIaUhaJVDAusFlHGxRgWTJgw4YHBQ+In85GPfCRveMMb+MVf/EV++Id/+LwYuNs3MFt88id/Ms9//vP52q/9WrR+eNvavf71r+cVr3jF7vjTPu3T+N3f/V0e/ehHn/e4d7zjHXzRF30RN954IwDXX389z3jGM3jCE57wMV3vhIc2JnLFWXwsLFrvj/vtoyhuG2cuWEVxZjOy6sMu8iAkqcLPdCP72YlawGpqlQCDsxqDpqlFXUCWYtUnzQkjAxWAcUycWlQyOEkQUmK/FNw+ZNnoT5qQEuMoHqgqS4zFvLKseo/TBmxi4eDnvvc7+cCf/THNfMG3/9CreOQnPhZjlCiVrWbTSwTI1jlqNXjGkNhvDVcumqJwzrvGxSqxjO2HQGUMSoHVMARNP0a00aSYUGWgkHJm1YcSA2iAzF7jRAXiI52Xe6+QQYlRiqPOy31Hiv4+JI43IyFlGqcZY0apjFaZ9RjIOTNz8nk5Nxv7nuIi7ilu5UKQcpboRKApzWVtH96/oydMeDhiqu0nTJgw4fLArBZiVFMZxpTKxnykrUTdG4pDaR+kxnVW47JhOXiWvQwArJGh8xgTM2tY94kQR3xKuxjrvcYxS7AZPH1MxFFYMHWtqLJDEehWUmf7kNDacDwEameotLgeObaEKSHQjCkLYUlpfAhURtS/Gx9JObHxEaNAaQ1Z3Ju01hhkGDCvLCF76qwZvKZyhpQS1mxr4EyKEFPCVoacFYnEflNhi+hBaanHU4beJw43nmtOzGitoaksIUW6IbHqPUO35Of+P9/I4Uf+koOrPp6veNFPkmcnWPeJaMDpyHpMKDI5y0Y8qUREZPn96DSMUTbonVbMakPjrETmJVFbS7yeEKzqynDlombmLEoLb8g5I7HmGU7MnJCLlMTObYcIWkOlDcteRBt7tWUIsq62srQlPuKglZ6isWYnyNEoHrHfFOV53BHu9lvLyZljM8rQZRuvtxq8DCIawy3LsCPmzWvHrDI0TvqmIYpTlSqx5n1IxBRoK7Mj8M0qy6KxNFozm2mGKL3VXiuErW6MuPbiaohLNXCbMGHCxw5Tr3HvcHtXpnEcL/jcYRjOO769a9OlWMuFukZd6rVMmDDh0uNyShRJxcUURIwMMuO4O1LUubgv8ctXLmqpv33kBIrbGJglw3GMhCT1MSqTksZrmS3UzhCzrFlpOPOX7+NXXvatjP2GR137FJ75rd+DsxXaKj5uT8QR696zHgJ7taMPaXejDBAykDJjEpeq2iisBpSi0rDXVuSkWPWelkqcZnuJr66MiNA1iMCjRNkte49W4qo7hFgceiX1Q1x+ZQ1nNiObQRx+xxAxWhGSiNFzyiirQCFiGjLZJ4iJAfl+2pKbTMYlQ1WLE/J6FNeuXCICQ+kxIwGyEQKYVtyyGqiN4ZEHDaOXXvhSGhZMmDDhgcFDghgFYof7NV/zNXzN13wNN9xwA29+85t5xzvewenTpzk8PGQ2m3HllVfyKZ/yKXze530en/EZn7FTgTyckVLiBS94we54Npvxute97g6kKIAnPvGJvOY1r+FpT3saKUn80wtf+EJe97rXfSyXPOEhjolcIbg3Fq1tSty2HLl52ZfNZMW8Enb9I/ZrrpzXzOvzi+774353o6hlL1RFsew9Y8i0zlBbxdFxZAiJvdbQWE3KouC2SLTDmKJE4s3FEamxck9SzhxtgjD+kY37vYVlUTuUgsoqbjoaqJ2mJjMEif1wVnPQVqx1QCHZ0q0ydENgM4ri4uNO1vzMy76Dd771P+Oqmuv/zc/yhCc+CR8TrTOEEDnV1jRWHK8qrfBFNT9zhnntWA2B29YDIeQdQcq6xKKyHMwqNn3gaD0SokUpJXnWKoNWO+JZLFa5RmlWfZC4jqJOABm8VEaGQ6NPhOL+ZLTilmUv8XlRVBhbRcMYImMQJ6lUSFFjTGzGwBWL81V3dxcXcXdxKxeKbpRBh9WKymoUEuMyYcKEhx+m2n7ChAkTHng4o3fRea0znC6b5LesBkIQxbDRCgU4rVkPgXUfCFlq8f3GYoxi2XkADjcenyLrlUTrmVnFwllccSvtRnncaoykJEQXZxSusGq8T4SUsEERjIgbFs3ZWlGhWDSWzovydx0CKDBKUVdSK8cEvpCnaqcZCrlLa0UmM0bEfRaFUxplFW2dUQpC0HQhorKIFrSRdcWUiVpIWWPIJCODmJREgLJw4nIL0pO0teHEzLEZFZ0fGbo1v/o938rNH/wfzE5cwVe++N9y4qpHsBkSvRtptIYsURIhg49AhiElTC5il6TIWXpAg6K2EmcXizPSibZi2QeskvfHacPMGWa1pqn0LjpvkQwhSY931V5NP0q/NK8sKWVu60ZSzLSthpyprWZWO07OpXa/ddnjo5Cq9mpHRqLutFKcmlfUzrDXWG5bjzvC3eATx11gVhkWjfQOvY+sh8CqDyilOO5G1qMnZ7j6oOGgdaRCCKtaQ+dDub+aMUgv7aP0qU1l2JTeets7jmVYFGLCIOsbC8HpnoZU5+JSDNwmTJjwscfUa1w8FovFece3d226O9zelen217oUa7lQYtSlXsuECRMuPS6nRJHOi2PtWATpqrjDXgzuS/yyRnHFvOLMeqT1luAy1zRzeh85sxm5dTngU0Zl6EJkjNKH9SFyy199iF976TfTr454xOP+Bl983Q9hXQVkrNKYSnPKKOaV5WgzsPGJ3I2orPEpoUpUuLGKKim0EVekmMS59ZF7NcYafEjMKnGW7QbPibmjG+S+OSPx3ruYuxK3PoSAVrq4Osn+/35tIWUaK8KO486zGSMJiVNPSR7XWkvI7EhKPmeSz6BE/EH5/IjbsLhOGS0Gu9oIWW1RS0xe56WfSFHi0m3paXfpHChuXvbU1mCtvqSGBRMmTHhg8JD8ibz22mu59tprH+hlPCjwxje+kT/90z/dHT/vec/jsY997F0+/qlPfSrPfvaz+dVf/VUAfuu3fov3vve9PP7xj7/f1zrh4YGJXCG4GIvWEFOJmhN3oowolGXvV4gyHznqJZrAaE7MKg5mDmf0Jb/ftjhGLZqKo40MNu5ORbEeAr1PVEZz1I0StWEknzqlTGUt80qK0MYZjgePtRqLona62KRKU1FbTW0Vs8rRWENWsKgNzhis0RLLsRHiUm00bSWDHKsVTisGr0W1PUrERh8Ss1qGAP/hFS/lLb/3f2OM5V9930/zxKd8dlEBOIxWzBtRPywaw1GnuHUpyrlHnWilGRkjMUGIgAjXi2IahphY9YG60swbyxAT3Rg5caLCKMVeY1kNgeM+UGY0QC4RelJ8L0psnsoyDLplObAeAlctxCJ81Yedk1RWhYTmNDNndzEn67HktjtpKuKdfBbuLi7iruJWrFEXpKIZguSuw9kGs7bmogYTEyZMeGhiqu0nTJgw4YHDorbElDnuPIvakeMocW6I0KqUb2zGKBHZCIl/r7XMiqDjikXFR48GPjx0kGEzJhIjJ+c1zomDqlbQOAtExjERoURQKwafSFmUv5XRGKNoK43Wii4kjMoonVEoNl7iqkPKtNZwMBeVrjOaw41nXivOrBPzytBHRULqdG00KE1KUf7U7NyHNAqnNdoJMSkmiEmhcwatSxy3YlE5Ts2tRPOljCxZIVIGaCtxXtq65DqrCePAr738ev7nu/471WyPf/C/v5L5I66hG4UQNK8sMUqP11aB1RAlmjAprJJ1SBRUgqxIZExxyoo5YZW4N8WUmFWa4CybQQYye3NHSnLvW2d3w4szK0/MCaUUe42jLuses0RWmMowrxzWSO8xL7V77yOLRlymrlg0KKQXXI8RZxRay/DgXMLdfuM4RoRA26jGyujSx29jGDOrMWK05tTccWpeY5Si82EXK946w6w2+JBLfKOWiHZkL8Ao2ReIyL3XWnHlrCKmMszwEWckJmR2Eb3wpRi4TZgw4YHF1GtcGPb39887PnPmzAWfe3h4eN7xfY0ivLO1nDhx4qLX4py7Q7TevcG3fMu38OxnP/uiznnve9/LP/yH//A+P/eECQ9FXE6JIkO5Rl9co+qPYfzy1q3KGo01msoq9rAYrbnxcMOyLwJoLwLsyioaJ/HSmzO38n9//7fSHd7KiWsex9P/5Q9impaUkHSJmNlvHfPK4kzCx0Qi0HkhP83QRMAHMGQaZ6i0IpCZVyLy0EqTk7w3zsgcblNJxN5e5c4KCICUwRrNnjNUldTmnfeEmNhrbCG/Ka4+UXOiqUjqLFlJK/AhE1JmVsucafASuZ2c5vTGo4zZJotjtcYZxUePI8pI/+iMIUXFQeMkpq+QmnJxyl00Vvqjxu0MCyorMenHIfKIfXO3hgXzLHOUTZnlHePZbxzrIeyIVBMmTLg88JAkRk24cPz6r//6ecfPec5z7vGc5z73uTtiFMBv/MZvcP3111/ytU14eGIiV1ycRet6CNy6GujKaxZiU+C49/SDRCWcmFkpXq1s2n/kuOe491y937Co7SW9333ZUA4x36OKIhRCDoBPER8SdWXYby3aQEryGK0NqRS+KSc2IyUmQaG02m3EW6OZ1RatyvAhZ07Na1kHirYynJoLMSomaWwU0DiN1Zr9xnDLStyqnM4Yo7BG8zu/8OP8zn/4eZRSfNtLf4SnP/MLaJ1hDBmrZQik1XbTHvZbhy+vP5EIUdFYzaK1WCvq8uPOc9z7HblJG1UaBEXlxDb2qBtprThh1VaU1VuCU8rSGOw1QnBb1JaT84ozG0+MCac1VaM56gO6KBkqa5gZxWYI+JSZVRarFTErtJbHpNIMrMfIQStRFrWV5muLu4uLuH3cyln1d77TxmF7/rZxAFHub5vdWf3gIjROmDBhwoQJEyY8FLFXW27TigFIwF5jUWRWY8KlLE4+SVyjDlq7q8lBeoFZZRlDZtl5DjuP1lJvHm1GZk5isp3RQsyxmrYymAijz1DISSjZkNcKiUSrHY0xWCDkiB9FLNGHSIxJakorG9ghiEvtevBopTnuPRnZJNdZQYIxJXKJY6O4tDqjyVmcZtEQAzhrZAABoBRWiQp63ji0UfQhUxmNNQpbdtyctvgSm7euZHPcKhFI/OL3fxfv/e9vwdYNf/87foS9j3sM6yFCzixqzYlayDvxuOeakzM+ctRz3AchXuVMSolYNvathpQVMWd6H6mNWFdtS3CrtbhmBan9F5XdCTGclQjv0WcWjSElce7tfCQraJ0MCpw2ZDIhZ/acBRQhpp1SeqsiP+5G5rW7S0elLeGu95H9xtEbiRcJKTMEEYocbkaWvbhGEUXcccW8Yl4Zln2JwBDVCM5oKmOoTHE0LkOszgd8kIFNHxK1UcWtS+OsobEGHxOrMbAoEeWzi/jZuBQDtwkTJkx4MOAxj3nMeccf+tCHLvjcD37wg+cd350o+96u5fbfu5C13Nd1bHH11Vdz9dVXX5JrTZgw4fJKFNnue2/3we8tweXexC+f61bV+8gYMidmFbeuBonOtoqs5NpGKcYkjzs+PMNrXvYvOL7lw+xd/Siecd2PUs336QbZs4+AjoHjLmG0FsH0EDBa+oOwJQzFTFMpmctYg7OKGDONs+w1jpzUzr13CIqcFQczzXEXiCVGbtHIXG6IkU0fMEZJxLnJpAFmtaU2mpBljnSicfK6ssIYhdHigrvXOIwWx0dy5mBmGT2g4GgIKKNYVJZMKmS2zKJ15JwJSWYuV+7VO1IU5b6GmAgxUzuJID9oHYdrj1KqCCeE1LZozN0aCWilmNcWaxTHnUTK90aiEzdD5GA2EaMmTLhc8KAmRr3pTW8CJAv6KU95yr2+ztvf/nZWqxUAn/u5n3tJ1vZgwetf//+y9+fhtuVlfS/6+XWjmXOuZu+CokBAAUnQYBc1D14PQZGQXAGDOQk3ih67BAWNJIqKJkgAEYgGFU+IgZgEiMd4Id1j7BKbCApcu6OIgXiQCNJUt/dea81mjPFr7x/vmHOvvWtX1a5iF9Smxvd56qk115pjzt8YY6693vf3fpuf2339mMc8hsc85jF3e8wTn/hEmqbZWeb+l//yXyZi1IRrigc6ueJqLVqXfeC21YAfG4RlH+h8IpUixX/OFOBkUGxCZohrzs4rDlpRTd9y3JP362t6vY82nkVt2YS7V1Fsjx1iIkRRDreVRStxVjrxkY2Pu1gHO9ol1c5QG80wbsCHJK+/GRKz2qDG9c2cobKGWknxG2LhcFaPkQxCBOtDJmU47sThaT1EYs5sBomF+LX/8K/59//yNQA854U/wJc9/W9IjEQpNE4Biv1WUzmxlu1DZj3kkSSWUWgaq6is4czMsepFrb3RiXntcFqU7yGOQxgU6z5SUPQhc+OeSEeckQbnoHU0zvCRow0hFWaVRishYrWVxRnNhY3nIQcNt696/Eiw27qBoYQQlnKhU/I5K2Njud86iUDxQqZKpWDH+7TfXize7you4qrV3+O8yceMT3n3GrXTu+zteW0nNcWECQ8wTLX9hAkTJtw/0Z1y0Vn1mkzGKMW8UviUCdlQWVjUDmdEwFAZLQKEsZ6bVYamMhifWDSWtY9c6AJGK87Ma/Yb2VjvhoxWYIzGksmj4AAUZ2cVaFEct87w8LMznFH0UZyM+pSwaOpaodBQpK8ZYhIyU8zkIj2MxOtpfM7iPhUhpIIxYu2qVUErUM7Q5kLnYV4rSir4MAojjKwFBTllstEMMeG0Yt5YiTFXipAzFD2uvbDsIx88t+Hf/ej38/tv/UW0tfy15/8QZz/t8fQhUWXFrDZU2gAKAzRG43OhqaVWHsZBTy4FVeQ+xCzEJKtlkLCoLYtG+qvKaOa1Y9l5cgXzMc7voHV86oPmhAg+JZZ9QGvFshNn3yFmlIaZEzHGombnRDyvLSlnQpZ7AOI4ZbQiJCFunV97hpjZH3vQ063hQSvuu+sh0jhD48yO3LbuI0aL4EUruR57raMZ2WYi/NAs+zi+78W+QSu1Ewad9EJu28aLK6Q/dVqeP28MyyEwjOKTXD7+A7cJEyZ8fDD1Gh8bPvMzP/OSx+973/uu+tg/+ZM/2X195swZbrrppmu+lic96Ul3e1zf93zkIx+509eZMGHC/QP3p0SRy/e/7y0J/t7EL592q+qCOE1tfOSkC3Qh0ceELnDcR1CFkKDbnPBzr/w2zn3o/czP3MhXvPCfMX/QQ1h2gY0PbELEasWidpja0PtEnxJDSNROaupaK1AFstT1XchURlHXhugzxkhP5CpNSBKbDbDX2l0KijWKojNDVOy1FmssTglJSivZ97dKyGJaKZyBvUrE/dZoVn3Eao02ipQLVmsaJ66wZiRaKZPIsXDQOJZ9JFNIBSqn8bFw0Ngxzg4Wld25y9ZOMcTESRcYRgKeNZp5JbGAGZkLdUNiCIUbFuKOla+CnFdbw6wqMgvxQowaYiJne10ZN0yY8MmM65oY9SVf8iUopfj0T/90/uf//J/3+nW+6Zu+iXe9610opYgxXsMV3r9xdHR0ibrjCU94wlUdV1UVn//5n89v/uZvAvCud73rPlnfhAcuHujkiquxaF0PkfNrjw+ZtZdM6ThuylZWIvL2GkuIhTLGBQwxi5NUzJwZIyVuXw7cuN9c1fUupdD7xMpHhjHqbkvamlfi6rQtXvNwxw3q0zi9idyPBKnDmRvJPo55k+lCpBsSJy7IZwLD9ioYo6ilGdXdAAEAAElEQVSV5HGfbCLWygAGhNADcDCTc6yMZr8V69IhJvbbiqbKaBRNlamNfJa6IVE5g47gY+JtP/8W/v0/+0EAvupbv5tn/O2vwxnNapBN+m0zVTnNXu042nhQ0iCVMg4pUNywaGicRBi2LrEagpz7ENkMiaaS9cVUuNCN97FAsYqjzkusxTZXXSsqrWmdRakERT7vZ+aOw3HYcNJHQko4Lb9HalS7dz4wRGkkYxGSlDMaqxR1ZajGe+VMhVJyX2pr8ClfUvjfXVzE3am/t5/v07BaHL22ZMa2MlP+9oQJD0BMtf2ECRMm3D+xrd9iKSwaizWw6hMFiRnQSmq5dqwpa3fH/sUZzf7Mcdx5FJa2Mqz7xGpIFMQZaFaJIlgbhe/DGM0twgJnFItRdVwK7DeO2mlCkBi1qDOxjIrlkDjqPaoo5rVsoA9BnFdjKjvxQMagSiFl2cTOJWO1RPd1SJ9gtGKvtsTk8UlEHRlxhXKWHZFmv3UiyrBSgzdjROCiNmwG2MSEK4oB2fx/87/4Id76s/8OpTVP+7Yf5MbHfSGxCDHLaihZXJl0zhJZ11o2WtHERMoWoxMpyXMooJVmyIrWgtUGqxUP2nPU1o4x2oaUE51X7GvHQw9rDmY11ShwWdQaox03H0M3ZA5bi495F3UeciFEaQRCEsJaHnuexhWGlKm0OGit+kBb27FXF/emZR9oneFwVl3yuRAHY81mSAxjtEhlJbrPGs3KR3IxEuOhFNZKBMZyiDvFPVw5wm5LgPLjsAdGkhrQVNL7VEbcg8vYv1h99XsH12rgNmHChI8Ppl7jY8Ph4SGPfOQjd7OEd7zjHVd1nPee3/3d3909/qzP+qyPeS2f8zmfc8njd7zjHXzTN33T3R73W7/1W5fcs2uxlgkTJlx73J8SRZQCysVa82qcnq6EexO/vH2vGAshZuaN5fZlYD1ENn2kj4WVj/RJ5jcp9vziq1/Abf/rPTSLQ/7KP/gx6rMPQRURGzDOP7SWWGlrwCeIUepkpcAZme0YLbU+QKaglWavsmQnM50+ZVRSY1y1CDNKLsQkkX5GaeaVRSO9RNdnCkVivMXUlgft1VzYBFZD5LByzGrL0Say15pdzW6V9JbbXtDHTBhdak3RrHxgNs7/rFE4bUBlNkFiuPsoxgE+Z9Z9ILjEetBsQhS3Yi0JJK0T9+IuJIxWWC2CjUxmUUn/2YfErLr7eUVbGbogsxAfJcK8C/eM2DdhwoT7Dtf9b2IpokK7Fq/zQMN73vOeSx5/+qd/+lUf+5jHPGZHjLpw4QI333zzx6z2mDDhNB7I5Iq7s2iNKYsywKdLSFG1FYJN68TlyY95yFLgmR15rA+JC+uLr3e88dy435CyueL1lrg+ibo7/S+l1YpmjPhbj5vCBYg6362Kog/y/Ji2rlhS3PZjJvbMSeTGhsgQM8ebuCMHpVzYeDAaNkMkA60yomAYVQBtbQipcGHjOdM6jkqhshpn1Xh9CxnICVylech+S+cDaukpzvL7v/Ff+A+v+X4AnvG138zf+sZvI6RCSKJmbp255Py392mbTe2jkKJqp3BG7a5b7TQX1gUzNmKxZGKCaDSpFGojaoSNl8ZPIZvz24EHubAMgZAyJcsFWfWRw5nbxS7uNaLcjlki+A5njpSkafEhY62CqMQlqnG7tQC735+jTSDmQkwZa/Qlhf/VxEXclfo757K7l1orGitq7i3mtb0uf28nTJhwbTDV9hMmTJhw/8Pl/UkpiCBCK2KyY3y3u0sF7ZbMNK8dyz6w31RYHUe314xPhbiBPEbn+QgKidWb147KQmst80bioPdq+fpCDjitGII4PK36yLJPu94wjJESG58IKeNjIWQoSfoRY4AClRWXK6ULe42lC+LEG2NGym6FohCSkH+MA2sMKRcaK8Ica7T0XpXBaonx01phbcHlTEjSg7z7P7+BX/v/vh6A//3vvYRHPuEprH3EFLkWldOELGKNvdaxqA1OC/EmZUdMHmUshYJPhZREKNRqidouSA9yMKvYqyQmbzNkYpYowARYa2id5hFnW25YSPz4xicOZxWzKosoJop717n1wEkXoRSGnOl6IWu1TgYh7Poe6VtqYzBKRB7rIVJbs4vpnlXpDp8NZzQHM03Oct23kXxalZ0DVjurhHQ3xnxf/km7sz/7zip8QhyKrbj1gvSyWilx6LKaEKX/vZphG1zbgduECRM+fph6jY8NX/7lX85P/MRPAOIC9f73v/9u4+je9ra37VInAJ7+9Kd/zOt41KMexeMe9zje+973AvDLv/zLlFJ2gsk7w3/7b//tksfXYi0TJky4b3B/SRTRSpEoUuOlIhF/94IIf2/il7d/avoxXSTEzLlVz4WNJxe4fdXT+8QQMqtNz1v/2fdy8//8v3HNnC99/qs5fPijMErRx0iIiZQUeVyL8zKD0Ur25ueViFMqI6SpbTSfVYpipObvR9fc7XxJNNwZozSzxoiLbsk01nI4c0ChtVYi8ZqMUqBQOKu4YVGLQ+zWabgSZ6V1TMQiKSFGK2IUhyoUrPuIs4q2FkexPiUqJ65ih3s1fUwsakuMhVIUx51nVmlihHWX8EFmVovGYrRiZg17jUMVdtHbViuU1hRGl6pKs51C+pi5TONxRejxnIZxFrKNUZzX9/RTM2HChPsC1/3k8e4K3gl3jve///2XPH7kIx951cde/tz3v//9EzFqwjXHA5VccXcWrVsnpyEK0z2mzKwynJlVl5CoFFuHHylyZ06GCufXA6shsuqlSNt4PWYd3/F6H208q0GcicxoXRtzQS61ZC37lDnbVswby/m1pwtJHIuMuVMVxbYZWPvAceeJubDsA6UUupA42sj39ltRGqeUWftISmXc1IZ57aSYD0ISqozYv96433DQVKQsjRJKCFPnVgPn1h6jFGdm4tBklLyfD3kXgfGe33sH/+YHvoOSM0/9yq/iOS940U750DqNc4bGGNypz9usMviY6IOQnVLJKNhtrG/voFYXN+O3X3QhodQ4SMgFnxIxZwoKqx1WiyNVprDxcUdwU0qxHqNIfJSYiq3yQGuJ3StFlNXaKg5bx2bMtl4OQZqR8T9nxGVsG3VSjTEgfUwsjN4V/vckLuLO1N9XwvZazWpz3Tm8TZgw4dpiqu0nTJgw4f6Hy/uTmGT4uHW4re4iPnuL7Ub4zBm02jo0ycDCjFLsEIW8U3RBI4Sj2mlqZ9n4iNHs+gMhzihqKxFvBcVm2ZNLoa01mz4SciFlqcud1iwqR6cCsTYcdRkfI7YYlFaQEs5odBE3VWs0WisGnxiyRGXHVHAGspYNclWgNhIPsa2pD2cVZxdO3HU1DL7QWMNea1n1kd/+pbfwX/7lDwPwN5/7PTzh//03ubDxGA3rIVHQNM5iS6bWstFvtMIaTe0M8wKFwrqX6LdUMiWLy1TO4jw7b6VfaaxFG+kltIooL72hsxqtYVZbaueYVVYiSoLEAO7v1XQ+sjnxWKvZqytKXYg5E0fXKJ/SGGmo0Qoaq2kqy9wZ6soQUua4E7EFMdPFxL4VJfbJGKEo0Yan+vrxfh62jpQlHn4I4nrcOlFe+5jJ1Xb4PQ6psrhYXanXUIgwxo89ZHWq36ms5vbVQG31TiyyHgLrwX5cB24TJkz4+GHqNT42fOVXfuWOGAXw+te/nle84hV3eczrX//6Sx4/85nPvGZr2b73Bz7wAf7rf/2v/NW/+lfv9PkxRv71v/7Xu8cPf/jD+YIv+IJrspYJEyZce9xfEkVqq4UMZQ3DGDM9v4pItdO4t/HLZZwF3L4e6H3iwnrg5uWAj5nj9cD5daByGlLmN/7lS/nQH74d4yq++Hn/hPahj6XzEeMMCoVSmlQiPo41vZU5j1Ey72hqQwjSNxmF9BYFKmMwWjMEWf82qSPmTBckFq9xQNY4pzmYVWjGtA9tuGGvZu0Tbqy3N15mWudWPZuQaKxhE+FkE9ifOSDjjCaNs79CQRXE1VXDuk+kIgQphYgdaidi9cNZTW0050K/ixNfDQmtMhqgyDFaK+aVpakMMWcqI+veqy1DEsfcVR+Y1xK/V/L2Pl71Ld+RobbConvrNDZhwoRrj+uTNXCNkdKYe2ofWJfj5OTkksdnz5696mPPnDlzyePlcvkxr+fWW2/ltttuu0fH3JM88wnXJx6I5Iq7smjNRVy0Qsz40Tmrtpq9xt3hnMvoU7Td+FFKLP73WyfOWyHTj1nHXYjsZXvJ9b5tNRBSYVE7hpDoR0eibW50KlBpTWM1IRcurD1DlPiJPooauzm1UXwa3RC5fe25dTkQUh5drqTKdEZjlKYbPH2QiL2z8wofMkEVYkr4VNBessY90IeM1ZqDmeNwVrH20iDZmLml6xlSpmS5Zr1PHPeBSmtu3K9ptGYxqnz/n3f/Hq/+7r9LDJ4v+JK/xt970St5yH4j6t/LGh7FGFtYyeftttUAQMwyLHJWYcZ7cnrzrbJKHK+UwqDoU6YLifWQUEoUDc5oKidxJEaD1uzu1xYpZ1abKMV7U43DGIkU3EZP7DWWanR8MkrhR9V3FSXawyjF4ay6Y9SJVQyROxT+9zQu4krq7ysNP1o3qasnTJhw7fBAre0nTJgw4b7C5f1JygVr1CmH24t1XBzju9dhFLPkghqdXaVDKTTWctBKHHcXZYAxr60Q+rUiJIlIWPnIeogYBXuVQ2k4Wge0ljq8IKrtXBlWgwguYIz5U6LydcawaAy10QwpcbTWVC4SYqaP4oKVc0ZbQwQapwhJ+hhnxJU2bkRUEHOW/5IMM5wRp9rWVcxrw4PmFQdz6bWMESeltpaN/Fll+KO3/RI/99qXAvD0r30ez/jab+GW4w6NOHBJL2W4ab9mSJn1kFgPkVQKeozsUzCuC0qOaITsZLUCa/G5MCtqFHEI2ezcxovz1UgkyhkMinktjlc3n4iTR+sMdSvOX0Yp5g+ybHzmuPNcWA8s+0jKIgSpjaayShyLa4PRhkVl2GurcZ2KyiSKE4GND5m1ClRGc37tOWgv618LpPF+rofIaojUVnrJZR8wRmGTDHD6cRi2dU32UdzA8hWGVIWyE+XYUb2txuuNAmsUPsLZWcWQpGf6eA/cJkyYcH3hgdxrPOUpT+Hxj3887373uwH48R//cZ7znOfwqEc96orPf/vb386b3/zm3eOnPe1pPPaxj73ic//0T//0ktd50pOexH//7//9Ttfy3Oc+l1e/+tUMg+zFffd3fzdPfvKTcc5d8fk//MM/zIc//OHd4+c///kTUW7ChPs57g+JIq0Td6LKimAhZiHJ35NYtHu6nx5SZjMkLqzDrsZd+8gtJz0nvcSDX9jIz0JO/Na//Sd88Hd+BaUNT/rWV/Cwx/1FhhjpfWI9ZBF2JIlF9zGSCxxtAs4ZZqNLUmstlSkyI1Fw0gdSgkDEWYvWhcpY/FZ0MtbUeSQtaSNzEGPk3GbVGC0+9oMxFYaSSFnqcKWgNlJfG4RwFVNmUVnOzBzn19J7KRRFFbSWMA2lIXp5vcaJGMMq6fec0ZydV1ROes+cMikXUpH51ay2WA2z2u1mHvut5czcsajF/ffC2pOLpHBUgEbtZnP3xC1y++flcoHRhAkTPvF44FXwV8BHP/pRABaLxSd4JR9frFarSx43TXPVx7Zte5evdW/w2te+lpe85CUf8+tM+OTD9UquyKPq9p6u964sWvuRoBTGpiCVIqrcK5DFwqjmVXr7uvL/rRvUcfRCYApCzNlmHTujMSYzr2XD/dza7yxbrVESJWelgA05M8TCaghAwYeM1rDXOlZ95MJGXIxOb1Dftuz54IWOXAo5F3xI9CFKoTtKr/uU2WskgqIPkZI1s9pxxmlWfWAzjPnQYwTGfut2DknLPtA4gzOK4z7gYyamzC0nPZ2X85rVlqQKtywHWqspBT7wJ+/lRc/9Gvpuw1/8or/MC17x48Si0AhR6eL9E4Vxc9n9c1rRAwpRXrhidkOi6tQmudFy7KoXp6jaasnmDpK1rZAYEIU0QjkXbj7u8OlitOKsMmyGRMyiljnqPEM0xJh50F59iduY1opZbZnVcv+GmJlVltUgWdoxZarLIiO2bmOnC/+PJS5Ca8W8tpNl7IQJEz4ueKDW9hMmTJhwX+FK/Ykd6+Ptz/sQOd5E1j7cUU2bxLnpwkb6D6c1la24YVFzqBQxSwSDH51wl32ksgZjFVaL8MAaCLmwGRKN0zuXo5gL59aeD13o6GMk50LKisZp5pVlXov706wyVFFTsqKOmsEnbl/J8SqXHRGnddU4qMg4CyUrcpH48S5kfEgUFD4korXURYHKZLQ0CkXhtLjNhpFA1jrLH77z13nDK76LUgpf+te/iq97/vcQY6EyikXtxj5AifvVGDOuUGyGRO/T+Hqyg++T9Au7jXaFnEcBq6DSCqPgeCMuW21lsEYRgqyHJD3CLSeesqd2wqNtz9L5RFsZSims+kg9RuaFLGQtDVStOEW1VjPbujunwknvsVqPEecSsVgZza3LgZQLRgdqa1h2EWvVnTpBhySOAKlknNUjWc2wGuI4jDJjzJ4MY2KW4djlQ6aNl2h2ZzR1JW5llRU3sPUQaZ0dIz2EBDWvDH3MH9eB24QJE64vPJB7Da01P/iDP8hXfMVXALBer3nGM57BL/zCL/CIRzzikue+613v4lnPepa4GY7HvvzlL79ma3nEIx7Bt37rt/LqV796937PfvazedOb3kRdX7r59NM//dO8+MUv3j3+lE/5FL7t277tmq1lwoQJ9x0+0YkiWitqK7F+rTMsh8jGJ6xRVxXBfE/301eDCEMAKqPofGYIiY8cdXz0pCemwrIb6BM4Bb/3ltfyx2/9z6AUX/otL+Gmz3wCMWcy0kOVkljHMsaNamIqhPG6taUwryx9EmeqRWMZUqGySuYupeADLLQ4+ZYiggMRR1SElCEXlILBZxpnaSvNYVthxvtx1HlQsGgNQ1SocjGBpA+JPmaMggftVcxrSfgQIwBFo6Tfw8vfEaM1RmXqStynNJAyaFU4O6soSsQpRimJyEORGSQ2r3Y4rcaUDcusshw0jupU76CUCB8kYSWyHpIIS06ZDlwttn3a9pCJhzthwv0HD/jO/dd+7dc4d+4cSik+9VM/9RO9nI8rTud7A1TVVQSkjri8wei67pqsacKEu8L1Qq7YsvqHmLgDGfwyJeyVHK7uyqLVR8lYHmJmSOMG7xXcjHIpu43zrUXrNvptm3OccuHcaiBkaSZShrPzCq1kM1yPKojGGhprmI0b6kMQ56VcQCtN62TNfUi7yIQu5rE4LSybwMEYwPzRo47jLqCQXOjbTnr6lKmd3l0D70WJ25M5bBV7jWFROVYhsRwSZ+c1dRVZ9xGipm7ksxFG69P9xjGrLTGJe1VUiluWAydDxCgtG93J8+C9BkohF7jtI3/Gi77lq1mdHPOYv/B5PP8VP4F1NSjFaogczBx7zZVVZ1tUxqCIlCxqAqMVKReUFUvXLbaqEGcglUxtzS7TOxcoqhCCNB4nJYwb9w6jtCjDC6x6aZCM1vQhsu6FaLcaIkopGSBcIcqwrUSJXjvJZ/chs+wjbSWDhu3naOs2JmsqI7lv/HxOcRETJky4H+OBXNtPmDBhwn2Fy/sTnzJ1KbsN3tuXA2sfd8/vQ2LtEyllchb3UwVshoRzmpwzNy8HUHDjXsuicuyNQ4+z84r1ELl9NdB5UTBfWIvY4dzG0w0JZ5REQ4z18XKI3L4c6H1GG7hhUY/OtRpr5D9nxri/VmG9omsrhlQ46QIpK4aY6HykD5mzKVMZtdvQrowaI9syuajRQUjTGIkGbK3ZCTQ0cDBz1NZwOPZ57/2D3+E13/dcUgw84SlP5xte8DL6IEOOXISoswmRptIczB1DTMSUmTcWozU+JUIspCTOtJRCotBUFlTkZIj4kKitoanNLjruYGbRiOLCaYOtRQHetkJq63xk2YvL7Jl5jU8Zv8mcmVW7GDtrNSEU9lorzlUqYLWmqQwzJySukz6wCYnaaMJGeo3WGWqnWdSO1RBpnQYUx5tAbRMpF3GuPT0USuN76ovXPicRHKVSmM0cVdbiPjWISGjr4ht93rnkVlbiNLqQON4EABa1oTIaNzr+nh5SPXivFjV5LrS1pa35uA7cJkyYcP1g6jXgGc94Bs973vN47WtfC8Af/dEf8Rmf8Rk8+9nP5nM/93MJIfDOd76Tt7zlLYQQdse96lWv4nM+53Ou6Vpe9rKX8da3vpXf+Z3fAeDNb34zb3/72/nar/1aHv3oR3PhwgV+/ud/nl//9V/fHVPXNT/zMz9zjwTiEyZM+MTiE50oMquFGNVUsp8+hMxJF5lV5ZrGLx93YZfY0XtxxzrpAhfWnhAlTWLlA+uhYAz84S/9W/7ol34KgCf/nX/In/uip7LqA0MupCSR21vR9RALWmWkei67fiGmzEnvOdM6QJFLZj0UUoSSJJGiD4mZ06AkOi/EgiKSkzg56aSpK8WZmWNe29084vzGE8b5lY+FVRdpK03I4mSbS6H3icoqjrpISApnwAZxfFIK9mpLp8UowKpRjD8EVt14XSslopUs4hs3RpH7WEhKxDxGax6yV4vTrTPj9VcjWUzthBPN6J4Vkjgeh5RB3dF04Gqwdazd9jr3JHpxwoQJ9y2ui+79Xe96F7//+79/pz9fLpe88Y1vvOrXyzlzfHzMu9/9bn7mZ35m9/0nPOEJH8syrztc3gB476/62K1N7RaXO0hNmPBAxWlWP9z9hmofE31Ml2yo3pVFay5iUZrHL6zVVyzyh5glUkEJQUcpaQriGNu28ZGUi2ywR7EVDUmK5ZMu7IhPKUsBud9aYiqcdBfPLcRMnxLlsnPTSpj/Tiu6kPjQETSV4aQLHHeyKXJ+M3DSR8Jok+o0VM7Qh8RmEIKV1lBUxnmDPTQ8/LBl1UdUgcPGse4jfmwInNGcaSv29i2LRtTNx10g5sz50QL1oHFoLfektoYCzGrLyfnb+P7nfhUXbr+VRz32cXzPj/wrimtYDaL+AD9G/am7tMk1RtQUQ8xUVuO0nM/ssgZJjVkklZMmLsSM0oraSiHfezCV2LM7K7Efzoj17NY1qrZ6N2TysXDcR4z2zBtLFdNojXvHKMOd25RP7NWOJUEcw7w0GG6Mi1gPEZ/yqCLJGC0EvCkuYsKECdcCU20/YcKECdcXLu9PQNEHEVLcdtzjozg9rfvIso+EcpnLTpIa/KSLmAEOZ+LSc9vSkwt86g1z4OJmcy5ChAForMXpxPHGS/8REl1AlNpaYxRcWAdiyfRDpE+Z3kcefnZOYwy2UsxHdfa8tjTOkErh7KKm91EcfsfYvy5kYomE48yilrjxlGHZi2I4pgJK3JoO5hV7tR2dVgszJ+5USktkdUKINh/+k/fw8m//eoa+4/P/tyfzbf/41fQZuo0n7BTbhXUfOTOvSRkWtaMbIiEV6kphk8GPrlA+ZdrKEpLnpIv4EKm0Qlea1lkZTiip6Zsxcr2uRB1eivSEB61jE+KuR8kFOh/IRdyBY0psjZIOZ460ypwUEVlkBQ5FUxv2aruLaIeENeK4FFOhmWnmtWPjIwo4M6/58FHHEKQPcWOMyF5jd2KMrQAo5jLej8i8duDFwbYPl/YwpRSWQ8RqibsLUZx0xTVXhkcFaJzmoJXo8YPW4WO+4pBqr7GEWD4hA7cJEyZcO0y9xn2P17zmNSyXS970pjcB4hz1ute97orPVUrxwhe+kBe84AXXfB2z2Yyf/dmf5WlPexq/93u/B8CHP/xhXvnKV17x+Xt7e7zhDW/gi7/4i6/5WiZMmHDf4hOZKOKMZl5b1kNkv3GcIAkOdxe/nMY6WWmJlj63GpjXlmUf77DW1RB3pKiTPoz1NaBFhL/fivghpYJWhf/11v/E7/+HnwDgf3v23+czn/RMYiksGgcEVpkxRUNqbKWk5i9FCEkpgx7JSbWxVMZgDJA0Gx8IRQhNY5q39CyksRcEn2R9e9aNMw4hFW2GhNIXkzCc0aScOeqCzDisIWbQudCpSCJRisUqRcgJo6SX2m8c5zcDqz7QhTw6zyoiGacUbS1kK6s188ZIbV4ZameogyGVhA0GrSSer61krvGwM+1dkpQqowkpUWm9I0ZtXXXvrDe4HLmU3fXZGhZcKe1lwoQJnxhcF8So//gf/yMvfelLr/izUgq33nor3/AN33CvXnubC6qU4hu/8Rvv9RqvR1xu+Xu5g9Rd4XKHqGthH/y85z2Pv/W3/tY9OuZ973sfz3zmMz/m954w4VrgDqz+IJnXd8ApJWzrDE0lg4ZcCvuNu0uL1jIW/CC5ylqJO9FphFR266jHIYAb2f3duAFcimysb0JE9/JvoNGygbwZhCBz0nliLtywqMShaizIhzHO74rnhpCjjteBthZ722UX+JNblwyxUFvNufVA5zPdkKmdwmhxTFr1EZ8L1irqylFZuY4xFW5fDmyGxJmZo4+ZeTGcmVeEmBmiobai4vYx89GjXpj9CiH9DHIdqzEyb+twVVlNvzrhHz7nq/jwB/+Uh3/qp/GT/+4/0R7cwJ+eWzOMhLG1h9tWomi/M5vcXAp9ELKZ0opZZamcGu9HZuPjzpGpMpqYxFGrtgYfAyllYoLKyT0ISYZBi9G6NeSCs5qZsxy0QkhaDXGM5hBHp5CF2Ha0CTxoUXPShytGGc5rUXsPIbNXOwYj8Rwxix1uH0SNUoC9RuIJZ86w19gpLmLChAnXBFNtP2HChAmCexu9/YlYx+n+ZBsvsPFpJwq5fSUkIwCNCCMaazBKMaTEhY2ndopUCmufqXShrgy3LgcWlZH62Upf1I916m2+ZzUE9LiPbJTihoW4DK26QEyZpQ8cD6JYXvuI0op9LDkX+pTQgyiIGydrKchG/RAS88axn8S5SSmFUoWYEimKUMP2BmtELAJyTUoEU1lx1HWWtja0zkrdrCCPvVgphY9+4E/5ob/3bFbLYz7z876Qb3nZj3OhL6QcKapQGc2schyvA7NaSE0pZ4YgPVWl1ChSUGhdqCzEpDjpJYa8rRRaGRHNKIvREl130DoedtCitWITEn0o7NWGRV2xaKSef9BeTSqFTR/ZjMKZg9aRkuL2dWRWSQReH8ZeIWXWW5cuI/F5WmvmVlFZ6e3U6H41r0TQE8eBwLy2rIYg60RU14czt1Nmb9E4w/yUuj4XWA1hF6E3pISN+pIe5nTv6+NF1+Q4Cn3mjWGvETJU6wwhFXy8SIo6LfqYVRYqPiEDtwkTJlw7TL3GfQ9jDG984xt5+tOfzste9jLe/e53X/F5T3jCE3j5y1/Ok5/85PtsLTfddBPvfOc7eeUrX8lrX/tabr755js8p6oqnv70p/PDP/zDPOpRj7rP1jJhwoT7Hp+oRJFFbUlZ6s79xtEbmbNcKX45pkwfMqmIaHmbFrEVMG/F6ds0EWfVrqc6TYqaVYYuGPZax4VVwBmpPz/42/+N3/6//ikAn/cV38hn/JWvYu0jVktMtdUapzOt0yxThFIwY3pIKUL00apgx2i5uTMoVTBKobQ48MahEEloJYHfBZmrnJk5Gmu4sPGEBNqISD6mwnEf2G8czkisduM0G59YDZFKa27Yq3FakVNhFSMlKZwxo8OvIqbMAISNpx6vW8yyzkxhPSQWtcFWBpMKIE62s8pSSmFRO4m7tpoPXeiIRfqPhNyfJon4Qps7r+MbZ8Y4b7keKDEtqBWX9C13hc4nSpH47WoUg1we9z1hwoRPHK6bqebW1u5avt4WSile8pKX8AVf8AXX7PWvB+zv71/y+MKFC1d97NHR0SWP9/b2Pub13Hjjjdx4440f8+tMmPCJwJ2x+sWp6WJ0w+VK2OUQ8Tmz3ziJr1OKRW3v1KJV4vnGjRhG96hxe38bebZdR2X1jtGec2abbuFTZtkF1kMkjnaq2+iAk01k4yOlFFEoj5vQqyGyqB3LQdS523OrtueGFKghZQqGVa9Z9aJetlbzkaNeWP0Zzq17UsrMxyiHC+uBTUho9K4Ar6whJYk5UCjOrT1Hm0CMmaY23LaMOKtZDQmjFXPnUAYqK+5YQxRG/+CTRFAoGcLUVvOgRU3MhaOTJS957tfw/j9+Dzc8+CH8i5/6jzz4ITcB8NCDltuWPX0oqDFmYj0YPnKh44ZFfUUVSEyiXHjwopahjFLMa4PV+hJHJmvEijVmGchshgxKsrpzgTIqOvZrS4zSjDgtA4bWyecojiqJ2mjqSu7RopJGYt2PQ4NRpbHsLkYZbrHfONZKhlm1lUHX1gFs00eMUhijmNUy0LrpoNmRq6a4iAkTJlwLTLX9hAkTHsj4WKO3PxHr0Fo2q5vKsD+zHG0Gbl324jjbB9lkt0I0WYz1t0Q0ZEBxZlbzoLli4yPn1p4MrPvEXmO5fR2obYei4biPxJhZ9oHVkBhSZvCR2hkWjQwkVoM4CRmjMBvNxheOvSfmjMqakAsnQ0BriQFvK02Mls2QqK2mCyJi6fwYvaYVWhUqa8gpo6ym0pqiC1qLulirhLUWjYhOzi5qHjSv2G9l838TEhbQlcS4ndx2Kz/ygq/j6PxtfOpjP4NvfcXr6bJs2jujqYwiFShZYi6s0cQx4qKyGq00PhSc1qOqW6Kya6dYUIjJoHFkCssuMERRgh/OHLPKsmgdORecNVRG0VaGeWVF9DCqqZVSHLSOVRe4ZTnQ+SLOUYjrVNjFuJfxPA0bH2grTT1u7uci0eu1lSFPTvL3XaGojMIayxATQ8i7/rSx2974jp/JrUvvdjhy3AVco6mcRhVFzJnohehWz4RQd24zMPjEfmMZUmLlEyhFZcXdzMeMdopFY3dDirYydyr6+EQN3CZMmHDtMPUaHx8861nP4lnPehbvfve7ede73sVHPvIRjDE87GEP4wu/8At59KMffdWv9Wmf9mmXXOd7AuccL3rRi/i+7/s+3v72t/O+972PW265hb29PR7+8IfzxCc+kbNnz96r154wYcKELQ7G6O/1IALoxpk7pIV0IdJHiSB3VsTRqyFQG3FUOtr4O6SJ3LoMGK1EUDLOXfZHYXQ4Kew1jj871+GM5iN/8Bv81hteDsBjv/Rv8nl//e/Sj6T/ELfOTvJv6bxxO7F1iAWnlcwZrIjvjdZowBfoQsYnL85SQGUNhcJ6CBitcQX2xgi6Retw1jCkhCqKUjJay1zHmot/g5e9CGdqo7nxoOFMW3HzcYe1mjgU+pyIsWC0EMlEKCMR4xufqLT0fc5o0IWNT4SUuGm/JetCjIWcRSzhY2a/ldlZLnINZpWBUeSw7AJn546NT+y3d95Xb8UPnU/S7yjGJJcrRyZejtNx3W21dYuaRBUTJtyfcF1NNu+sOL6nRbO1lsViwad92qfxhCc8gW/4hm/gC7/wC6/FEq8rXK6Q+OAHP3jVx37gAx+45PE9aXQmTPhkw3ZYAHdk9V8pZ/pyJewQMicIo16GH/pOLVr7kFn2QsKKFJJPbFwkaEPIeffv4VapKyjELGtY+ygFexInpspq5q1lv3Xst3bntLT2GR8TuWRKkdfZ+F6Y8rDbSL783MS2VBTCHz3uWfaJ/ZZddMOty54hZha1Ze0Tqy7hc2LwiZwTba2ptDQVWcvGeCnSXGyixLsJ8Sgwd/I+lVVYp6iNQSmNTxln5NgLMVIXzaJxtNbs4t9S7Hnld/4d3vuu32Vv/5Af+smf4cEPe+TuPM7MKzY+EbPHGmkStoOdzqdLVCBbzCtRaVfW8OGjjjwS3oxWbEbXr5MkQ6P1ELnQBXxMrPpIKZn2sGFmNIMXRUflFH0szMZhTGUUSilR5nv5nNywqCXKwch1bytLH4RIV40F9/l1oKnMHZyu5rU0G93YPDirKYA3mb1Ws2jsSJqSxmaKi5gwYcK1xlTbT5gw4YGIaxG9/fFax5gSB0g9L8pgiXK7+ahjOUTWXeRC56mt4RFnZ8ycIafCkDIx5x3hahvpvGikHr/5pB+/r6DAbStPyLKZ7GPeuU9ZpbC1ozLifnQyRFCK1klN2jjNg+cVVsFxL8OHIWVuX3o2XRxJXBpn/M4xSo8igBgTx51niJl5beUaoGmcoqkMlZZoOKUUfZ134gFV4Oys4sH7DY2T+viMYozSMBxdOMcPvfAbuP2jH+KmRzyK577iJ8muxWkNJpMTKK1ROWO1qMDPrzxZFdZecWEd2G9GByOgUNhvLOshSRxE7VCqEAL0SZyvFkhUw5m24nBWceOiQWmFoux6l9pJjN6ZWSU9yrhp77QITjZBBDIpFoagaWvLonakUui9CHDs2KeedlGK4wAm5UxbO+aVDII2PtFUln58n5kT1ffOAfku/tzX1rDfOnzK9D5xMKtG9yhxA9sMEVA4qzg7q9nYyEkXscBBI58DpWC/qXBWcdhWzBu7+73aYhJ9TJjwyYup1/j44fGPfzyPf/zjP9HLwBjDE5/4RJ74xCd+opcyYcKET1Isaktt9U5ccjp+edkHXDY4Yxhi4mTjUWNiiDX6YvrGqTSR2soso0REJL+NhLOGjY/Sm+VCyIk/+6Pf4q2vexElJx7+hX+Vxz3zW1nFjCoSz00RR1SrFEkpQiq0VtJIUi5YLf2A9EKaSitigd5HzpXMvHJYpSTyWoP3Ga1BFSgK9toao+RxbaW3s1YIXU5rYiks+0SImcoZSob92nJ2UYspQBBHWK1g3UV8yNSVxhpNpjBvDDNnqKxi7RMpSz2/8UKOMlqTc+GWZU8fIj4IgWyIicppln2U/rOII7ICHrTXcNQFlILOZxSe2Shkvxx5nNeFbUxga2VWEjIhFtZDvOKs7/SxV4rrntWTW9SECfcnXBfd/4tf/GJe/OIX3+H7WmuUUjzmMY/hj//4jz8BK7u+8Zmf+ZmXPH7f+9531cf+yZ/8ye7rM2fOcNNNN12zdU2YcL1hM1yMzzvN6r9S5NoWp5WwJ10U0pNJYtc5JA5m+ooWrSFmVlomFDEWuhDJaozgUwqrFHVldk5RzijGmcKOFJVH1n5TaRaVZa8SVfFeLTF1zmhCHPAx0flCLJHK6B1JS2IP7vrcDkaF8lHnOb8J8p5jVJszGsZMbEUZYyCEga+1KHvnlcEYTR8yfcxoBd4XVv3AMESa2kJOPPig4cZFhdEaqyEWWA+FUkTtXBs9qqGl6C6lcLzuedX3PI8/eOfbqNsZ3/Mj/4qHPerPMYS0Y/JrpTgzqygUjrtAO0Zv7Ldud12vNLg6GdXajzzTshwiy15UFT4IoapPiZIYhwviFgaZouHccpDOArl+nZf7VBkhLG2bmK0afxtPYY2mcXrn4HV27uhDFnWH0/go8XqLutyheHdG41oZHBxtPH2II7lLbGi1ggfv1buIxwkTJky4Fphq+wkTJjxQca2it0/j3sTx3d06tvEP4oqaCalgNDtnpHUfiYjD7MkQiDljsuKWZc9xH6itRqEkilpp5o3Uq7lI7X9mXhFS5riPdF42zlGQSkZRWPYSe2CNAqV3seCrIYIq7FWObUnbR01TWw4VqDFaOyNurrdtPMdDpLEapTStU/SpCJknZEJJpAyNUxgMxyVwxlpuOmwogDGK2gjxpwkZYzWHbUUZ3bQohSGIKnlRW/Ybx2a14kde8I185E/fx5kH38Tf/+F/w+zMDWgFqSTWvZCIZKhiGGLGaj1GRCiizpSsOO4iQyzMG03vC62DppbIcaVE5T3YjOoVjRFnr8NZxV7jeMh+zaI55YCkEikXKiOR3z5mzs6rnUjipCu773cx0VaW1hmcFnetzSBRg7UTtlzKZRflocbPWW0l6juXgs+ZHERAZJM4JSulqJwmDml37+5OdN1WImw5KRKbuKgdRoMy4wAlF4YoynF5vsZE4fLtLWr2xh6mcZq9U783CibRx4QJn8SYeo0JEyZMmHBfwhnNwUxfEr+87AM+llF8IISmRSMOt3eZJrLyxJJprWHdR0pVuGEhyQ8+ZlZD5GgTuPmP/5D/9E++gxQ8j/jcv8xnffV341OhdIFZLcKUUgrFaOpGEjhOepnJ2DHOTVGwRkMBp5WIKKIIWXRRaMrYr2m0EkJPwUhvlgpHm4Gz85pmTK1onQjEJWpbsR4Cyz6KyFwViVYfI9m30d1b91+lwGgtgg2lMFpmLTEXZrWloOgHEXtvSUnGCAlrtY4YLWSkzRhnuGgMqkis36zS7LWOlAsbH3eijZjl+R896jlo3RUTQUoBazSHo5AEIFUZo0T0IUIYfafHwh3juqd+Y8KE+xeuC2LUXeHeWqxOgMPDQx75yEfunKLe8Y53XNVx3nt+93d/d/f4sz7rs+6T9U2YcD1guxkL7FTNsyu489wZxGFJijLJXhZFQc4WrdUdLFpvOmwoRYrUlAohZvIo9N66E23RVpJfDQWf8hhjAZURRyar9M7WdZtx3QWJ82ucJmFYdhGiog9pzFXmLklRWygUzsjgoPc9Xcj0MVIAawCtWLR2FyunlKJkMFoIW1pYTKgi34sx4Ys0GjFlHlpbrJEN+NoZbljUo1NV4ZbjnrWPrH2kFAgxc9R5GqNpK8tPvvJ7efsv/xzWVTz3B17Lp37G59EFIZ0Zc1HF4axiXlkU4+BhJCE5ozi8LJpOzlmcpoZRSb0JUaLshgEzErNykqIdtkoCaT6WmwhIdGFlZZNfq7KLVRx8oU9pd6xSkkt+fuUl8q6y+LxVzcv96UPmoLaAEPa0upviHcV+W92heJ8U1BMmTPh4YqrtJ0yY8MmKax29fW/j+O5uHSFlQpSIhS5kLmw8QxjFFYB1inMnns4n4hjlLcpfhfeFwUcqp1nU4p5rtKhzV0NPbSz7rcTsPfSwJV3YsOwSh0BKhePR6dQajbJKoh1S5mQ9sBkiucBh6+hjYt1FYiloLc8JaRv7JopiqxVWK/qY6ELEKsNyuHiOZVQrKxQhg08JpxVmVEgvasvZWYXVcl+qSrHcRIqSOn4IhSEWKgsXVp6TztPowo991zfxJ//jD5gfnOHv/MDrGdozhHXAJ1GUF+BB84ZFa/EhoSsLPmGtFkcko+liFueslNh4GRqsPeQsvdSicWgU89rRVoZNyJAKbWPYayxtbTBa7UQWBzPHSRd2vZGzQjSb1RbXipCi5MxtS1FIH7Ru19s6ozlorYg9khmFGRLPF0ZXsOgzMUsfsx4imz7SjLF922iPympiGnuZsWe9O92FHte/V7uxr5XvHc6qncNZ7fQdBCvWSP/qo0TuzSp7t2TBCRMmPDAw9RoTJkyYMOHucLXCk238cmWlD2mc4aQPu7nQ1aSJHHciANgMCaslajvlgjYSu3e88bz3PX/E61/0zYSh4xGP/0s85Xk/wDLpXX/kYyHkLG5OCoaYCaFQRqJQyZnt3MGOfVJlhPyUtDxHam0RSzsjMxGtNOe7AV0kTSNR6EOk94Yze4ZZVRFzZq8VgYg1M25b9qz7yEkfCXkrssnkXDBK7b5eNJb9RkjL+62jIOKcYZxTSOKJEJIqpzi3jqBg0VisVfiQMaP4vjYKpzRqPC/GSMLKCsGp9yK+sVoitYeYd/9djtOR2yd9QKNYNDX9GMMec7mqY+GOcd0TJky4f+C6/q3cqj+mjOh7jy//8i/nJ37iJwBxgXr/+99/t7F4b3vb2+j7fvf46U9/+n26xgkT7s/oggwifNwqYS/mB18t2srsVNo+StHWBYnLgDtatO61jiFlyYHWEimRspClrBJC0rZAP9p4AIbRxtNoRR8iQ8zMnNm5SzXj89XIltmSZpzRu/iCvdZJpFwud7uRvM2y3m06a9nE10GRYqaqZLPeVIohJhorSu+U5BokCn0U16OUMptQcCiUlY3vXCBT8CGxHiJ7jWMIkoPtUx4JV4njLo6KZg0V/IfXvYJf/9mfQWnN//G9P8xDH/eXuGXZU6hZ1E5IQjHTVhctVWsnUXLOKOa1kM22KoYrNUWrIfL+W1es+oQ2CqthPSRWg6g0tNbkLJ+dwUc2PkvzosFoaZq6kGmdQWlFymCtYmYMIUlT1odMTIG9RuIlXMrMK4lCdEYan5gKqyFwOKtJWRwHpuJ9woQJ92dMtf2ECRM+WXGto7fDKdEDXH0cX2X17rgrrWM9RFIGZzW3r3rWo7tPLoWTLpAouEFco4aUWHYiRqhGhygt+9D4lFj2UnMao2i2bqQjSepgJspZId0oFIxiE4luqK0IGjovsXkxa/qgSSnxwfNrNl4ci2qn0EqLkKIU+pQ52QRCFveglAs5K6xVZDIpcLHP0WCMJsQxMiEmjDY8pNGkVMgZNPIaxqqRnAMnm4BShdpK3e98YeUzKUb+wz99Ae/5vXdQtzO++eWvwz7o4Sw3kXktSuqQYK+xlFK4+agXRywgxETJ0lf0oVA5gzGwGhKrPmGNQWk5Z2scRin2WkdjDcveixiiwP7MceN+zYP3mjt8ppzRu0h1N0Z2zMafKSX33GjDopbrXxACVlsZChKl1+TCSR92PW+LGXuThI+JkQNF59Oo6BbBB7AjyAE0RvqN6irU05XVDDHTOL2LO1Tj909H4p2GAs7O6skRasKECZdg6jUmTJgwYcJd4d4KTz6WNJFFbTjaSNJE7TSLxkoPWCK3nAx8+AN/yo9919fTrU74lD/32fyN7/oRiq0wIZNGItGW1BRToQ+ZmRKn3kRBiUHUOE8pGK1ZNAaNiC/2xrhunxIhF2qFCLyNRHI7o6icHF9SISYYciJnSDlz436N0TKHSaVQW4ObS1PoU+JMW0liSh/Q6uL8xGi1m2c1ToQoIQmhKRWJBewGITSFLAkXtTUS02dk1lRbxYP3ag7binY0Kgij47FSMuuYVYZKK25fe2pjuGFRkXOhdvpOe+ctHnrQAuwMCxpn7rbv3mISm0+YcP/Fdf2beSVb3An3DF/5lV+5I0YBvP71r+cVr3jFXR7z+te//pLHz3zmM++LpU2YcF1gSzDZKmFrq6+YM3xX2Cphh7Gw2m7+zuuLzzlt0br9uRSPjoQoltdDYlZL3IBWii6IY1LKEmcwRFFGh5RxWjNr7EiK0qci5CAhBV2MojQISQpSjUQlDGO8wl0hxHED3Ch0gZwlzqKUgtaGs4uKmAqpFM7aancttZVhSIiJwWfMaPRaO42m4IraKZ2PN54b5nJsSFmu+5ghvfaR204GuiDRFNnAr/z06/iVn5Z/v/7G33spn/6XvgxfMlXWHHWB9ZCwGvbbis4nlEq7a7K9TxIvp3jQoubOcNIF1kEGXzFlVj7R+zF+whpRrge5hn1IKKSQbpzBKo1RYjdrlaI2GqtEtV6yxH5olYWQl2E9BGKCEAqN1egkDgLago2KIYpl7F7jODOvpuJ9woQJ92tMtf2ECRM+WXFnm+XbiDg/ui6VMfJajxHJbWXuEL29dTvab909juO7fTlI/LZWd9i0Xw+Rfvzebcue4y7ImmNGa8XhTJyajJZavfNC9LdaUZLET+dSmFeGvZklZSGotNagx/g1ce+RDeVVHzmcOW5f+l1t3FaGh+zXpCz9VSmGlDVdn1htBrqUWQ9JxBN53DxPHo3U4D5lhlzwPrH2hbYSd6qDqkIrOReybPQPIVORqYzGaCFDlVLISO+Vc6Eo6VdiEmLQfm3ZDJGNT2x6ccTVGlJM/OxrX8J73vmrGFfx17/rR5jd9FhWg5C9bln2Y8SDo3WaNYxRdIrVkEklUzLUxqCtDCmctbR15raTnpAKZIkN39+3tJWlsbI53wdxAHZG7cQdV+pHt6S4krfutRd/ppSiG/vamKRfaKxhr3FjhHdhCB6jJbp96xTWOrOLHF97Ed9QwFWGPmQWtd5FSvixF7Va+j3FRafbu8L2VLaindoabphX9zg+csKECROmXmPChAkTJtwZVkPcCVng6oUn7Zj+AfcuTcQZ6fmWfWTwCb1QnF97Us6cv/WjvOLbv4bl+dt58CMfy1e/6J+xf7DPSR9JJUnvMM5wdIE8Crl9KuLqOooWyNLnVMZyprEUCm3tpC9UmraChTI0lcUqTUZmEJsh0vvMkApWQSmKw5llr5FY9OUQmXvLQePYn1XMKsO5tccoEb7EbNlvHTEV8hiTNzghYB20jpizxK+fuhbOiMvsWsUxPlzOo7LiHKWwaAXOwJm546Z9IS/tt076DON2Qv9u7L2Vkjj6kAopiXvu5fH0W1wpcvu0YcHdiTOmuO4JE+7/mKaeD3A85SlP4fGPfzzvfve7AfjxH/9xnvOc5/CoRz3qis9/+9vfzpvf/Obd46c97Wk89rGP/bisdcKE+yN2sWjjzvK9LXq2ZKe826i+sr23DCUqrNHcemLY+MThzHFu7Qkxc9vJwLENzEbSTcqFo27guEtooKkMTmsO5o7FOHzYb91u3ZXVhCQb4XlUEmzL061WIqRMezfXxKdRDWwNbNXYQ8LnjCsao2AYz7EayWTWKHwo+JQYQiFlyCVLZIRSZK3Y9AmjwFmL1RpV4HhULdfGoBSc2wx0vcSMDDFxrh/4k7f9Z3793/4YAE/7O9/NFz/tf2cIMhhIKROTZFSf3wR8LjxoXrPqI1orWqd31x4ubs5fCRc2nvNrz17t+NPlmqNNwCjFDXs1jdUSvZEzJxtFYzM+iM1uSogla0g4p9lvLNoo2loGHpsxqkQpGSTkktkMkWEozGojFrEpUyvDapAc85iLqCKMxIVcjbJ6Kt4nTJgwYcKECROuLa4UvV2NxJxlH7lD2V8KoRROOokfsFpRciHkwu3LgXljaKyhlILfRpNdRRzfEBMhldHtNlFZs9u0jymzGR1mjzbDjhSVyki+V4rGGWLMHPeR5ZAwehRV5IsusTlDUUBWnJ057BhNvSXhhJTpvPRMldWEKM6pKBkI1Eacp7oQ6UMEFEdd4EPHG7pRJBCz1MHajFEJBVYh0cXMevCsBqnxrdFYNEZDTKKWDlGcbSslpByjwRpNikmUy0rJ8IPMoq6wSn6uUbLOqPEhc9uJpzaaDJysA7/xUz/Ce379Z1Ha8GXP+0EOHv253LLs6UKhixGNxJ47JQ6ulZXPRUCUzjFrXD0ONUZRBMB+Yyi5ljiMKEwzraBxstlfWc1+K0QpozU+pkui1U9j+93t5+3Sz11hPQjJy4dMlQpnZxeFE3p0JfYxU1eGOMYxWi2ErMpqUjGsh0QphVkjUY8g/Ys4nEkv0oyCnMrqqyIvbde57cG2Q6l5bS8REk2YMGHChAkTJkyYcG9w3IVd1Pg9FZ6cWw3kMsZG34s0ETX2WUpByIWjtQcFt99+O//oW76K22/+EGcf+kj+j5e+jjNnztBUBmM0szoTS+HcSS9idAVmFNhYBUUpkpJ+MRd5H5TMeWa1YzHG3/mYGYKQhbRmdG6CwUeJcUdRKZntzGuL1nrXj8RcuLDyKCDkzKKZj+Qm6QE3IaKUEKKMVvgoiRd7taWyBn/KVbmxZhSkSBLIDMOiNgxxG32eUEAqGWssN8wrDmcV+62jtoZFcynVQSIDNcs+MIwC/r1G7lnrZPZxtQKL04YFkzhjwoTrHxMx6gEOrTU/+IM/yFd8xVcAsF6vecYznsEv/MIv8IhHPOKS577rXe/iWc96Fjnn3bEvf/nLP+5rnjDh/oTLN5bvqVvUFqeVsKf/f2dY1Ja0qEnLHhBi03EX2PRxjErzrPpIKoV1n0hIdF6lNXWlyanQR3GYCimz8RctQTc+yQBAKVIRlfTpRV2pLziNPsiGuNUKaySGwRlFGQvhVApjr7Eb3gCjQqCMcRkJVMHHBKNt60mXiTnjnIECISeO+khbaVF6N1qalyFx1Ac2IbEcEv/PO/4rv/FvXgnAX/nqb+Yrv+6byTmTkgxbmkoK+u0QYdVHcilUWlNGRYJRFxXNp+/xNnO884mTPvD+25YMsXDceWketOLsrGKvlciL7fXRSo+2rorjTcC1iiEaTjYBCpyMCvoQM2YcMjXWEHPGp0LJong3aGaV4aCtxigSu1NgrL1kbx/MKoxW4/BHTcX7hAkTJkyYMGHCxxGXR293IZLLxfi8rUNPzhfJTKkUaiO1W0CEB93oLJWy4/bsqa3msHU7x9qQpHZWI3mmMvLzIQrp6bgLu9dd9pHDmaKtxH11S4oaokRRgxy/FTssaiux3znjoyhvtRmJTiGPzqqOeavQo0I4F8hJiFNnZqNCNxeMgZAKrdOc6wM5F2at1PNqjH4WgYe4Rt2+7FltEs7C8RDxqYhAQklU235rUV0gJk+IIg4IMdNQ2ITIvnPEUihRSEhdyIQkKmNrZL0bLxvttbMoreh9wR0oupjYbysaq/Gp8OGjjnXvURqWQ0Brze/855/kD3/ppwH4oq/7Ph722V8sQgUFIQihqao0s0YGELPa4LaOsMDMGVCQUmFQEqNdGXH1CimjtNTqeeyjNjFxUGBeCbFt0VgUct20Yiduubwv3bZwpwlGW6Txs2cUGCVDjll96UCnHaMjKqMJo/vUagg0zoykPCXOVwUMirJ93VJYDZHKaBanIkWudmC0jX7c9in3tt+eMGHChAkTJkyYMOFyrEbCP1waNX41whOf89jDFVY+oIr0QSddGN2AuaQ3a66w967HvfnGGvqQOLcZ0LHnhX/3q/jw/3ofhw++iee98l9xw8NuomSF0eJIpYAzjUWXmtuWAydDIG/JT8ngYyIXhQ8Sla41Mk/ImaoUGmupnQjjG2tIOcuswSri2ANWVoMG7x1KFSqnQYHVMkM66QIXvGflI3u1ODbtNY4+ZJrKYK0kldRW+kCtPCFJdF4fLu0r+phonKF1bhRVpNExCoxV9L2Qq2pjWVTy/m68lo27ssB768C8WooYadHYsc+xnB1TSO4JJnHGhAmfHPikJUaFEDg6OqLve8rdMQxO4ZGPfOR9uKr7J57xjGfwvOc9j9e+9rUA/NEf/RGf8RmfwbOf/Ww+93M/lxAC73znO3nLW95CCGF33Kte9So+53M+5xO17AkT7hdQF7k8wJ07Pd0drqSEvTsctA6jFbee9ADcuGeIs8yyD/Qx48NYANuEKlKApyJRHpUtNJXkMp/0gdoKIaoyGo3E6TWVIfR5HMAURk7kXZK2fBSbUsbjAfZq2URvrGJZ5DkSASdrSLkwhESIogiwVqO0RqtMKRIxEbM0HVJ8S5a1K5qYElZbtJLmIqSMM0L+SanwZ3/wm/zmv3oJlMLn/9Vn8dSv/XaJDslQV5qGi0OfymqUKpSiuDC6Ps1rS+8Ti8Zx0IrFam31LnN8NQQ2XoZUx51n7aVwP1oHEoWzs3qM4pAOxIyNlFZjnIg1zA4tRitRo6RCyOKSNYRCbxOV0zRO4ik2Y9RGZcTyVSlFa+1OqXI4q8mlcPtqAGTotBwCZ2cSN3F2XjGfIvImTJhwHWKq7SdMmHC94nT09mqIMEYTDFHilrdq5C6k3aY8wLoXF1BrNZUx3LbqKQViTig0yy4To7iPWqPusPnujJa4tcrQVpqTLhOS1N1wsSY97fa6GSIx5Z07FIg4YEh5V6+f33iOe4+PmU2I5Fgo1mC0OL6iFSEWZnVm3tQoRLF7OLP4mDm/HoTsUoTIn1Khqa1ECGpFHF2wulGtfWEdRO0cMiHI8EEI/QBCapJ1F5zVlEGEFTGLI9WmjyxaS4iFqjbEJOSslDOrHowWIQJKcTotvORCKuLiZCvL+U3PcedFGDFEln3ifb/+Fn773/8LAJ74td/J53zZV+yIbSUXtJWI7FobjIL1kDgzrzFjVLgd3xegkGm1oQsirrBaUzkjpCcKlRXBCWOk3LyyNM5wOKs46SKLWpy/tsSy2WXR51uCkdoRjC7/jKrRQVZjtLok1oLxHraVofOJeWWBKEOMUTUds8QB5lIYUiJnOOkys3qMqdCMx8kw52ocau/gRDyub8KECROuNaZeY8KECRMeeAinHItOk6JmlaGtzB0I+Y0zzEth3UcubDwnXWbjM0bDuZWnMoqzezX7yl08tsicJaQks5eRrHN5ese8MdyyTAxdzw9959fx/vf+IXuHZ/nOV7+BT3vMoznpImnst4yWOjlkmWfMG0sXJXo9F3HA3Tr75iyOueIYJWLqnDMxJ1Y9Qi5SkBH33G3PJ46xCm0UfYk4I/3B4DODi9AVfJSECq1ENPI/b0484kzLfuswSmr3bS8MF2dKlTUS5X0nfYVVIl6prEJrO/bIMktpaxHizypDgTF6/s77g8pqUpbYejMSrbaJLRMmTHhg4pNmOrpcLnnDG97AL/zCL/Dbv/3bnDt37h6/hlKKGOPdP/GTEK95zWtYLpe86U1vAsQ56nWve90Vn6uU4oUvfCEveMELPp5LnDDhfgmtFIkibP8kyoGts9A9wb1Vwi5qS312xnEXOFoHBuDMSFtvneF4E1gOgZTA60xlpCCsrWYIYpWqtaJx4hjUjmv3KdM6zRANWkk8xXoInJlXV4xnyEU24LekqNrpnRp4v604vwlYLS5JuRTOrz2zxpLHZiIUOf9uSIS1KOKdVWQyPmdWXWTtkzhIFWkA2lZU9KWU3fsbrUaykOF9f/zb/PfXfi8lJR7zhKfyJV/33VzYhDFmQgrgttIoAzNnRa0/SAb3xktEx4MXDRmxyN0OXTZDxKdMTKLazqPy/4MXNpx0gZONkKUWtWR2b3zCJ0Xj5J5I8a53USDzyorCpBTOzBy3rz3WgE+Jo82o+NaSXQ7QWjMqTIT4VEa73tOfO6s1i3HA5EPeEfY2Q+JgNg0TJkyYcP/HVNtPmDDhkwE5F1Z9oAuJjxx1LPvIorEsu9Gh1GqMFtK92SpsvdS9fcwynI0Zo8VRahMS59cDldPMrMTgnQwRBRLbPBKjlBbVcacTzkudv93/3XghzZRysYYvhUvi9IxS9EWiIEJKnHRJiERDFHdZpdikTGMNXmWUuegMO3OKQuGkjzgjjkarPmBGIv+2Pj23GjjeeIyRer4PiT0t9TPAeoicX3uUkujrtY90IeO0kLkGn4kpk4qQqHxOhFh2sW+VUWRgSAntFRrFZkhSW+dCLuKMpDU4q7DaEBPMKk3tNBtfaJ0iZHGDXXVybc5vxBn2A/+/X+I33/TDAHzxs76Fz//yr965azfWyABkHBbUW1W01fQ+4yzoqDhzUJGy9AtOj2r0LHEXbqzvfUyUAMpKzOAQk/RutYgjQiwctBKlN8TEqpfYC6svRmhvFe4AjRmj7MYBwhClh3Nak6xGaXHkGmKmGiMXt5hV0r8NQXoYZzKDT/QxsfZJ4gaBVZc4mFlA0ViNGt1z+3so1Oi8fDatlrg+Bbt+dcKECRM+Fky9xoQJEyZM2AwX4/O2pKj9Uw6nl0NiwUUgbbRm46U3U8AQJbau6sRJyWpFbTTOiituYwzO6jHpIzOrDPPaXkzv0IrgAz/2fc/jPb/3W7TzPV7042/kUx7753BGs4fiqPMYzegGBaBYDtKblCxzpcqIm5TMqiSRo2SRQCgUe7VlXlcs+0RlCvutZfASuV47TUmKymkWlaOtNR+50EmPpzWFQs7Sy/mQCSmLO1St2K8riiocdZ5NSNwwr3aR6kNM1NZcYixwZ31FLIWll0QUHwoJEffUYy/glGbmpJdonLmDGORy+JixWo89VhmJXJMD7YQJD2R8UhCj3vCGN/D85z+f5XIJcI+UHRMExhje+MY38vSnP52XvexlvPvd777i857whCfw8pe/nCc/+ckf5xVOmHD/xNY9qLFGiEYxM79CdMFd4WNRwuYs7HytFPszy3qAZR/wqXDrSc96iBitcFrvCr+YCsskA5RtNIOPanSS0hzORNXrU2ZeGU6MASLrkDnaeOa1pa1EvVwohCjr3/7bWzvNYlQGN06GPUqJKttZTSmFZR/xJeO9JmbRIw8loYqS6Lhx2BGSKLK7mMhZ4h1yLrTWElOhD5k+DFzY+N2162LkQ+97L2955bcT/cDDP/v/xRd//T/iZIjYbRxI43Yxf0ebSO00ucj75QwxZ4aNOFZZq9hvIkcbjx1dt5ZDYNlFQsyEJM3T+bUXEtcgg6OYCyebQGcTrRN3rlLEXjeYi2oJpWBRWRQSj1f3QgrrfSaUjE8KVxQWRV0b9muHNRKtEVKidpLbvf3Lt40ybJ00XH3IO0XGEBM52ykyb8KECfdrTLX9hAkTrnds3UWH0SXKxywOUKMoIJ36d81o6R0qo0dyiRCmnJE4spgKISUK4pp0fuWZN5bkMgXQaut+qqjHjXC0ojaJxmrqStxbu1FgkJLEzSmEqLIVaPQxEVPGGY0fCS4+XiRLdT6x6hODT+hRpVwpQzbyWilLlPbay5B4O1wYYuKwrdHaE6Klj4k+JY66QMiFfWuhgLWQSqH3mVUfOe4959YDWsEty54QJV47JSErWRSxQOcjfcz0PuFTIVMuIdJkCp2PtNbQFVBFoY3BaE3rQI8EoZBk09wYhUb6AWuEPLXqE7lIvMRmSHzg99/K237yZQB80TO+hif9f76ZlKELZUfKWoeEH4lXRmuslnu5GiKLYmnH3ThnJF5iGElUZ+cVt689MWdAXGJPiMzcKLoIEpvnU2ZWOWaV5nBWcWEjLsDBifhl2QfaMWZiS36zWslwBhFWrEeiWwH2W0PeFKLKHI5Oucs+0lZFRBljf7uoHVptyVeKZDWMnxtnJALcajgzqyTWu612hC3G970aDDHtPnvb2L3aTtHfEyZM+Ngx9RoTJkyYMCHnwjCKkLvRtXdWmTslRW3r5lzkuHUf+chxx81HkuQRs8g7Uins1Q4PbNjGwxl8EOF14wz1SIbKpbDXOCqjuX0I/IuXfSd/8I5fw9UNz3/V6/nzf+FzCFlE0XuNZUiJVR9Y9TJ70IgQI2QRvrsCMSaKAoemqELrLFoVlBZiktaKkBL7TTWmeiQqJy5MThu8jrTO0taaW4971j6i0fhcSJvIQWPxGUBitCOZbtBAoKRtra84t/YoBY2z9CGfImuVkeh0aV9RGU3VajZhK8TRzBrwURyvqqrC50yikMk07u7FFn4rADEarEQJVlbiACdMmPDAxXVPjHr5y1/O93//91NKGTNHLzYzamtJfoUGR50iLUwN0EU861nP4lnPehbvfve7ede73sVHPvIRjDE87GEP4wu/8At59KMf/Yle4oQJ9yu0zrAeIpWVKISYi9iA3oO4snujhD09bDn9L9issswqyy0nHfNGItqWfWTtPWGrHLCSwawVI2s/U7LkRMcsm/83zCtqqznqAm1tWASHVoyKBnYb26dhtaI51UCIIhzWXjby1ybRGHE+8jmxPAloFIvW4KMMHyiSFx2jDHqWfWQ5RCozOmkZTaIQSyEGGcrMnON870dr1MKtH/oAP/Pib2bYrHjon/88vvS5P0jUhmFI2CBqgzAqM44yzCsDWlTqyz6SUoYizlOpBB52WONj5sMXOqwBpzVdTDJMiqJU91GGHjNjSG1BFWhrOypGEikXUjH4XKi0EoV6kmHL9k/QvLKcnWV6H1n1MmhQGQpCzqqsZVHLUEKxdYVSO0KY4o5Rhs5ocpH77KOo1Ltwzz6fEyZMmPDxxFTbT5gw4XrHaoi7SAYQMsxt64GVj3RDQmlw1nDDrMIaqdWBXbQdiPq1tuIgFFLh5pNOyC6DuLDmBJuS8TGgjSh/cwZXqd0xGx/pg6IOSYhUadz8V6CjJiMCi62TVM5CmNIKVj6K2CIWNOLq2iVxbzVaQQZnpNZ3GDY+EGOhqSyLRlxdE0Uis2Pm9lXPJlhalzAaQsgcrwNQONNUHHeRm1w9EsEyR53nw+d7Nj5AgX6M0BMCFugsMQhxHAQorSS+bvxPIWIMazVxPAcZAohjbDvGYyzGaL1coFIGYyCExHxWUTJYLaSiPkZilDjBP/sfv8Nvvu5FlJz47C95Bn/lG15AlwppFFgoNUY2FCFoybylMKRCbQ1DkN5Ga0uImdoZqlE9viXM7dcOpcpOMKKVOOY6I85fChG37DVOYvfGOAlxrXWARIF0PnHSBXwU4lLVWIaYUMBRdzHOonaivB5CIWTFXuvwSZTgnZeIR2f0rlc1Wkk0oM8joUzRzhyV1qx9ZK9xHMwqGFXZ+41jXlkRjnSRWVWuGE+y/T3o/EVSVO0uOuPO6sktasKECR8bpl5jwoQJEyaAkKEKsl8eszjlbsn4l+OkD6z7SBeEENWHxGp0NYq5sPbi7lsofOh84aEHhbOzinntyJSLfUEWkYTPmb3a0YeMVpHWaV71j17AO/7bz2Ks4+/+4/+Tx3zWF+BTHmc5MvN40LzmZBNGsXTmqA+EBFYZilaknEiq4IxlVinAUrYuxUaTk7hH+ZIZUsQoTcgJlywHM8sw9k1Oa25f9lzYBDLQOIncc1rTNjL7sUaRUkERENqTIhYRjp+ZO3IxbLw4CFdGs+wlji+XsQetpPedVZbKaDY+suwlDnBWidg7jeksqyGQCySf0eid8629E8HE5ckmldMwuiW3lWH6Mz5hwgMb1/Vk9G1vexvf//3fD0iDYq3lq77qq3jKU57CTTfdxFOf+lSUUnzKp3wKb3rTmzg6OuL9738/v/Irv8Iv/dIvifuIMbz4xS/miU984if4bO5fePzjH8/jH//4T/QyJky430NrRW0NfRRXoOU2XsKoO1UYnEbnI+dWAyFlZpXl3MrTOI01EnfXujuqYi8ftviY6eNYgBdY9p5bV57KaM5tvCga+sS8liiLg7aSmIate1HKpJzxo/sRwLm150GLStyTktiqGq1IKVNbKUC3wxulxenqdJ7zrJIC+ebjnjTmXRcl8R8lQ4wSr6ERZ6oyhmYoRGGxGZJ8P4sLV3QGA+SYefAY59eHzIV1ZGWFRJRz5uabP8LP/sBz6U7Oc/YRj+UvP+9VFOMohZ3d6zbaY+kTtVViPzvmc6+8ZGzXRgZRQyz4XHHLiedwZmmV5ebjblSfQ6U188Ywq5Sot0OmtYbKafYbsYvtxmzuzifaCjZD5uy8wseCUnL9t8rptrKcmVXk7ElFGqeUM0O4SGirrAxPOi/XSI0DkxAyKV907dp+/g4aSyriArAduoxpixMmTJhwv8JU20+YMOF6x3EX6MPFSIYuJI77wKaPu7pQK1EK91Ei6pSS+rQLQl558KK+xFXHGYXViqMusBmEmJQptMZgrcJZxazStJWV/qGyhJQZoriabkbnIqshxMJxFzhoxYl16xa1XfuyDxLnMMSdy9AmShxgRupSqzUaxUEr6l9dIBZNInG+83RBc9A6UhLhgI8ZaxRtbTjaeE66wGqIxCykIOtEtdxUhnMrz4W1Z9MnYs6sQ2LVRVZDgAyhUuSsyENGjSKPmGSQsYvFUxLzELOiVprKCNnKGEMucv1ntcNqcWvab8X5N4xRgjFnfMosGg0UUoEUZYjx/v/xLn7jn38PKXg+/QuexJf+3Rex8okyyo5zKTit8aOzrVaKxip8FjFMsFLf1yETk6y9dozxf0Jo86Mz1pAk0k5rTWUMe63DasViVD5vhsSmjjvBw7y24xAgs6gdRkeON3KtAcp4v33MHLRuJ8xpK7N77xsWFV2UKI292jGYRO+TOFSNx57GvDJoNarPlRodpgz7rcUZxbxy7Ldup8I/6YWwtRl/N6ot2UoJScvHPDoRy+vXThyztufnzNW5TU2YMGHClTD1GhMmTJhw/SDnQhcSQ8zkUnaR4VqpO52Z3BMMp1xzgZ0o5fT79yFxtAncvh6k/g6RGCWSbT1ErNVkMiklNIqq0mgtrr8XukAshRvGTfhqfP3OJ3zILAns1Y71EHnVq/4xv/CWn0JrzT/4gdfw57/oS2icZkiF5BOzWsTPx5uAVjJ3+bPzMvOxWmYUc2fIScFYV1ujMEoE07Na+sT9xtDFwrr3LPtIQUhQpoxOvyGCUhxves5tpIdojIgUQs4sapkP5VyIBVLJWGvkNTRAIeRMN4ioovOZs3PFvDYyH0ky80Gl3XmcJqdt3aaUhpkzHG8C7RjJfdJ5bljU470yDCHRhYvx9Ap2rxVO9ROVkznWqo+7fmJK0psw4YGN65oY9dKXvnSn8HjoQx/Kz//8z/PZn/3Zd3he27Z8yZd8ye7xd3zHd/De976Xr//6r+e3fuu3eNnLXsZP/uRP8jVf8zUfx9VPmDDhkwWzWgYbTWXwWaIL7k4JO8TEhbXneBMoyKavHclG23i+kDLrIVJbc7EAvsKwJeaLNPeYMrctPSFlbl96jlZiW3rjfg0KIeOwZdQrKgO5CFlGq7QbCADctuxxWpOM4mBWsfGRbDRKKYxRzJ295NyUgspoGqcJY5TfbcsBFCwHcY1a1JYLG8+ikWHJagjctupRRVM7Kd63GdVb1bTRiq6X63A4r2icZdmHndrex4SnMKxO+IV/8u2szn2UvYc8gi/9+z+Ca+ckIGdpcA7bCqXAx0hrnVjf5jQ6MxV5TW1IRdTki8ahlcRp1NawGYSE1ceEQWErtVN8GBTrmPExUY9RgxIlqNioNDpLiSvWaojMK0M/2ujuSGaMDZ7TxFSY1aIkN0bROk0eVfJ+vE+FIs1ByjRWY7Tc35wLRxtP44Sgthkis2RZVJasJ1nEhAkT7p+YavsJEyZcz1iNZCK4SADZwlnNnoLOGxSFeW3EaTZejJsTUnthEyJDFMejrXDgwtqz7ANDSugkkQTzeiTUl4JWGjfGRFutqIyldYbBZY43ngvrgC+ZSililqi6vdbSJDNGKETWQ6LzQrQ/7gOdF8VuHmvPmTM0jWXwmVgKVinaSjbbGzQxZDYps85C/LfGEDMYLWSkzRDHCD8oSlE5w4MWFbXRPOSgwWhRQmstfchqCGz6xHHnd8OQ5NUoeIDtdKSUQsrs3Je0FkclBaSccNaIE1POUhtrGQoYreQaWEvOEm8Yxh10n4R4lUbHIzR86H+9j1/+sX9A7Dc87DM+n7/yrT9ILuIaXCmN1vJ+tdP0XtTdWiHq7BipRmGHMRCqTMiJcmpLzmotkYljqV7GmA47kof2GiGinZ1X3JoH2JKtUt4RjKqxjzwaleTOiKsUyHAhl8K8tswbSzOKLWAkdBlwxnHcyb2XvlQU4SFm+pQo+eJQSmlFY0TNffE1hJh30Doqq1nU8jktSNz3fuPojRC74ugmNlxGtoKLhK2tU5S4e13X25cTJky4H2DqNSZMmDDh/o87S8kAJBaccsWZyT1FHovuPM5Vtq8RkoibtwSbj5500i/5xGaIhFgIRRxYo5d9eaUUbWXRSkPJxFSorIgGSoEHLWqGIOIE28j3fcgMJvHGf/6jvO7//DEAnv/iH+JJf+0r2PjArLL4lFmOM4DWwUnn6UKm8xGjFHtNRaWRiLkI7axCURgi1Fbq9ZgLB001ikoKc6dZ9TJXqo1BGbmm6yESM/gUWPdJnKOszICGIFHbi9ZJXCCFmOU+KRQHM01lDRpFF2U2ppUa3Ymlpzg7dxxvAs6KO9Ttq4F5ZS8RBFWjaGWXRjImk5yzA+uQSBkevCfkqDK6CV9JvAGXJpus+kjtNPNG+okrzeomTJjwwMF1u7Nw4cIFfvVXf3VnZftTP/VTV2xm7gyPe9zjeOtb38pTn/pU3vrWt/Kc5zyHz/u8z+Mv/IW/cF8tecKECZ+kcEYzry3rIbLfOE64ayXs0cZz3MWd/bZWsrl/0gmRZTUotFa7zeo+pp16YYvTwxalhPTjjGbZByqr8SmxGQLGKKyRwYNCivvbVwOHs2qnhNBK0Y5DgtUQCCmy6gOgODuv2WsdZ2YVZ2YVKYnr01bNW43OVluHopjEjWk9RG5bDiilcFqsVTdD5My8YoiJ206GMReanfuST0mGJwhBSmmFKQpFweeMzvL1cR8wKGZOE7NE6Q2bE37p1X+fo4/+KbMzN/Lkb/9RzPwMSo151UjxnylYNG3tqEaVfZshUxi8OFeFDO1YlDeV4RFnW4ZQxFFqGVBa0VqDNopFZTBG0wex05VrDCllQio4K5+P2sq9DiljjGYzRPYaSylC/hpipnWikgip0FiD12JEO6sMxiiMlsGPT4m+F8WMUUri8nIhG0XKMpAIqdA4GSZIIycNzvm1p3WGg9ZNiusJEybcrzDV9hMmTLiesd2ch0vr9FllUMpRSmE1JKm/tcIZg9WFwcpxnU+sh8SZmSOksFPjgtSwR70n58Kql8iDea3Ybx17jWU1pNFlVAQFPmUae1GcYbRCayAWToaIUppu8Mwby6oPOGPQClLOQooJonjeBCHvUJQogJVi0ycyZRwIXHQ9XfskRH4rdWjOhUxmUAWSIqdC5RTWGBqjOGwsIcN6EIJWKULyqawidYlNSBx3EZ9ElOCTDLIpEHKh5CL1Mcj/hfcEFFICVEEpjclCOHJGnJ/2KsNo7oTVmiFk+uBJKXOyCTASszQKo2SQEFLilo/8GT/3Q38Pvzrm8JGP44uf+wo8lpkVclBVaTZ9hCK9lXMSg20U+CwCiy5EfE6YAj5I33R62LPdn9/S4WIqDBSskWjFWWWxJuFDYVFZoOzELpcTjFonIo1UCovmopNs4y4SpUAuRW0Nh60QorbEurayVEaGPD5mnNU7AtTlUIgCvoxCjyvFwx+0DqMV6yFe0qOcdj1Wikt64C3mtZ1IURMmTPiYMfUaEyZMmHD/x92lZFxeL25nJvemXrwoRpD/ayW16lYwDnDbcuBoExhC4sLGE1JhVmtULlTW4seI6lkl6REaGJK4UBkte/mrIVJZcUHtQmKvcbSVREf/1L96Ha951csA+NYXvoRnf93Xc7QOKGR/3xnNZkh0PrLqIz4WGBNArIbDtpaZBwWjRazuU2a5kZ7OFCVCaqPoxnVQ4KB2nBTpTYuCIWRWKo2OwtI/WqOhSFT4fuO4cb+RvnJ07e389j4piTb3sD+zdKtEKiLed5XFjP3EQeMAxazKnN8oeh8ZgjhHNU7v/j5vnXFntcyyzq8GfMzMKyNR6Vr6rYOFOOBejXjDaGgrRzP2RPWd9DUTJkx4YOC63V34zd/8zZ3K4wlPeAJPetKT7vFrVFXFG9/4Rh73uMcxDAPf+Z3fyS/+4i/eB6udMGHCJzsWtSWNFqt3pYRdDgE/DkpSLuPGvMIHUTBX1hBSgVQYRjeh1gkx5mgTaJ0REs+pYcvWlWobneCMFLlNZZgpO0YjZOxYUA+jKnyICqv1JXajKRd8ynRDZlYbUk7cMG9RyKb0vLa7jOZLnaogjjF8yyEQo0TuFRAS1NgQ1M4wrx3nbSB2iW6Io9NUGYcWou6ui8bZzLqLKGCvsvS5cNIFjNWcnVVU1pBDwhTPL/7Yd3Hb/3oPzd4hT/uu11A/6CZ8LhhlOKgsaCnYS4GkMkOA3keskSEDgGs0XR+JCGGrchUGTc4ICStlIoUUMqYWm9jGGWpnWfcRCkSEDLXxicYZchHy2TbCbktuUuri8CfETK8SRimGKPEdxmgOakceVepGC/nOKMVyCKQERikWY2SGNXp3HjGJ81XK4hAQksSQLCpRaw9J8r6nIcOECRPuT5hq+wkTJlzP2AwXHV23dfp+a8XmP+aRyC5K1VLYxdQ1zrDswy6KWxyVxPmztlKnrQbP8TqSxHhU6kMt6matFFYpwki0n1WGGDNYw9rHMcZORAxHm8hxFyQ6TWsubIbRPUmzHAIhicNpSJm5k9cxowhCWDuFYVRQh5ixVuOHNJ6nIiaYNw6tYNVHcWC1lpgyupK+Y1HLJvWQhMTljMTy3XLccziruH018GfHHUPKpCiEr1K2kRmKWKDOIgaQWPCMQ6GUZuY0Q4LEaCZFxml9KkphFKWgWPnEfutIGWIenXq9uEYdNBWZgtOGnOH87bfz7176XDYXbmXxkE/li7/1h6jbOa3TzGrLtpcDhXPSVzVGCFhKFVxRBCt1vo+JohVdSPi4DRMXlItfshxEdFGPQ596JBg9eFFz83EPwEFbjf2diGpOD4xqZ7lhIc6x/Shq2ZKr7iyCpA75knh4nwr7rTg19UEivHPh4lBq5xYs0RonnQxH2mo7cLg03mQxRnhsHQC2DldXwpawdW8dACZMmDDhcky9xoQJEybcv3F3KRk7XDYzaSrDehC30/1TAoC7w9je7MQJx51nq6AYQuKkD3z0uJNYvI1niCIQVyiKhpDFRdcYjTVSIx/OK9ZjRN3aR5yWPux4E0Qwk6SXa5zhP7/l3/EjL/1eAL7ued/J3/6G54pbq4sYLWkZGUmVCFkzDBFrNCEXtJbvSyktKRPzyrAeMt0QQbOro63RLJzDKkVKoHRmMbNECjGBKQqMFPmxFGoLXRBxutKaw5njpsMGqy/W5CFmlFbMaoNRioycvyRt6N2MqnXSs52dVyilZI3AQ/YbcQce5D6vx3OrRuF/4zQhFvoo7sGMPchBW9FY6cGslrnTxyLemDBhwgMT1+1E9EMf+tDu6y/7si+7y+cOw3CnP3vkIx/JM57xDN785jfzq7/6q9x6663ceOON12ydEyZMeODg7pSw6yFBlti8kGTzHKQAP5w5DtpqR3DaRsnFXFgOkTAqdY82nlQKs8ruhi1b9GPudsqFjc8Yrblh5qid4dblQEgyLHFGFMpGq11k3xZKybDAjoMKYwxDTNy413DDor5blW8fMq01BKVYDpHNIHFvlZVYhY2PHM4rVj7uCtQLm4BPeUfqKqXs1B/eyDVIFKpRLX5Qycb/SR+pdeFnf+yFfPCPfoeqnfPUf/Cj7N30aSgFrgihSVhfYm3bxUKrNbpIvIcME2ATMk5DLKJAz7FQGY21ipM+sFfLUKc2mnVKhAjzWhNLYaZh0Vp8zpAkLqMbMiHn3RBCKzUS1ETlXlnD2idu3KsJ8SKhbNUHUoGF09Qjka2pNKs+j+QyGabNGyHRFQohZua1RFzkMqrnlaj1QUhaIWXWJOzG78hQ96ZpnDBhwoT7ClNtP2HChOsVOUvkGUA3bubPqosRAKWU3earMxddZFdD2IkoKqNJOXO0CtS11MM+FoYYuW010PvIaogXxQZa0/tI5y3OKoKHMpb0uTASb+QbG5/IRUg6Somz0t7MEnNmr7F0IdINCWu3KltAywa3KuKgVBSkKDW/kPAVax9wWrPs5fzmtSXGTFajyljJRrUSM1i0hphhvYqEknFGNsc/0Ef2Zo6YM8sh0vejWrnki5F0KJTWLIwhZnFc3ZK4UoYcE9ZqrFHkkokpUxCi2WbwtJWhYHeRGSlnbl/21E5EKashEEtBFTlXChgDm9WS/+ul38LxzR9kfsNNfMnzf4SDMzdww7zmcF7ROk0XMpVW4NQ4JABrNL1POG2YVYaTPtA4w2aIVEYTS2YzBJad2bk7dSHRDQmUDFokHsNIxITRzCpZa1tZmsrQWENImf3W3WkchALOzuqrIhjdeTy8CHFm6o7bh7mI2n2rrK+d3sXfzeo7Dhyc0RzMNDlburF33cYk3hlha8KECROuBaZeY8KECRPuv7izSPLTKRl3NjPxOYsbk5f47qsVAWulSMgMYtMFchEi/1bUfn7jAXEGVgpmleaGeUsfAl3MYwR5RqnCvHaULHv0h/OKlAsnfZDUh5horOZobdhvHSd94O2//Iu88nufD8Azvvqb+Obv+B5aJ3MTrRRKwbx20uuUjA+Ffkgs+yhRgqGwaOzYa4kARWnNrIYhiitwBrIqVE4DhcOZZeUTPogIvNIaC5xZOEKCzRAICdZDAKVYzCvOzmvmIwkplyKzIB/pQ4Gtq5XTKFUwRnpQoxS1NaQsPVE3RoM7o7lpv+GWk56TPowx8CKs2ArJh5gYQmLZjYQ1rbBKU1V699nQyvEpZyuc1tdEvDFhwoQHHq5bYtSFCxd2Xz/iEY+44nPqumYYBjabzV2+1hd90Rfx5je/mZQSb3/723nmM595LZc6YcKEBxDuTAkbkmwuJ6M46gL9uHm8P3OcmTkWtaMyeleYNc4wHzeaV32UiDynCVEi+sRFSLHqI0qJjWnnEylnuiDNRKLQB0Mq4Iyi84XlJnC4qKiMkqzqnOEUsQmtsWNhGceYCqv0zl3orlS+QrKSCL7bVwMUqJwMQxqncUbIVKVkHjyrqI3mo0c9jUv4CMWAUZBHwpioBBQhF2IqOK1oK8PBrKLzCVUyv/xvfoA/+Z1fx7iKv/E9P8r+oz9DVPmIej4WcfFSaHJBlNopkUvhoHZUlaJxltpJJIjRiT4WWqsZglixxlgoNay8kNNMSCSkQSsFfMrsNY6TLuCUJqSENbDxEau1xN1Zua4hiXJCCGiM99pijOb8auC4j1ilODOrKOM1qIwBhNyktUQTWit2skPIEhWoAQVOyWtvFRYUuS+M9yDmgk/SnN2bpnHChAkT7itMtf2ECROuV3QhUZCoh5iFfLTdeAVks9ro0YknM3OWkEUU0MdE5zNDEMI6JdMnhUJhdaJ2Gl0UTWU48ZEMVEpx0keM1szqRJWlqty6D4WcSeFSgrxWSjaHk8UZg1KaxgkxKRdoKzUerUgRbvc9uYD3QtBSgLOKRW0IIbMJkRAKWHFEHYJsuje1kHfcqODtRkIXStyOnFEEAyVB7wvWFJajOvzWghCGfCblhEGNzk+FujKQ5RyN1lgl/VIcyWMeGVgoVchFocfN+5AyOYNWhb0Whphpxv5lOSS6KG5SJ32CUtirLZWWuDkVA//6Hz+Pj7z/vcwPzvKM7/5nVDc8lNppFrVlVmn264r9toiQI0t0eOcTM6cwY32ttNy/tPJoI2trxshBIR8F9CiuKSDxgCgOZ479VtTVhzOHNWq3sb/fOHEbHpXV14JgdE/j4bfR6lunq9rpneBiXtu7JGJprUY34qta2oQJEyZ8zJh6jQkTJky4f+KuIsm3KRmncXpmshndek+Qfe71EHdEqrtDPc5rrFIyZ1CK4+KJUVyOSoZFYzm3GsR1qbYsGgMUjMnk6FlFmfeEWDiYOZZdBKTHmllDHzMhJoIu3LYeUBp+6zd/nZd8+98hp8STn/G3eP4/fBl7TcXKB3RR7LcVt570bIZILAWNYt4YCo51iKQk/V4XJPkjAU4phqjxIbPx4hi1sDJvkL6s0HmIQfo6a0TkPYRMLLCoNEPSzI1iCIk4kqBiymPcugi2tyJsAKuEFBUp1FrmKJ0Xx6lZbSlldE0ej8mjEP6hhy3lCEIqPGS/FSJUH9iELJF4SM8XUkHlQimF4y5QO42zEiH+oQsbbtpvr5l4Y8KECQ8sXLeTUOcuOlxYe+XT2NvbYxgGzp8/TwjhkmNO48yZM7uvP/rRj17bhU6YMOEBh8uVsKshcn7pORkCPmaGIKSiGxb1rihbj8WaOCuZnRJiXltCFPeho+PAkLLEryVxhgKgSBF8tPHccjKw7AOdT7S1OApJlrLCjREXm0EGKVYrFldwC/JJil2npfBuKrPb8L4rla+PovzOueyIOSlnlqND0hDEsSoXzboPOCtEsMoZKqMIEboQJbrCGGLKtLUBpRg8FKVGFXhhXhl+/U3/lPe87edQ2vC057+KG//cXySngi8SHeeMYqYNXUikHEXdrqTwlmLaYIxmNVrb+hjRWlMZjTFa1PJKhl1nVUXvZTjltCIiSnOQmJHGmnHYVIgl47QihEx0hQ2JeozPG28YoEbSk2R/q5RFVYHaFegKRjJXJmc5xmnNmb0KoxTHXeCgdWSKxHeMQ7itQxUIOcuNg7i91jEEOYd72zROmDBhwn2FqbafMGHC9YptZHY/ukbVVl+yga+VxLvNG8OQhKgk0QcKg6IPEnnno5B76iJDgFIKOQuxplIGVbJUkUqNsdhC9q+dZl5Z9sa6futYetoZthpVukopGqfQGrQSAv6skjUPMRNjYT3AphfHKa0hpYxCM6sNIUqta5TCGnGPwoLSZRfloBXUTlxne59o3Rg5kQvnNoHeSwS11rDsJJIvl8JJnwk5EmOhi5mQE1BIRcn7AKrAYTv+jVCQbGGOpR+EgKW0OHSpIkrrlMXxSuLuJALQmYrNIGvIYyxfpUFricheNJYb54affMm38b53/Q7NfI+//f3/nPlNnyb1tlNYC1aLFVbJMHi5zlZrZhWksnUSE2IRo4Jcoag0HDYVTaVoncWHQlFJXLHGa2e04oaFsIb2Gnm8JUWd3thfNHYkNF2bz/LVxsOfhh3FK9s1tZWZRBcTJky432HqNSZMmDDh/om7iiS/M2xnJlvhwBAyvUmjQ2viYHb3e9ytMyy7wEkf2fjIxidSFidc2SOXXiyOIpHZKHwpiEggFRhiIeQCORNToa40WhXWIRFiYu3jONdRtNbw7v/7D3nF3/9GQvA86alP4/te8aM0o1OUVYqDWcXt64GYJdZOKWisIeVCYw1DiCKqNmoUPnuMUiwaw8kQiUmciBeVZV47mkrTGI3S0k8t+8Kyy3R9pLaWeW0lkhs402wTPsSBN8TCbUvPaohjfLgQjlIuWK3IFLo+UVeaIhoWUskMCTZ9ZL+tLiFSbWdLqyFitOLM/5+9fw+XLS3Le+HfexxjVNWcc63V3TQNoqJRIyGibiNRgx+RaIyHzxh1y+dZg6cYiUSMgpfGDWrUqIgC7mgSjVc2ogZ3tpitJooRFULiCdAgJkTk0By6e605Z53GGO/p++MZVWuu1avPq+lueH/X1VevQ82qUaNmz36e93nu+5453r3sWU9LaYvGYBTy3jN7kUucemcAozWpFG47HehD5oa5Z+btdRNvVCqV9w8esacVFy5c2P/6rOrjLLfccgu33347AG9605t44hOfeM3H3XHHHftfHx8fX7+LrFQq79doLcrrXArGKs4Zz23LHqUlqm4IiTEmUREbg5sGEkOUBaL5VHRuQiSkwnKMlCwF8UkvqnI1HaD3IfPuE7EiPd1Glv2I3xiGkMQRyYrbFIDShsZp+phpc6ax5gq7UacNuXUyONCazRg52V4uMM+qkM91TgroaYO/AJfWIwpF6zXLrQxwUirEnKccZ4vRmhgTziqaqIhagy2ErGBaDsoJrC5skQI4lYJF8rD/8BU/yet/7WUAfNrXfxcf8deeSiqFrBQqQM4Z1zj6mOhjZgwyaDqaeVyRQrixsmjV94mRzMXVQCqZhfekVCApUSeYPCntYQwyvImTIwDI8hLIIGEzJjovQyPtJHM7TcV8zpMrlVESZVJkCLScPktvNefnnvMzzxAzNx14KIqYJOYkFhk8KGRZq/OS472aGsiD1uLPNI1jzGwnZUQ7KWzOzTyN0/e7aaxUKpUHi1rbVyqVRyq7eLY8FYVXH7aKe2yitRKL1gdZNnFWE6dafBsizioMBorUnlYrnNOUTWE7ZqLsweP0rq7Xoq4dNduQ9s5AhULrRJSQS0EjwgeKxBkoZLHGanFX9VYOizdDYtMn5o3h4gZizrRGHGa1kaiKlAvWKGIspDwtfeUicXLG0DrpEU5Tpk9ZYiaiZBusRg1KMbOitC5KsRkjbTEUo5h7TcyWS2GUWIqiUUrEIGMpGA3EhMax6BwpFYIWFTPeMqZMyCKgSBRWfZTeZerJCkzXLvd2LODZLU8pDqziqDO0Bv7N930rf/i7v4lvWp75Az/JLR/2USy3kfUogoLGWpyVoYn1Cq0VfUxyD8fEGDLzVurvkBLHm0AsWcQIVqL0jroZh3PHdoxsRokGtEbjSmFmxVXKTH3XWbXzg32wf0/x8Pt+cIo+P+sgvHMZrlQqlYcbtdeoVCqVhx/3FEl+TzTWMPNFHE5HOeMeYiJne7euqSFlNkPitA+cbEeM1mzHkVQKnTdTIofU9tuQ9iLkISYubQa2Q2bZi+vtblHqOI+0zrCdRO/SdWlZMgqFi2/7M17y7K+k3274+E96Ks//kX9BMQ5jRDjdOIkMH8PUMxip+eV1MzFnFq1HTzFxF1c9x2tJEtmEgFEareGgsSxah7eKubeY6T7EJJHsWhdSlAhxaxTnZg3DGCgo1kHEPGosbFPEFY3WBq1kKUnry71uRhakYipcHEc0UxKKgtWQOOzKPv0CmMTql93BNiHhjeHcTNI2xElZetpGy/eGMwqtDGMsXNyMnKwDi9YwayybXoQuQ5uZ+Tv3H1W8UalU7opH7E+CD/uwD9v/+o1vfOM1H/PEJz6RN7zhDQD8xm/8xl02NK985Sv3vz6r+qhUKpUHwskUC9EHUUsv+8DJNqAA7cx+sYYkjj9WS8RF4wybMe2HLOshTYtNUpBr7ZmV3RKT5uJ6ZBMiq23kdDuyHhJDThKTt4UjYBsUhULKmZQKTns6Z7Ba72MTdgwxccd6pA8J00ukw6I561CF5FlPxWxjxZnqbISInt7LxfUgz5mkuXFGsx4iejpM91oRrIGUaZ0UvblAZw3FiDJiCBBiRBuIpfD6X/tZ/svLfwKAT/iSZ/P4J386SkMKMvDRBZwxDGNi3Nm1AiaLottOKoKUp0aoj8QCYyqi7lcyeAlFlPurXt57LhATNE6W0eKkwN/FljhjaKzGJE3nYNUHGmcIMbMdxIWrqEIcwSowVjbRDHDYeZyBResppXDT+Y6bD1tCyhxvAuBYDoEQC/0o+eWtsyy3AZDifrcUlaf4wO2ZAcquoZx5gzX6fjWNlUql8mBSa/tKpfJIZadG3f37WnEPmzFhjbhEeav3auTTjfQGrbNYBWMslKLEPRZFmZxfW6c5aBzrMZBKRilZjrq0GfDGsh0Vc2cmdydFSoU+ZlIpzLxhMk2idXI4v3MLPWzdFE+nMEZcoLrGcMOswSjYjBmtNcMYZTFLg59q/5hk4T9nWcQSUYWaFMOFkiQiMCRRWXde0XlF2xjIcn2dMzhn6MeEMwVjNF1jZBlLyaH7JmaMgp3e+HSKEj9oDLPGsR0zhUDnLYyZVKboauQAvjWaxmmMVhy1TmLItaJFYRQMWeIfRCyi+LV/9X38t1f+MsY6/skP/gQf+lEfz5gSpxupu62R+7neRjZ9onEi3FgOEWslNrGPiduXI95q+hA52UYKBd9Ir3fYOhKZECJjyAxjwRiJpLBaT25R4qxrtEbDXoxycT3SWnGRGmO+z5F594Z7ilA/i2IaSjWmKrArlcrDltprVCqVysOPe4okvzd0XtIiYpb4N29FNDK/iyWY1RD3yzlKIWftIU4uvgWjIE3OSCnDmNLeNVVpxbZP9CmzDpExyHJQSIWTnLihc3TKUsbJvXb62tvf8Rf8X9/591kvT/jLT/rf+N6X/BRRWTqraIzGGs0YkvRC3kw9o2E1SLSg4rJYPYRMDJmYwGrDOgS0UnQeFt7hrKFkMEoxxoS3InIIOcMkdHfWY5WeHHQzs8ZTkFnBZkjkDOMUmz4ERcow9+CnvsRPvZWIwKUfUBqshtNt4tzckoskg7RuBkxij2u4g52bOcYowvrGXnYdluwMiVZ3RnFh5rl9NXBpEwi5cNA4vBEh/RgTM2+reKNSqdwrHrE/DT7qoz4KrTWlFF7zmtdc8zGf8imfws/+7M8C8MIXvpC///f/PovF4orH/Pqv/zq/8iu/csXzViqVygNlNUT6Selwx3pkPUQ2k2vRorEcdg6N2I6GlPcNwGqIjDlz0DgurkdACt9tyOI+NC03eePICdZR3Ibs5Oy0HBKrIZATOKclBqGxtN4wxsR6zJAjjTfkAoedow8Jpdhv11/ajFzcjDgjB+AxiYvV8Wa8pkK4j4nj6fFpmgi1uwiRaTA0RFEBaKXoQ8JauTaUYuY1KWtaL+rrMeVpgKPoY+SgheNe7s+bX/OrvPZnXwDAx/7dr+EjP+XzSTkTUqGg8FZeUwPbKM2H1wYFoBUxJ3IsxJhYqkjjDGOeogaNODhthkSMGd1NgyKl2IaMKjCkTCwymUm5cH6W90tHO3V+0JKh7cz03pXCmMyYEiHICtmI4kLjsEpxYe656bChsUZiAhvD+VkjCn9lOGhl0enRhy1jypxuApsxszkd9oOKubIMMRFimexi5XNonGbRiMJktxQF971prFQqlQebWttXKpVHEjmXfaz0pc1ITKIajhmMhnPG7xektFJ4I86wrTeslpEx5cmNR9NHxQzDso9TzJ5h5jTKwEEjB8W3r0Rs4IyZln0UY5F4uJQi2RluXw7MWukzVquEYopa01KX7pbmZ97SOkMBzBStPcaEQnHQOcKqkFTGGoMxhUYrwNAoRQiJjMJqTWdBW4XThkZrukai+vogCuxtzIxT9F5jNPNWi5Ot0WRdJJJhitQbgog6chShw8xZQsoYrUGLU5VCUVJh1JNCOyWaqebOkxuWs4khisOS1ZrOw7zxlJxZdI5561CqkLMix4x1hgY5yJ85zWv+3Uv43Vf8LEopvvo7fpCP+6S/yUkfsGisNcyAkBJKaWKSr9uELJF8qbAeZZAg/ZMoysdY9gtxGVgPkQvzhpQKyzHhjeax5ztar9FKPvPWSZzizFtKEeHDTlQz87KElHK5k1jlei4n3V2E+lkH4eu9lFWpVCoPBrXXqFQqlYcf9xRJfm8422v10zn5EPM1o6Z3InaQ5ZyL60DImdWQcNaIW22BVZ9YD4n1MO57uNtXCYpizInlNjKkQs6ZVET4PXPyutvViFaSmJFy5p23voOXP+9rWV26ncd+yEfw3B/5aQ4PD9hOguVkCkfWkwsY4MZFM4meM4vG4UxiO0ZS2Qm1C2NOMoNRcg810HmNt4qiCl2j0EoTcma7HclFXIw1MjfxRuM1nGwTisj5uUIpxYXOY4ykVyRgMwRCysyco3VaZkFOej4AYxTeKJyVnuXSRmZZuUCZEk7m06Kb02rvCnbWHSwmea/AfhEMJD7eWz25RilJZNGKS+tRROhTj/jYrhPxvb1S+F/FG5VK5a54xP5EODo64mM+5mMopfDGN76RN73pTXd6zOd93ucxm8lG6l/8xV/wCZ/wCfzCL/wCb3rTm3jd617H93zP9/B3/+7f3T/+sY99LE9+8pPfW2+hUqm8j3LWFvS0D/Q7555JlX1u5mmsROc11rBo5M92iogxZC5th32BfNoHxpimx4tyAAV9nIYECtZ9QCnZoG+sxlpFyoWSC5e2gX7M6CmiTiHFf0yZ9SjXuZ1+f9qP3LGSItYq2A6ilpD3JQfyIRWGkDnZBi6tR/oxkQtsxsTp5GC0K3obraf3VMilMEwKgJjy3mlpMW34x1RQSv4spsKYpAkpKBbe8q7X/Tb/9We+F4APfeoX8LhP+SLec7rldBO4tBlYbgduX43ihBSi5H87jTaiCpeCWhbEtiHv708umdZqWqehyGKRLHQpjteBzRhY9YExZbZDYrWNpCTuURfX494NK0z3ad7IsKlzlhvmDRfmDX6yuW1bw0HrOT933HK+5dFHLY8514lTmNU87sKMD73pgAtzz42LhpsOGj7ohjmPPuqYecu5zuOtKEf6lBiT5Gavh8iqjwwxUYoMXxat3S9Fdc5c0Rzsmka43HzumtFKpVJ5KKi1faVSeSQQUuZkE7h9NbAaZJGpFHEWzUiNe7INXFyPnG7D3mF0tquNrWEyQuJkE9hOrknzxqKUuDYdzSydt1jEFUrit2UB3xuNN4ajWcNhazBG7eMUMtJHhFTQSg6jW6tZtJZUJBpvZg3n516WpiZRxDDunl96jXlreczhjMYZznWO853j/Nxxbib/7FTNjTdYJZFvs0aWY7wxOCMChT4krJb33HhLow0lwXaMKDQoCFliGebe0mjFGCSWLxcRg4whAVLHO61oGqmxtRKhwhgLmyHL4X0RdyujQSlxYCpKSVyhM8ydmcQDCqMVXWPxWtF6w80HLa//1ZfyWz8nrrRf8S3fzad+1udycSMuuk4rDluLMQZvDDGDtwpdZCEql0IsidWQWA6B9RgJOe/j++at4dzMTWIUA0WhUFzoGg4ax9HMccO84ZajGTcfddxyruPczBNz2Q89JMJCvgcvrUeON+PUJ8rr9DFxcT2ymvrQ64XWinljr+hPblw0XJh75k11nK1UKo8Maq9RqVQqDz/uKZL83rJzB9o9z+55z3JWxH7aB5ZTLzfzhnljmHnDLUcdNy48jROx9sXNyPE2cOvFDW+7uOVdy57jSRTTWDUJNApjLiy3kdMx7iO8nVWkzTH//vu+gdPb38mFWz6QZ3z3TxLsjP/1nhXvPOm5tJa+8e2XNiJ0RqL8Dlp3Rf94w6LFKIXV0leUDN4oOid9lLcapUSEoVH0obDsAyFmxlAYQqIfIttpBmC1JGcoVUTonmGIhTEVSoLOKaySBSeyovHieDwmiQXMKWOUYuYs89birfSCnTU0Tp5vjInOabK0MjDdl7PuYM5cjgw/uxTVeemdxMVWFpvkPjRcWHiOZp6Zt2gNp9sRo0WcU4q8n0VjuXHRcDRzdSmqUqnciUe0NcRnf/Zn8/u///sA/MRP/AQ/9EM/dMXfnzt3juc85zl8x3d8B0op/uRP/oSnP/3pVzxm56qhlOK7vuu7MOa+WTVWKpXK1VxtC1qAg9bK8lEu11Q+aKWYeYvVimUfWW4izmpKEVWxn4YUapBlKas1Q8iT6jjQp4xzhhudIUTH7auBIWZSzsSoWI0jRslS1KKzGKMYUmKMGWcy3mgubsTZqg9JLEidIQEHnWXmpQjdbeiHyUUq5sJyiGzGyMxb+jGRcuHmg5bVIO/BTu+3DxknO12EWPBGlOqt03u71p3COiUZggiFd7zx9/jtn/hOSk487uM/nQ/6O1/DZorOcyZjggw4UpF7HKYC+8a5J2dYB3HVEnctQykZrUSJ0jpNKmIxe9RacfYCUoEyuUmFVEg5oRWcbCMxZ6xpGFKmHxOrIe5V3LtoC9/JclWe8slLkUGGM5rDTpacWmc47CxHnRdF/10U60edw2i1/144mnlizqyRJshqUU8oLa9vzzyPNHh3/t/9TkFzd01jpVKpvDeptX2lUnk4czZ2AeRQt4+J7ZBkESZlNmEXX2cZitTLu1ps5iVSb+YsMclhtYgFIMVCLgmNLAdt+pHWKRIZpSRiofUGZxSpyCKOM4a5lwUiZ5S4K03XlUrGKctmzHRelpRkyd7htNSOnTP7JXtvNOvpIF8h9f/5wU2vBdpqDhrL6TayDVEEHPsocBFm9CmRS6YfxelWK4nN24yRMSaWvcY7RasNVkPOQMlsRomvyEikdUxFnFeVRutCY6RX6KfYCGczrZW+CaVQO2FDypRcaKwlZYVWEg2hippiGQragMuAKizmnpvmjsZb/suvvJxf/dc/CMCnf/mzeNKnfh79KC5a88bSD4nOSwyFsQqvNashMoSI0SK8SLngrSKMMGSwWrOYObpGovdiKjzmyHPLuY6c4aCxnF945l5cY8/PHIedp3WazSgOTW6KKixMg4kp0nzPJFjZfZ6tN6wHcRQ+bN175b+LSqVSeaRQe41KpVJ5eHFPkeT3lt2XXf18O64Wse8WcFonaRhGKZZDnOLvQCPLNcveMAyBkyFhFLgkzrnemr3jiObyso8uCqMSc6dZnpzyM//067h061tY3HAzX/p//ATu8MKU+BE413mCKixaeQ0RMBdW1uz7x8ZKX7AeA7kUDlon8xWvRajhFIe50Ge5PkrBaNgMEaVhGxCRh9GMSqIA3dQzxlJovfRZJ31g7sWZeEiS8FEQgcaYEn4bOZrbqU8DPaVuhF3EIDIz8tYQyxRBGDJHN7hp9qQJ0/zhrDvYzilqiJej9Q5ad5cR3uJYa1AoaVqLiDhm3ogg3RqOZrUHqlQqd88jejHq6U9/Or/5m78JwJve9CbGccR7f8VjnvOc5/CGN7yBn//5n99b/J1tYnZ84zd+I1/1VV/1XrrySqXyvkrOhSHe2RbUW7NXJdzdAoq3hsZljjfTwsr0c8pbjS+a5VYi+WaNZTkGvDGEKAODResoRYrJMWWWfZSC1WqGUFAEWbbKBudlSSrlwjAmlId3nfSEnMXmtBFHq4PW8gHnO7y98rCndYZ5KWzHxGZM0wBGXKtkASxPagVF4wy6j6z7sFezJwrGKDql2YaMUZqYJBLjdBoS2cni9fStb+JXX/Bschx5zEf9Df7K//5sxqKmglvtFQtpzPsYDaM1xhTQijHKcGreyGdgtGIMl5utmZfrbL3leB3o4zjdc8XMGhpnCEkKdK3AakXO4pBVirhj3b4aZOGpsRitpkx0yxgzWivMZP961Dmc1Tz2XIe3mpsPWw5bd6+U1oupIVr1kb7IctzcKw5bec6zKAXe6Cvi867mnprGSqVSeW9Ta/tKpfJw5erYhV0kMchhrLi4KnLKnMZEzoXzc3GJ3dWMi9ZKFBkw95ZjHXBaE3PmZIyAQk+q2VwyOWsKiq5R3HjgWYdE42XRaBMSGnER0lpRkAhlcWHNhAzKRPoIty0TVhsWreWgc4wh7YUSfZ9hcmwdp2Wmw87to5aHJHHSc204N/MctY7lJKS4YzWyCeLumkqBAusxcrINxCiOrFrLe3DaoAx4ZzBay+BAi1vUNia0UsRcyLkQYiQmOWwfpmWn1ltmThPLpFLOkc5ZOqemml6jtEJFcZmyqmCMRhlD28gBvaHglETUHbaWWeuIBf74P/8aL3vBdwDwWV/8NXz2V/4Dhl08nTOklBlTYd5abjgQV62QREhBUaxDIBURvyysxbaekDIh5cktyqKK4mBmeMzhnM5pxpj33y9OW248bLlp0XJ+7lkNEaUU80YGNyHt/h8nA4S7E6uMOXPYOraj3NNFjcmuVCqVPbXXqFQqlYcXalpu2f14vb+i3d2X7Z7n6v2qq0XsAIednOHv0jhA5jopy2JPKZKAsY6R7RhxGsakmfmCNYplL4tDqRSGIAtEnZU4u9Vm4Jf/+Tfy7j//U9rD8/y957wYe/goxqEQG5nFnDLitCHkTGtEDH00cwzxanENbIPlcOa4/XSQGYOyqCahRlgcteSUWI+ZlBQpQ0oya1lPQu6UC6015JxxXtyVFBL3VwBXJNFjGyLWaLTSdM4y94UhRJZjYJsSR03msEukJI5Wo0qMGVorsXrj1P8YLSLxuXcivFEyg9rdY5BI951b1C5tpfPmLpeidngrvZTTCmvk19sx0TrDEBM5V0fbSqVy9zyiT0k+/MM/fN/Q3BVaa172spfxtKc9jRe84AX86Z/+6f7vSik86UlP4rnPfS5f8AVf8GBfbqVSeT9gG9KdbEFn3pCyDC1IEkV3d2fUu6132aBXU5Yy5KJI0yH8pdUgMRlINIQzSpyXppiMc51jO2ZA4jRKkWtJY2ZtI1rD0cyxGiJbDf1pYhszBkXjDYet2JV+wLk7L0Xt0EoU1NYoTraBMWSYdOan28hNhxIhF61m0RqONyPbOFJKYTMkUpH7NMR0OUM8SfE+xsIQI8t3voX//IJnEocNj/qIj+WTnvFd9MWRYpIYPCMZ3t5qtlkGMjFJjEaJok7Y3RulNIWM1jBrLZqdUrshU1huZCFLKSmsnVLMGkfjFLloMoGYCkczu3efyirz7uWA1WJnq49alFZoVab3lok546wMk7zT3HzQMm8s88be52GFM5qjmWOWDCFm1mNCTdEaSsn3ibcSp3JPKpt7ahorlUrlvU2t7SuVysORq2MXdofpZxdVjFb0MUmdvrkcZ7aLNt4GqdkOWsfJNrDqI1rBvLX0MWK2Cm0NB51hM0gIApSpvtNYo3CxgIVSFMsU6KeFIgCL1MEUGSjEnOmDuD2NxnDUyeJQyoWDznHQiBtUENumfeTfLq7vXadbrNH7eL6iFQpQRpb9rVFsBxFymEmIEGLhZJSlnsO5RwObIdNN0QolF1IqOFNkmSyCNgWnQBnNNkSGBDFDIYOCHDOj0fhS8FbTqJ3DqkRigyKVzDC5u1qjiUmjldw7WT4CbaD1hnnjaKyovJ3S/PkbXsNLv//ZlJz55M/+Qj7v679V1NNKc7KJzFIhU2iMYe4l+jpO77kUhbMGvZEaXRU1CUMkOiNPQxWtJbawmxy72knR3E0xEyKekGWqIaRrqtlnXha6rq7vrxarDCFzSuCwdbLYNX1/ViqVSqX2GpVKpfJwQytFopyZmWRad9+d+MbJuWi3EHO2Zr4rEXtjDdsxkaY/70PCW8OQAps48q6TLWOWdAtnNSEmxhAZo2IzJJQW19wxFsaQUUYcXlerLa/68efwjjf+Ia6b85nf8mM86nEfIkJwCnmZOew8Smk2IUrknjZc2gbmreWo4wpxTZ4EGDMnIvYLC4+3mlQK7zru6WNi4T2KRMjyNWPKzIzGqEKfMgpNKpmQMzYpnJHI9NZJRN7h3IrYJUnfshkTGfbpFptJuNHHhAuaMY6EbGmMxTlYTr2ttRqD5mDmOGwtRRVm3pDLnYXZY8wyx0q7GZq6V5/9Pl+kSC80xkLMZS/s2YZ0zeSMSqVS2fF+8xPiq7/6q/nqr/5q3vnOd/KOd7yDUgof+IEfyM033/xQX1qlUnkfYpgK8bO2oBKBlmitYQiZMWayv3akHkDMEvu2jomiCue9AyT6TiuFtnC8Ccy8Rk8RalZPi0XTgAYs52aZ400gZVG0l1KYNY4+JEqS5Z9VH1BaEcbCrBF3oRvmEvH2qMOWo5m/5jWepbFSTN++GiiTymM1RG7MEgXxnqWoqJdDZDNEtiEwhCJLQYopLjAxhCTPAShd2Nz+Ll71Y/+YYXXChQ/6SD7p678PbIOJGW9EVW6VwhtN6yyNMQwp0Y8Ja6Cg2AZ5rEYWznYq+oOZnYZYk8NWzCyHiDGaudWoIp+lUoVxLGgjTQOI/eyFecPpJmA0bGMiZwXacLyODFHem9HyOc68ZTZFW5zrPPPG0nlzvxXcWslnPm8t1kgU4MH9iMq4u6axUqlUHu7U2r5Sqbw3OBu7cLIZOdkGQhJhQmPNPm7ZWUUqmguLBmMVy23cRy2XUjhoPZtRxACLxmKU4vZVz3KbWPeJo7lEBmjA6ExrNOsg8WyHjcU7w6ItLLdhOgx2LPsi16Yg95BKYO4sY06EUNiEREiFCzOw2jH3hjJFrDmjCSFigD7JYlTn7dRHgFEaBRy2lpMSdjtXGCXuVP2YMRqaRpMTbIaAtVJzj9Npd1LQOEUphkQhxsImiBtUigVnDY3SxCJ1uzMKhcQEjqkwcxrTiJhBTYtRILHR2ijIGWs021FcXZVRhJBkGSwUukaWjrSWQcJNBx2N0zij6Kzh7X/2Ov7VP/2HxBD4uL/5GXzFtzxf3EBSYRvEnXUzJlLOHJ13aAWHnfz73acDINF5i8bu3WmVUtPnI4KFPkRQ4vA6ayTaofOWczOJyb64Hq84yL+4HtFa3UnN3tyFUAWuFKucbiNDyPRGVNObIXE0q4tRlUqlcl+pvUalUqk8+OycWHczkyFm5uWuZybXIu9itZE+Yfe8O64lYu+8PM5bzcl2YFfBv+t0w23LcS/+aLShcyJ6jqVQMiRVWCd5zpMsseZaKxbaokrmd/7V83jHG16DcQ1P+0c/xGM/9C9TlCzx2CmAzxqJfzNTHZ+LCEjWfcAoRXCZReNYj5EhJropin23OGSUYtlHDlsLPQw5gRJXKK01Ie7cZeV9xVLYhMxR68QhuLX7pScFOKPEqReZS+UkiRkFcMZw0BpCEsGM0bIovB4SyRe6YvGTC1UHPOaGGYedJ0QRyOze39XuYJLqofczNL8Tzd8DO08xEYpLmgjILM5bLd9Dzb3+9qlUKu+HvN8sRu245ZZbuOWWWx7qy6hUKu+j7Cxfd7agzoib0WYUBbPVstDTh8TMX/tHcJkO/nMpqCLPEXNmjInGWQpSkIessDljtRzw72idbOLPGsN2jKxG8NqizTTc2AayzhLBoZQMHhrNuZnfF6q3HLXcfNje6/d9bu64uBnJWTb9+5h5yx0bzs89pcDpNk4xcIX1kOljYRsGSi5EClZpVCkorcipMK6P+a0ffRbb49s4vOWDeeozf5BsO/rJhclq6JyhaxzOqEn9La5Jl9YjfZDHbKOo4DchcTJEbpiLhWtMEhc4jJlcJA4l5YJ3irm3rIaIUbDcRrYxMfdmGnbs1N2ZWStxhKKGgKOuYUiRw06sYhur8M7QGlF07Cxw749T1FneG01jpVKpPFKotX2lUrk35CzLLkPMEmdXLh+mNlbTOXNNy/3NkAgpc2kduLSWBf6D1u2XdFIupOmxQ8xSYzqLVgqzVfvD7DFmFq3jeCs12zYktFYSHT2pjW9cNKz7hLeilp47y6wxVyhelYK0luWh3ijmzqHMFINXxKmoBE3TKpSWQ3NnNTHJ15yf+8lVqRCiLHidDpGQMjN/+doap2kajVWy5C8H4NP90pplDiijaJRhOUbGKAtgJRcMCqULnbM4rTjpA2qq+cdQGFViG6U3MkhNP+ZMShm7+wyKKK4PvcHsXY/KFMGdaLWlFFgNaVJRF0576ZeUklhBoxSt1SitedRBwy3nGhpj8E7zlj/7U/7Ft38tQ7/hIz/ub/C13/lDaGPxVhNiph+yHPCPiZQktrzzlpAKNx+2bCYHsNNtIJdC5wwzb/dOruJlpabhgrhfzb0lpMwN3uxdnLyRw/s+JqxWLPvA0czfSc1+b2isYeYLmzHVOIlKpVK5TtReo1KpVB48OmdYD1EcaaeZyXa8b44/28lZyerJvXV63h3XErHvXXe1YjP1Qrceb3nXcb+Pg9sMkT5K8oTEw2mUkbo+pkRKkJA+02RYq8jrfvFHeNvvvxJlLH/j676XR334k1j1kVljuTDzTCEhlFzwRrFoHEOUiHEo3L4cWfWRAngrLrOlZM7NHTHBzIsY4tJqYNYYxixReMsBtJL3aZSShSelcAasNjgDWsuCk0ZPIh8R84eUuWMT8UZxaTNI7HlKkxBdEityKcy8lkUoL3HpMcqSVMiFOCaOOk/njYg1+kDnLGPMHG9Gcbmd5mA7d7AxZTqtz8zQ7l2/shN6q6m/aZ30Vbvnub9xjJVK5f2H97vFqEqlUnkwudoWdOfuszv0br1h1Ue2o6iQr5WbLAfpl38ds8TvGaXRrhCSFKZeG0IoDESxVN0V19Prp5RBKRZeIhuslsK4MZdVEc5p1tvEYedAg0XxuPMdjz7q7tP7tloz94b3LAe2MaKK4nQ7SvGMDARONoFlL81GSImxgNdi2Vq0RHHMnCGlNb/+I/+Y1XvezuLGW/jUb34hpT3EKlEmKApKaazV2Mkly+lCTJDy5IKkICNLXjkzRc4pTvrIwluGmAkpi7JdK3RQzBpLYxXbEPdNREiZUgoUcdhSalKMWFmUSrnsP+t5Y7jJN9x44Omc/O9VKRl4zKfojlljHnCcxXujaaxUKpVKpVJ5XyCkzGZIDDFxpyPSAglZQlpuAxkwWk0xaVAovOPSVpb+J6Wx01ocSkPcL1cprWiNoXOGZc6cbAOdN1xYeNQKVmNk2UtE9npQHHayYGOVpjWGMoOZMxy0jnljaa3hdDuyGRPOmr1LU84FbzQ3Ljy3n450ztJYaK1mSJnDxk7LOxltFPPBUSjikmRlwans3/pllyJrFCEhMWxKHLG0Ujxq3rIe45n+oqBRJGDuDAmpcxWKxopqOQOxZGbayutqGFaZ7ZgwRg6q8xR/PYYASk0x45oxyUG5LGCBRjGkwlGjOTdzElmhpI5dDolGK8x0gJ4KhJTQChonSunWaWainNgvr7Xe8J53vJUf/ZavZLM84YOf8DF81Xf9GBhxX81ZRCYFiKFcEYfXOYOZDuBnzqJQ0psoRedkCLBD7V9Pk7Oim3o+b69cdNupmvMknNlFjV+tZr+3dN6wDanGSVQqlUqlUqlUHvbo6Yy9j0l6qSFO4nJ1r8QBQ5Q4abhcNzf2SsHLtUTsIH3ibcuBzZi5Yz2wGRKbqcdbD5lYIE9ff9R5chpZT5lw1hpKEQFFKYAuvOn/+Re89XdfAUrz1778O7j5CU+e3IBFBLNoDSkrCgVtkNjuxsjikJXeSiPzhW3MhDGyHCSi7tImsGgth63jsG2IrQjUF95SSiGWjFYarw2pwLw1WC1C+wJsxyzOVkpjraJk6RNWU7qHM0bmJFqRSmHROcYkYgtrtIhOUGxyIlPwWmGn+21KIWczOU8ZQoQbF14izYvMtHJJlOnXVisGZGGtseWKGdo9Ic83Cb2n+VZjDOHMfKbuRVUqlXuino5UKpXKdeRqW9Bd8T3zZir4DMFlhpBZ9jI0aZ25ovjbDx+mgcWyD3TOcNBZYi4cr0bOdR5rFOs+MkwH31fjrGHRSME5bx2lwEFrkaFMwCpZzBrGTOc188bQWsMNi3vvFHUWiYtIeK2JFN59OmDMSGM1OUuOtTeaZRbrWaUlMqPzjj5lhpgIoefXfvhZXHr7/2B2dIHP+bYXc/7mx3DbamDMBe/MfijUWUfrFY2RoLyUsywqZVnE0kph0WSdmTUyVBpyZkiJxsnvQdFZS7MwaNT0uSlKFsV9zHBkHYtOIk9ykYHKUWM5v2hwRpFyYdkHGms46mSo0lhpGmbeirPVXbgQ3K/7/F5oGiuVSqVSqVQe6ayGuI/BA1k46WMi58uOUUXOtsVFanrczuXzPac9p9tAzIVL64GcFRcWDpevWnJPhTHIQXLrDMarvWPPo45a1OlAnxJQpP4ssGgNOVsaZ7h9NTDETMmFmZ+iBlA0znDQuP3CzXpILBSsh4i1illxHLaaMUJbxJGqc7KolHKhsRmVM7PW7xW4/Sjq38aa/fbOzEqfMsS0d0KaOUPXOYaoWMw9t68G1kPC2czMTzVvgdN+5FEHDbct5cDeKE1jpJtZ9xIjl4rU5ikrMgU7dTu5QMmZvsigIpVCodA6yxATSkp80s4ZVQFZFvsphVgKOZV9fN1RJypsoxUqFRTiEnvYeWZeE1Lh3e98Jz/4TV/G8R3v4QM+9CN45vf/JLabMYaMM3oaGEiPMCRxntVaMelNOD/3dM5waSNLYYvW4aLU4VZpSpmuR4sray6F1SADls6bOzkG71rAUmCcBBnXUrPfW84KcmqcRKVSqVQqlUrl4c6skTPu1ouL7BAyp9vIzBc6b65ZD+ciIuFVL+68WivMqFgPiQtzR1qXvSvwtUTs60Fiz1dDwmq4tBnpUyTERJ8K2z5ijeKw8RQljqx6J6BBQ0kENJAwWvH233wpb33VLwDwsV/0bB7z0Z9CLhIl3naKUgpiIispISEVhhRJJXNxPYpLrDOEWMiU/RJRyoWD1kkvVQpOa062gcZqDltLHzKnm3Ev1Lhh0VCQPmjVZ2KWGYBRhdYbjNYYDUppxihzFFk0Uqz6iFaaXESsYbQiqUImU4rBOc2FKUYdLYtJsSQo0rS1zjJzGq2hj5mYCt5ptA4sGkfjDOtxZIiT61OROdLVM7S7ow+Xhd5uEnp7qwnj5ee5j+1TpVJ5P6QuRlUqlcp1RCtFmg7QSVJcts5gjUSpbcbEonFAYAiinu6DLAw5q1CIhenxZmQzpMltSYrX3eF66eB4O9I4g1IKMyaKKthJTa7kQmRTv/M4rWm9pjGa83NPH2VwY6bFpKLgMedacgYmh6v7ynqIsjTkDKfbgNGKmDLWmilCpLDwht6CNp7jdSLnRMqZIWdZYEojv/WS5/Ce//l6/OyAz/wnL+Smx3zQvsHxu3mI0pxvvQyOKMycpXVi83o6RIzeLQcVtFWMo8Lowpgk3iMnaULipKaXgZli0Roaq2icF6eo6d4fto5FYzFac66zhCz32mq5VxcOPOdnYhd7buYxWnHj4sGdPjyQpnG3FNU4vc8mnzXVLapSqVQqlcr7DifbQD/FkfVj2rvonGUziosryOGq1lJsnm4lHno1BlKB5SYwJFmcWY+Jw1Zx2Dk0sugTUt67/KyGiHeao85JdN/k1mOjonGaxRQDvWgsKRf0kLhh3rAaAtuYKJPb6E5skafqPpfCkOT5TjYRrRU3HToOW8fF1UAzLfJbLYv5Y0osJ+eqlGEbEss+cFvIdKuBGxeN9CBO3FJzFjGFQfoZazTbUWK3Yy7MvJlcq6SGnDtLKoVcHCFnusFww0IWk+5YDmxTRu3OyUtGTbkRMRRCkUgKrfS0jFboU6axmvUQSbnQWk3jLd4onNKs+sgYM84aOsO+Tyq5kApoozhsrcRzA6uQcErTeYkcT0lxfOki//LbvoLbbn0rj3rsB/HsH/43HJ4/L69JISaJsRhCQu58JhVZEuunz18B88ZyvnMsh4iaFrFmzl7TCTingjeGRaP3UXtn2Z3/KyXRgUqpO6nZ7ytnXaigxklUKpVKpVKpVB6+OKOZN5b1EDlsHafTzGQz9XDeiLB7J2oZY2Y99XEhZrzTdFZ6q5mXWYmkVeT9AlQzfT3AyXYEFEPIDCFx23JgCIn1EDFGU8aMMuI4u02JFDN9SvRDkvjrqSdgSpV46+/837z5V/81AE/43G/gw5/yOTRWsRoSY8popFcIOWO0nqLaCzFn1gHGWNiOA3PvmdaQaKZ6fjvFupcigo/G7lxqRfjurWHeWmIvPUnOhc5b5o3BmYDVniEk7liPhJTZhkRG4TUs+8h6CBQgZZnrWC2JGn3I3LEaSEXmIo0xbIZE12hKUdgCuWRaa7iwaDjeRIaQ6K18/el2xFtDh2EIGaMiJxtFkYaHQmETIikblJJ+V1yE7/r7ZIxp37u3/nIayq7H3wm+789cq1KpvH/xPrcYdeutt/Knf/qnHB8fs16vJQLpPvBlX/ZlD9KVVSqV9wcaK/FrrZXCb4iZ+aRynjeiAO9DnoYiiX6UIc0QEztBex+k8LdGBjTOiAogpEJrDc6ICjmkhJpeT6HomssLMbkUlimjEEX6onEctI7OG5qYMEphNOQihWfnLJsx4oy+z4fnMUmzUpgO9CkMMXN+4Wmt5ngb2JK44aDh3ScDRhU6lxmSJoQyib8T/+Wnv5t3/PFrsL7hM7/5Bdz0gX9ZNqGUonMSnTcGUU0UCucXjtZKRvUmJELSaG32GeClQOcsrZWBldISg7IdEifrwNZpznUObxTeKayRqL0YC/PG0DWGG1vHhZmfoiysRPQNaR9HMmsMB63ldBvfq5at96dpHKdGCmSgddiKu9W8sQ843q9SqVQeLGptX6lU7iurIe6Xok57qZFAlk8aq3FGYgOMFlem1TawDIlYCt6afSzcmETperwZocDNhy2HrUVPh+0idhDnzewlCm07Jsbp9Q5aR84FpQt5u4t7VqLo9ZbHnZtx23LgglbceiyLWss+4LTe121KRXCWZR9ZDuJelch4LctXY8wcdI6Ftxx0DqXg3Mxzsh3ZDJHVmMT9yWmMlli19ZhgNTKEhLOKMYqjU+cc5+cejaJPicZIH7LqI6514lga5CB/qxKNkWu4uBlQSmLnCtLLbKa4hpzLvj8JMaOVCBfkzRUkdEFByYQ4iUxUoSgFRUnvY/WkbtZApg+FBKQoUXUXGsesNZzvGi6tB5gi9goi1IipMG6X/Px3fz3vesv/4PDCTXzTD/005258FABGaWKRWlmlwjAduButoRS6RqK/u0mUAuCs5kA5oHDaR6BMEYziGKWVPCZEhTMF5/T0+V/5vbpz/dVakWLB6CvV7PeHsy5UZ/9dqVQqlTtTe41KpVJ56NmJRvqQOGwdvZG+SmYmMl/ZsRO3SEKGRaNYDoHGaKxWhDSitfQRfpqbbMZEKiIszkVe7+J2kMWpceoLjSZnOOwUY2JaShJH3T5kJDRckhjEtQhu/6Nf582/9GIAPuzTv5yP/NSnT8tGDhT7ODk1iaslbk4zxsBmTOR8+X0pU3BKc9DYvZg9l0wGQiykEpk3MjwqiEBkOURaZ7gwvXeAc51l3rrpdbJEla/HfX/rjWabI11jyWVaLoqFo5mhNZoIGBU5VjCMhdMcyJ1EiVstEeYKKEri2O9YjYyx0LpdvwZWG851joPOEVOhdYaYCzEXtjFy0Di5jpBwRhOSzJVm1xB7yyzt8lKUd3qfmNE4zbKXe9Lu/uwaYpVKpVI5y/vEYtQ73/lOfviHf5iXvexl3HrrrQ/ouWpDU6lU7o6ci6i/Yxb3pimGQyvJi26MZo0UlVaLwno7ilIcZECilUSfNdbQWENMEnVQshR71micMRw0FmcMKctgZO4tzmqWQ2DmDX0Qh6ZSCkPIpFSwTlQLKWVaq+m85ahzKCUqdbh8AD+mglHTtRotEW1O712u7i07B6LlNjDGRNtYuqJQk3mrN4bzMxlMGK1Jqchwo4BpoJTMb/7rH+R//ddfRxvLpz7zB7jlw5+E0uCtwSBLXDElvDXMnObczHPUORlQIC5dcr8zlLJfQmutxmjFGMWdq/WQcsI5eew4KUiONwXvZVlo0Rq8lSK8dUaGaM4wn+IQF62l84bOG6xWVyi9z/77wea+NI07rFb7+EaQSI/F3ckxKpVK5SGg1vaVSuX+slMGw5VLUbOpdttFJ5QiC01jChijsEWTosTdDSFz0Djec7qdYu1kyUWUrYmFtwwho1XcR6NppZh5i9XTUlXIDEbqfYXisPNYrWTxSCkuzL1cby6cbAM3zGUR/2QzEpJE6W1CpI+JlAubUd5HzmUvDJjKXhE+TKpZZzSbMXJxPWKNpnWaPiaMQv5BsYkJhSw+lQJHnWU7TpEEWha3buqa/XtzZuR4E+T1CygURilOtiNjzNyxHBlLRim4fTnIctgUzVcQoYK34twkceGQsixFNV6TC6wHccSiFKySnsVosE6jiyJn6LxGK43RGWvkIL+zsloVong8zTtLiIUxSKwFaHIK/OIPfjPv+LPX0y2O+PLn/yTm6NFsx4jRGqUKMWb6IZGmGMOuMQyh0BgZaOwcxXaLTTJkSXTOMkZZhjrs3BUH+Tu3VpCoCRA3sLN/Pyb5XFtriCnird73avfX6emh6k0qlUrlkULtNSqVSuXhx1HnMFp6tdbJ2fXVUejrMZJL4ahzciY+nYN33uCtuewQnKSnO3tuP04uSPPGcVJGxjETYsFqLbF5M09ejyRdCBmsA50yRmdimsQhIWGVIpbC7X/8at7wsh8A4AOf8vf48E//ConL04pUMnYSS3hr6GNEIT3RvNWs+oLVcDIkGmeYNZqDRhIr5o0hTSLnzSD9lPYwBukbYyos+7BPqzAazs8aWfBSijEVwmZEI1HdChhD4nQbGaIsgXXOctBpZq1BG0V2Mo9qrWY9LYI1zoDSqMkhOehEAjZ9xmjFYWcxKGaNw+iy/4y0kpSSg06ENYetZtHaKcUCTMosh8CFecM7jjdT/HnhJI7kXDiauSl4Xe5BOCP09k7uE0h/H1PZR+v5KVqvuw8zrUql8v7JI34a+rKXvYyv/dqvZbVaXaHqUPfx9Gen7KtUKpVrEZIUo7sD/isokKYicQ0yKNFSiC0HWYKyRu232eeNpbGazSiWqtZoFma3tCQF/VErS1AAGmkGOmcIudAaw6jylBgNRzO/HwDNvKWUQioFY2RQAnIIryeVwi7uQysFBm6YBjOHrSMXrnC5OstuQ3+Moq4Q5yaJKjFK7Tf059aiNMSYubQNHG9HFLAcpgLcKGatZbkZWfWJ3/35F/HfX/mLoBR/+xuez+Of9IlYBZuQZFhRCrooQoTOSxHsnaakwtGBYxszzkrchzEKjSyktc6gUayGSNKiSpBKWh6TSibELMMnpUhDwms9LWtJdOEYJdbjyMpS1OlWhkJWK6LNzBt3hdIb3ruWrfemaVSKK5QyO+aNrUtRlUrlYUet7SuVygNhM1yOz9stRR12dl+H7xTDAMshMIa8X1TSSrHsA6fbgLNSRCkUNxx4cpaloBAzKyILL4e73ojAYIe3hs7LQkw/CSGGmLBao4z8TDr7o+nRRy1hWo5ZtLJYdXE1oLTCaXFyzaXgDLTaYJQmZFngiTnTeXGTzRmWIaIprMbL9fqs0VDATYMC7zSxiDjCOU0/Zlovy0WpyGDg5sOGDNPCksQqOCNig5m3bELk0jpw+3Kkj5FVHwlZnJa2QRa5YinkDN5JZEIBrDOoAtbAZsjEksXRKUM/RLkurfC2oNEYJf1EURJJ3jmFQnM0EyX1JiTGURaw3FTr9gOsYyCkQokJqwq/9KPP5S9e/19wbccXPPdFnHvMh9CHSOsUKhdCzCz7SEqFrjE0TnNh1nBpM8j1GHm9PiQOWqmdW2emHu+yGKYPab9MBuKctTuod9NB/VnxyXZMVxzk61Ht1dRnI9nvKw9lb1KpVCoPd2qvUalUKg9fFruZyTSD8Vbvz7LXQyRmEZkvh0CIBW80i1bv0xDOzj6GKepcRO7S04SUeffJBqU0Q0zEaTaw7KWfmDvDKiSMgRILqzFedl2aEjuUhtM/+0Pe8G+/m5Izj3vyp/OEv/sNaKXRGnISMYoxGo30CEpZSklYq9kOmaIUuUhv4K3mqPU007xDKc1s6qHETangNfQ5048S5e2tZhMijz7s9r3ljfMGa9R+WSzBJLCJbEJCKRG4DCHTucLMman/UwSkj045048iJO+8w9vMapuIORGNnsTrat9n7OL+Om/ITE7LynN+7vf9906cNG/sFAMoDs8hZc53DUNIzLzhtM+c9oGUy50iyq1WtN7sn7N1ssx2uo371wARPu2urVKpVO6KR/RE9BWveAVf8iVfQs75Ts3IfbW+rVQqlbtiNcT94hFwj4snSsOljbg6NU4zhMzpNjLzZV8MWqM57PR+2UgiJ+QfpaBrDSWBNWKduhpk6FAoHHROCsIpb7qxmlIKqz5yx3IgI1aindVkZ8ha7ExB7GY3YyJOsRut09x80HK8DRx1jmUf7+RytYvKOxvFtmMbIiFmLvWBi5sRP11vymCUmtThmpQzY5CFrFQyq6Uo8t/wa/+WN/y/PwPAU7/yOXz4X/80rFGoUohM6u2YmXk9RVCIkh0gA30s+88k5EwphXlrCJHpOgreSURIyBmlwcksTJbNGkM7NUaqiBqcSV3hU6Z10ozlPKA0lCxflwuc9pFZYwhJruGhsmy9u6bxahTSJMwaU+PzKpXKw45a21cqlQdCnuKpAbZTlN7szAEqsHfwGcLZyDuLnx6zGSMFWPeBVCTCuXOelItEKk/LUaPJe/v/g6tqqtZJ5Fyclm76MRNzZN6Ky5E9s7DSWM2Ni4ZlH2is5g4GWm8JKeONxDiUyRmqAP0YScCsk7i4mDNKGUKSXiWmzHaKGrBGUYaCN4ZzM8O8kQX6O1aBXDLOGKIpEqlnFHNnSZPA4vxcrmm3eN/5xKX1KH3R1K9oBcMofU4shZgSaorGS1PGgkaRKcQCxETM4JKSA/ys9stDWitxk1US8+0NhKJYaM3MSXR1IeOsiBeMUWzXCaWUOOnGxMXNyLqPDClTciblwm/9m+/lzf/tN9DW8WnP/OdcePwT0FoGEas+Tp+VOAE7qzhs3d5tVxy3DIetwxl53O5/TVrJwtQQZbFs1e8iPfTk+nQ57qHdCVWsPjNESPsFvd1B/sEU03itSPZ7/d/AVS5UUOMkKpVKZUftNSqVSuXhjzMihMjZ7lM7xiizE6MV6zFilWY+0ywau5+1nKV1hvnk3rqZBDPvWfYU4LblSOuNRL8VTUb6wmwgTa63ukDOEr0Xc6YUiem2urD8izfyx//mOykpcMuTPpmPevq3ELJcl0LE4hqJJI9JhCON1ShjSCkTKeRJINJMfY5VkkLSOcOYMkZb5o0l5sLpGOi0JabLgoeZs+hpjmG04tzM7/+usUZ60CQ9Xh8kdvCgs8y9YdlH2mmRKZWCKUqccynkUZanjlon8etA1ypyEoeuMezi6MWlF6T/PN4mQoKDRvqPXb8781fOHxprmPndLCfROumbbpw3OKM4HSJjTCIo8RpjNK0xe/MA+WxlAW63FNU4vReTzJrqFlWpVO6ZR+xiVM6Zb/iGb9g3M6UUPuuzPosv+7Iv42M/9mN59KMfzWw2e6gvs1KpPMI52Qb6cFl5vp2GHHfijEVr5wwzLyrizl1ejtpMX++NHJgrJUOOmAp5GgQ4rUEVFo1jM152gVoNEgWyGiKXNiN2UhasxjgNSgrrkPaK85wlhuJ0G+icNAixZFZbGfbMGytq6HmDtZrzM48x6k4uVzGV/aE9sI/9i5Py4tJ6pA95iipJtN6wGRJHM8myvrQZWfcBUKz6kVjAaU3jC6//T7/I7/7sjwLwtC/9Jj76b38+Q8zoooixUDJAISWJhmu1xlpNTHLAb63mtA/T0Eg+E6Uk2sN7iQE53gyUrIgFrNYYDYu5nVTnsmgVYoYpTqXoQme12MgC6zEz84rj7bi3gtUKxqg5aB3Hm0AuhXOdf0gtW6/VNF4r6rFzVTlRqVQentTavlKpPFC2Ie0t92MuIjbwl+uynMveTWdX3+9iF3ZoJTXkekhTbJpGK0hI3b6LOhvGhO80IWZyLlfUV1rJQfh2TNy+GqbINolaS1kECymXveOsQhauOm/4oHbOwlvefmlDUIpQJE5vPURxh3IKh9q/pjMikCilcLwNbAep1VGFGZbOKW468DijGWPBKMUNC48zikXr2I6RfloQi9Py17tPB/qQ0FoOnXd9iDMabxRBK0qGMYvrE0qhciYE+XVBHKl2S1U5T9F5WgbPfUzELBEMO2W3NZdfK8WMM4pzrRykWythClpprIbGK2KUzzOTWcUMRbFQch8sCu8tv/EzP8x//8+/hFKaz3zmP+NxT3wyfciU7cDCO0oSR1+rNcYpZq1h0VqgYIzihpnHGM3hJErxRrPq0xTrJ/2eiFQMwcng5GTqGfK00OSdvkItnc8MaODKg/wb5p6TbbjLSPZ79d/AVS5UNU6iUqlUhNprVCqVyiMLrcVlaN7AySZww0LckNI0lznrCnzNr59cisaYWfaB9ShJESCR6yGKe24ohSFFQlZoYAiF5RBIeXK3LQWjNAet5eJb/yd/9K+eQxp7bvyIj+OJX/xcEpqYEynDagg4Y6AkvN1JRti7IG2GiDWKbUhoreis4bCz5ATaKKzW+0WimArOao6UxxqFd2ZyviqkkklFxCjnZ56Dxu7TNMYpWcNNfWvnIzcetKz6wDAll9yw8MycmcQtBW8VQ5SUjfkUeweSQHLQeqBw23IQgXpWcm+KJFl4q1kOkZJF/DLz5rLw5hp9TOeNzMesYe4NSknk3/l5g7N67/qci8IWEdmEmHFWnKqGeFm43zjNYSvRejvXsEqlUrknHrGLUa961at4+9vfvld4/NRP/RRf/uVf/hBfVaVSeV9iNcT90EQWf6QwU0oWc+7KonU5RBqnaZyoyGdetv+3k5XpEOWxZ9mM4rwktqCWmESFnnLhZDNO6uRCazXLIXM6Ro43QZTrOxW5Kmjk1zkXTvrAorEYo3jnyXbvLnV+7rkwWZp2fvrHGS6uRTExToqIW4979DTUCClLJEnM03KYqLCPt4FtEAV5QR57OkQ2MZIToKQBOF4H1mOmDxGrNW/9/d/kP/7L7wHgb/y9r+JpX/jVpJLZjmJtS9EUpRhi4qgzjFkcogCMKXRWlA2ZwibItYGSIlmBc4btmNBKsQmRlDIzZzBGIgO9U3hr6UNgnBoNo8EYsx9ghChDnTw1XKVMkYSTOkUbsEoK7tLJtT3Ulq1nm8ZKpVJ5JFFr+0qlchaJPLhvy967+rqfXKMaq69QD/fT4lQ4szh1raiyXYQdQGMkis5qTcyXe4HdIbI1Uq92/sqjlZSmKIAkSzYU2MZECWlass9XOM56q/cOtTcdtsway+k20MfEso/csRpFLJATMSSUNzhg3UcSskAzpjy9N+i8xAsYLQOE4mSp67SXpanzU3TguZmnFHj3aT8peyV++u2XerxVEqkw3QunFZuQySWzmWIlSlHcsLDcsUx0jWEMhcYbGqsw2jCmQucUxsjh/qAzWhn6KNF9KRWaVtMqTYwyMGidRRs5yLdaFpeUEkHDEAsMSe5HnoLFCww5wlBovKYfMr/3ip/idb/yfwHw2f/wu/joT/5U+jGzCRGdZSDunJ6W3cAZw6JxeKNopwgLq2QwsFNh71xxz4pdjJZlJGc06z6xGoN8rwKz1rIwMozpnN5/Rnd1kN84QxNkse2uItnvjmu5UD3UvUmlUqk8XKi9RqVSqdw37k8/9mBdxz25At8Vp30g5kLrDEYp3r3aYqblKJSijyL06MfMkKRPC5O4fbcUBSL8CHe8i9f++LMJ2xU3fuhf5Slf971sitvPDWLKRBSohEmKxOQcpZnEEZEhFBqnKVnRehFdW63pGul5hpSZe4NRoLxBR7CNYjtmZq3c736QCHDbaCKy6DSmzKyxuE6Tp/i80z5M76Nww6LBG83pEDg6tJhpgaidetzWG24/HQglM06OvjcsPN4Y0uRu5Z3BjQlrlTj+IjHrrTcopRhTnqL/Mhfm7V263p513o2l8OijTswBiqR/bEdx3k1FnLVy1pNjlMTHg4hAOm/2vXznDYv7ICapVCrv3zxif1r8yZ/8yf7Xn/mZn1mbmUqlcl0JKe+HE2eXombTItG9sWhtnN47R52fOc7P/TVj+DZjwmnNbGYZYuJkM+KsZuYt1sjQYDst/lgjW/lDzBw0jpPtQJyiKgrQGIO1ohjQWgZAmyHSOIM3ms5pGqvPKMPlsD4mGSykUjhsHe8atwxTs3HHehRFds4MUWImcpZ7NITEuo/0MWKV4bblgNZwNPOc9CMaidnocxQ1uFa87Y9fy3/4sedScuZjP/Xz+ZQv/SZO+7AfIBilSU1h00dSzigt0Xq5FBqjab1lG2XhrNGak23YqwUKGqM1Rk/Wt2iUUjhrcEYsuuaNnQrnwhA0SiWGMbNV0GXNUsH8nAMkgzykwry1eK25+bClj6K+WG4jzmpumEu8ihT+/r3x7VmpVCrvc9TavlKpgNSXu3jgO3m0FvYuS+sh3ikeeLfMtDucvloxuosY69OkgL1qcWp6CZyVP1NF4a24tDZOE8e8d5zaPc/CSOxdd+Y5lkOgj3Kdyz7ijRbxQRB3oVwgp3Inx9l5I+KIkDKLRmLtbNAsGkfnDcerkeNtYZ0jYSj75Sql5CC+NRLBYCZnJ+kllCxxjZEhyWJPKYUy3SNvNLPGMqTE8ToAsmB2sg1YDf30fmfOsAyZ9RBYD5GQ5ED6wtyJc6sKOANaZ9KQMVbcacu03NN6g9GaTmuKLcww9GNBmwK5kAooDYvGE5MowQuwaI28DyvNTj8WtoPEK6S0c8dSdFYz5oKOmT955S/yqpe+CIC/+WXfzF9+ymdhjcFbiNmIclsprFV0XlOyOPTOGys92hQIeNBZbli0hCifx7yx9FNM4U7sIt9XEkdop3seJpW215pVL4IZbzVpevzdHeTPGokFPCtWuTqS/WruzoWqxklUKpWKUHuNSqVSuXc8kH7sweCeXIHvivUQ9/OcMWdCzgyjyKwPZw5nwGhIaZrPTHOglKW2V0oWdUqBeHo7//mF/4j+9CLnPuAv8f/5hn9ON5+T+8QQIzGD0ZI+YRW4ybm1cZqC9Fe7WcQYM7PGMG9l7tN5ie7ejElshIE+SD8x95aDztGHhLeac6lw22pgjNIzHq9HzrUNrdd0URaaxpinJSWJU2+cpnOWO6xm0VpumHtWQ2QzRGIRYY21Cq2hRYOSHqKZxDvbobCNBasVzom4vmR5zFHnSEUWz6SntfhJVDJew1l5h7eyGLXr2w9aR+sM6yFybjJvvNYM7aywaMe8sXUpqlKp3CcesT8xTk9P97/+tE/7tIfwSiqVysOZ+6tu2AyX4/N2RfS9tWi1RnKOh5A5aC3nZo6cQRn2ivAd6yHiTJl+Hchlsv60eu9KddQ5+hC5fTly6/GWbZCFpJM4YrXGWvBGDtdTEdco12pyYcrBBooClQHDyTZy00KWfJy5HOUh15AIKVEyLFrLHauR7Rg52QaJ5zOauM2EBHkqnr1VHBXPaR8pJaOKZrWViLlxisFTqtBYxVv/9I/5f1/wbHKKfMRf/1Se+ve/jTJFh6yHSBjBNWCMRs8c25DIOdNquH2dyGUgkVn3YiF76C2rkIgx46ahQ2cNIee9+mDMCa2hmwYeVkFMiVxAFUhZXLBaZ1Ao1kPm9tWAM0rsZ41GT0tpx9uRmZeCezVE1JQZDpfzwyuVSqVy36m1faVSWQ1xL0yAez4M7WOij2l/GLpz4tn9++olkl0adrmLxSlgijuQrysUvDWElGisJmbDGCW6OmVxFj37vCAusBK/Hbl9NUKGdmZorbjJ3rTweGuu6Tg75rx3EGqnRamL65HVEDnXOVIqhJzJODmsRxytlIaFb1EK1mOilMKisXijiUUO38fJsVZriWwLqUwOtY7NIMtbyz5wx3qgTNHXqyFRKDhtGGPm4nogiWgao6FPhW0vdb5VYhObk8Zq6S+Gqd52ViLwUhaHqJTlYJ1SCEGWu2beyHOGBMpggMMpmkGh0EWTSmLM8r418v1ABqULRYHXije95j/yyp/6ZwA85Qu+hk/+3K+gT6L49laTciZPCufNmFFIzMN5pydHXJgZy0FruGHRAvBBN87wVnqVXTzg2e/Nc51ja0Vxftg6nNX7+PHWyuPv7UG+M5p5Y1kPkcPWcUq420j23eCjxklUKpXK3VN7jUqlUrlnHmg/9mBwT67A1yKkvBcNXNoOnGwCQ5SeDi3Ccm80NxxoTjYjh63ljuVAyIVEnmrtQuMMJ3dc5Hd+9Fms73gXhzc/jqc96wW42QE5y9zFGoNN0ud0zjBvHXMrwm1vDQX2zsPGSGS2URBiIRqJOl/20kM2TuOCYpjSLZppAeywcygFy22Uvkkhs5nJTSukjNVX1v07McYu7WTRWDpvsEZz00HL0gfGkFnrxGoIeCfRgv0YyblglGNMUeY2jaHx4qScMrhGxO8Zed+t0xweNjJH0VoE+1bRh8TsGt8Xu4/vbP++aCyN1fulvKtnaFd8PbxXlvIqlcr7Jo/YxagLFy7sf10zwCuVytU8ILX5A7Bohakw80UOsMfE+blHGbgw8wzTACQXyUceYsYZxRAynbP7wcCucI1TIT8mUQmfmztMr9iEJMORkDiaORqnuXHhmbUGg6YPomQuiKp6PSZyViQKj5p7tFYcbwJ2UpnvmpqD1vLOE1mEKkUGJv0guddeazbTElKRpA1WY6QPYjdbkqjODYWL60Eek8UCFVU4fsf/4pf/+T8ijj2P/+hP5LP/0feQ0KzGiB7BGoVzillrSSlDFPVBSEryw5WooQvQGsmrTjkTY8ZazcxJAQ0yCBtK4rQXe1mj5V4qoChZYDrtA0WB0ZpMYghpUkSIIj1naCa19WqMZAwLJcoIqxWt1aQiy3PnOsn7vislRKVSqVTunlrbVyrv35xswz7Cup+WQGK+UxV/J5eldlquz0XUw5TLB607B6kdd1qc4s41m1ISlaCVqINLKXROjk3m08F0nOp5qTElgllUuxLxFlLmtvVAzJmZt1xYeBaN4VEHLfMzB8PXcpw9JXDYijjgwtzzuAuzfV8TpqGAN5rb1yMAFxaN1MO5sOojMWUaJ3EGYecKZWVRaRPi/usVsqjkjKiYV0NEK43ThtNtYJkDm6GwaDVtJ45SaAWpcLKOjDmx8BbrFWMq2EkAcnEdUcAQEjlMn0MCVTTWaQwK66b3bzKbURFiYdQZZ8ApRZiiIM7PHLlIDT+mxHbM9DHC5EJbEKGEMxKH/dbX/Q6/9uLvhFL4a5/xdP7Olz8T7wxqCygRvlijaac49J3Aw2gRQzTGcOPCczhzHDRykTcdNFyYMqrv7qD+PH7ft4WUmTeWGw+au1y+u7uD/EVjSbnQh8Rh6+hNuttIdqhxEpVKpXJP1F6jUqlU7p7r0Y/tFvSvJ/fkCnwtttNS1PF65I71SEyFw8YTYk9M0uMNUd5DzOCdZt5aln1g02dUETvbuFnzX/7PZ7N691uZX7iZz/gnP4ZZXCCWTCwyw5HrEzdccYRKzJ3GKLlWrRXbUe4ZqpCzYu4bGieCCKUUOUukX9gmtiHjjeJ8J0IXQGYRRhNTYT1GvNM0ThasGiePuXrGs+tVNmNi5iRJIyS5RoCDxjGYBKVwcS2euX2U1w+RKYFD47QIfEqB7ZBwTtNNaSRaKeatwVvDzBlyFrfcPiWcnSL+rvH57PrxXd+++7czmqOZJmf7sIhxrFQq75s8Yk9KPuZjPmb/67e97W0P4ZVUKpWHGw9U3XB/LVrP0nmzbyDGmLFGcXEzYo3eF3TbINnVu3xkrdUVrlTrKXpix7IPDLGQc8FpReMMndccNBZnDbkoSlY4rzma+f296FziIGdWvdyTbcj4DKUEDnYNy9TUaCBnKcDferEnZLn2udac9NIg9VPO825xyyiNVZmBgjEKbzW3LROZQsiJGCGfvIt//8++gWGz5DEf8SQ+99k/xLzrGFNmGyJ9zHhEhd+Peh+f4a0hxMIyBBbOsI6ZkmBLggwohSoQUsLrkZwtWsFpn0h5undTI7KYBhxWKzTSOAxDIuRCMzl05Un5cNBK3nbOmZhEjX++8zRebGJ3n+PxFHvorQyVtiFdMfCqVCqVyr2j1vaVyvsvqyHuD+HPRlgrxd5Bdad0vSuXpe0oUcfeyuEzSR67WxTZPd8Vi1N3lk/gjeYkFryVhZ+QMoedxU5L+XNvKCXvY6nHyT3KGsVqiPuo6TBmWmt4zLmWzhmOZv6aNeK1HGd7I06mmyFxNJP3f9Aqblo0xCzii9ZKXHRMmZjkkL0g7q5+coSVeAKJYxtjppSCVZp+WrIZk8Q45ASX+pExJm5f9sRc0AqsRvoMo7i0kai4PiSMFpFCM8VBFDJaaYYoB+0hS5+glbjRMoklDgpkZAEpZ8ha0zkYTdk/t1IKYzRGqb0rV57U0UwR5FYrMAZj4LD1WAtvfv3v8f/80LeQU+SJn/wZ/H+/7rnEXDBJ4vhign6MbMdC9qJsnnkZRBx1HqsUjzpsOT+XGAdvNBcWnhumpSi454N6ZyznZp7G6CvEMPfnIP+ocxit7tKlqsZJVCqVyn2j9hqVSqVy11yvfkwrdd3r0HtyBb6aPM1iVkPkeDPKNefMZojcsQ6UXMilMG/sFKetOd7Ite/uAWjGccvvvORbOH7bn+EX53jKN76AMruBUMBr6TH7GCXaHMWsdRil6ZxEziml2IbEYWcZU0GRmXnpXWIp6JRYjZGQM8ebkX5MsmDkC9ErTraRVAo3H3ZYs1t+EnfY1RBEJOJl3uGMxNedZSfGuDCXPz/tAySJvdNKsRkTjTU0B4b1mLi0DbLclArWKlIBm0EbEZBvx4RRMlNZjxJ9HlJh3pi9gOioczLTmZbYrrVXB+zj6Xc90dWfqdbSI59pxSqVSuW68Yg9Lfn4j/94Hv/4x/OWt7yFX/qlX+Kf/tN/+lBfUqVSeRhwPdQNMU15zvfBovVqtFJ4o1kPkdtWPY0Vl6FdkZqLRPyVAiebkZQLRzO3f51lH/YDlyEmNkPk4nqkIAOBXYEI0AcZ3uScMFPUhUIK85xl4BGTIiZRHg8hcdA6vFEcNBYU+6ZGrncgpULjNJttpGTYFDjdRFZ9RBtwShOyKAhWowxSUi6MIeKm97oeM+shc3rxPbz6hf+Qzckd3PRBH8b/79tfTDubEacFrJAUSUmR3Y+ZMQ4cdk5U0SmzjRGLwllDVxJZwcJbtiESYyGVAgrSOnJ+rpk3RhwAtGIbZLGr8fIZNkbTeYmnsEYTLXQ2YZQMwqyRaIrVEDlsPZ2zNDOJ5zvo5PPZPaazBrdoxDVqUo4PMdeivVKpVO4HtbavVN4/2Tm4wpWH8GcdVM9ydy5LMWW0gtYahiC17Xxa5ofJ8AhQZxanrnaEdVZNkQgaa0RPmydrf6126mPFopXfWyNRBnpauvLW0A+JWWuZe8PMWWaN4cbF3ReIVzvOts4wxCRL/1oO1Z0zHLaOzZiYNx3OKPqQeevFtTgZhUTM4LS8WQWgRO0LUr+vQ2LZJ2469KQMf3H7mlTkfi/7OLnlarxVNE6xaB1awfmZl2vQimbu0CiKgpNNYDtIf5CTQmsYQiblTCqgSkE+0ohq9LSYlelay0xrxpiZawgxk0omxEKnxcVpNcQpwtoQogwDBqvQSqNUYe4tF+ae97zljbz8+/4RcRz4yI9/Kl/8Ld9LREQPRkHMhVym6Aor6ugxZQ47w8KJKOXczPK4Cx3ealpnOGjdXQ517s1BvbX6AfcENU6iUqlUrh+116hUKpVrcz37MUnm0Ne1Hr0nV+Cr6UNiPUZONiOnQ2DZR5giqHeus8aAt2paNPK8Ja1xRjNzhmWJmJR49b/6Du74X6/Hdgs+/mv/Oe7CY9iEjKagrZ7cn6TXmHnDzIuQJheIITOfeYwCazTnZg5npPdZDwldxJ14MwxYA0MQgbjRhVQyXjtiKWzGzPEmUJD51Jgk5m/ROhTSozkjsy2t1DXFGHaQvupsj3xh7vFW78VFB60FpShZ4gOd0eQMqWSJGy+yFDftg+GMxuqCN5pucqxqJ1eqZR/vtMx2llxEoAPStzO9t0qlUnlv8YhdjAJ4/vOfz5d8yZfwR3/0R/zUT/0UX/mVX/lQX1KlUnkIuV7qhj7IMOK+WLRei5gzJ9uAMwpvDEPMnPaBnAubIbENsvnfB1Fw6x4pHpHDba2kaN+5VwEYJY5MRsO8cVzajFN0R57i4go3HjRT5ETmsPOshsAYxRVJTQtAjdE4K65HM2/3Tc3JOkiRPia2QyTlgvaGEBJKwYWFn1QFkeOVOD1twy7LWtGHwjoEYkhEYFyf8poX/2OWt93K0c2P43O+9UUcHB1QiiZm+Qz6yRUrl8RqFOvWnZpDFY03hlmn0Vqz7iUmQpoNQ1GKlDJ9nLK0lUQUKgumaNSYyUUcn+aNofVWYvCcZHznHFBaM7OGg0b+zBjFQeNwWu5zzhLFZ7QsRc0bs1dX9CGx7OP+e+WemrNKpVKp3DW1tq9U3v/YDJcFDbva/ayD6rW4O5el9RA56NwUiyAH9jsxgTeakBKtMYyTi1L25YrD/t2Bec7gnZF6fVIdz6Y6cjNKXNzcO6yRCAWQBarNkBiyHFjfcNBw1Dnmjb1XIourHWe91Xs30l18mjbiGhtzQqFZ9QP9mImlcDpE+Tqn8dpMtauidZq5N6QCqzFhDJz00kNYpfDeTE5Qis5bOi+9T4iFmDN9LPRjJCY5tJ+1mlljWfeRMRSUVtiERH1nWRwKSRxdrdH4Iu5c6yHTWUMGSso0jUVrOTDvrKFNhtPtiFWG1llxprIGp8UNN09iiBDFPXfWOC6+88/58ec8g2Gz4vFP/Di++LkvwDiPTjD3slQWU2IMmV4pWi+DicYZWquZe8ujjloWjeP8zD/slotqnESlUqlcP2qvUalUKnfmevdjO9fb64VWikS5S1fgPEVQj0lmALevet513HPcB7ajCDusUfseIpTMEApbLbHVRisOWkdIIkgvOfNf/83zuO2N/xXtGv76134/N37whxNSwSo599+mDAXaRtMohdOKIWUyCpQsCXXeYJSa5goy55l7O4m5EUGLUWgU3orzrtGKfiwslbjlzg86Ee5vL98Pq5UsJhnNzUctRiluXDR32Qt0U4/srb5Tj+w6Tc6FIUov2IfIekg0TuLHd/Qhs2VaZNLSVzutyLBftJp5yzCZDFwdkXeW7ShGAVbLjEtN11ipVCrvLR7Ri1Ff9EVfxKtf/Wpe8pKX8HVf93WEEPiar/mah/qyKpXKQ8D1VjcYre61Reu1WE7FNzAtPo3kcvm5NkFe8+J6ZBMSrVEoGrSW5ShRAyvGmFCI0nveWIaU8UXUwp0z5NbTx8uxgesh0voARTHEJJnZ07046jxDFCXAtbKeUy5kRH19+3LgdBsmt6kirk1Go4HVGIkp46blKm8Uq0EajW1IUGAZM2O/5nde/M2cvvMtdOdu5O88+0ex8/OcbCIHnSUnWQrLRVTiWRU00jBohThPGZg5w8x7lC5cmDXccq7FGnl/q22kT5lNLzEdnVMsh0QKYotrjMIYReMsh52TeJUpmiMX+aexMixqnWFM4jA1hIxrNLnIsOFw7jhqRYUx85f/17n71rg7JUSlUqlU7h21tn/w+JM/+RNe//rXc+utt2KM4bGPfSwf93Efx+Mf//j36nXknHn1q1/Nm9/8Zt75zndydHTEYx/7WJ7ylKdw/vz59+q1VB56doewwORUJLX73R3Cn+VOLktzA9OCfecMyymW2hpFY6XW24xSA+8OhfuQ9rXdGDPbUQ6Cc5EDX6PEMXTZBzpv9qKCRQOts4QkC1Mn25ExZU6HQGs1Nywablq0+/d0b9g5zg5TZNpZN9Ld8v2uTqbAJkRSgdZp1uvIOGY5sNcF7+WguZuWuWKWJaebjxqJahgyRiWSVlxo/H4gMveGrrHkDJ3L4gxV5HqGIK9dSmE7BFByKH86RKzSWJPZhMLMXY4O91bhtJ7iwQuZjLeGufe0zkzLT3KI3qckdfm0MGW15vxCFstigourEac1WYso4t1//hZ+8Xlfzer4Io/9S0/gq77rxSzmDWNUFMRRtxQwznLYaQ5nWYp1BTOx1eL8wnPUOTpv7nag8FBT4yQqlUrlgVN7jUqlUrmS696PXeV6ez1orJZlqKtcgdO04LMTle94z2nP8XbkjtXIySagjcT7DeGyu3Ca5iUX1yMxFYxS+7SP1//cD/G2P/hNtLF88j/4ZzzmCR9NTECRPhIKKYGx4LRGodBa4bXEgKeixD24Naz7yFHrJAK9ZEpRHM3tPnawZEUfI9ZKrW+UwihN6zWpwO3LgUVr2QyRxhlKEYfjc53nqLOTSOLuBRJay2P6mK7ZI+/6DG8NSiu2Q6JQcEZTJqetkAsLY5k3dkoqAW/FAcsZcd6Cy8J+tY/Iu/JahpimvlBEQfL5VoFHpVJ57/KIXowCeNGLXsSjH/1onve85/H1X//1vPjFL+ZLv/RLefKTn8zNN99M27b36fk+8AM/8EG60kql8mByPdUNSim2Y7rXFq1Xsx6iLEMhmcslZ4x2WKNpnThXrfvApshwAAoJxW2rQRZzlCKmTFZw2DiOOkcfEqshElPBGrVXMTurGJMMHLzV9EEakZSlgD3ehL1KwVtNQRTo18p63m3sT+KGKVJQcdKPHK8DjVXELAtU3ipab5h5TT9avJFFsFljSSmxKoFX/Ytv59Jb3oibHfJJ/+CHcEc3s42JmOVdKyCVQinibpVzoXUaFOSiWDiDtqDRFFU48LLcdOOiQSlRFqxnEjEIA/2QGbO4QxUPY8g4bfBOoxX7pSim1w4xM0a5Ad5qUY57S8qyZLcNsiCnsKgiX+evUo/vvjXuTglRqVQqlXtPre2vL//u3/07nv/85/P617/+mn//iZ/4iXzP93wPT33qUx/U64gx8v3f//285CUv4dZbb73T33vv+ezP/mx+8Ad/kA/+4A9+UK+l8vBhG9LeGTXmIlHF93KJaMfVLkut1/tlpzFnET9sIzNf9vXwEEVlvBridCgtNfFO1LBzeNqOiRsWfloKypxuA+sh4ozm3NztHZakxpalpoU3KK05P5f47Jk32PvgPrS7vqvdSHc157KXaz5sHUMYGIPEMQwx0zaaFrV3iirAMCaKMyjAaEUIGTU5J1kth91DyITJyXXmDM10DUZL7zD3hosrWayyk3jkZEgSuaCl71Ba7ltBeojNmNBGYbQsOjmtyYjCW6XMkEbO6TljkGjCVAqN0TRa4Z2e4gINRmk0Cmug84rVKL3QyaVL/Pvv+4ec3v5OLjzmg/l7z/kxVsWzPhmZN1bUzEX6lnkjn/vCW/qQODfznJ87coFHHbYcthJtUQ/kK5VK5X2f2mtUKpXKZR6Mfuys6+09kXO5R1fUazke3bEakNN9IcTMZozcthp483s2lAK3LQdizhxZL4Jssgg3vCOkjHeK022QOVDIxJz4o5e/iD//3V9GKc1nPPN7uOWjP4ntkHCmQJEeqjFmL6QZQiJR6JzmQufZxkRBMbMGheLCvOHC3BFyIaRCihljRLB90geGUQTaJhs6ZzloDec6Typwug2ElDjZZlIpWKU5N/NYI4td52dTv9mYe7yfKRc2Q6R1hibrO/fIZ52VtfSLi9ay6iNjTBilcNPn0RiFM4Z5a9mMMk9b9oHGaYaYUChaI9e0m6PkM+YEgDhSTS5RZ6+/UqlU3hs84hejAL71W7+Vixcv8iM/8iP88R//Md/6rd96v55HKUU847xSqVTe+9ybgvjqQ+vrrW7YRdg5I69ztUXr3RFT3hd5x+vAGEVN0HnDQWs5aB3LPjBmyWE2WqPIpCTb9+JWpSm5kJABwRBkOGGNRLfpJFFvAGpqAkopVyw+hZhRjaKPSRZ+puvf3bmrHY7y1LwoJQMUa8Sm9tJmZBgTY0zEDFppGicDjjEUtqO8lvdGivyQ2ITAa/71/8Ftf/b72KbjyV/3/ZgbP5CQC04hEXtBFtCsVjhn8VkyyBsrUR5aw1gKjNC6wg1zh7OGxmtZVlJwNPMctI7OWS7MGy6uR063IzEX8gBDiWhjmE2xeX3IzCal/xAz2yjqDFmWkjsz94aQxDFqPURaZ/FGCngFd/o+2Ckh9F4JUQcqlUql8kCptf0DJ6XEM57xDH76p3/6bh/36le/mqc97Wl8+7d/O8973vMelGt597vfzWd91mfxe7/3e3f5mHEcefnLX85/+k//iZ/5mZ/hcz7ncx6Ua6k8vNjFw/VTHd+cWWK/t1ztsnTYun19e9g6ThEn2c2Y2E7R0EOUOhQF6z5yvBlppoWgzhsWU53dTurVmVbEOLKchA9linMLMXDUOUAWmaxWdJPSV6PonLlXA4Gz3JUbqZqudZzu1cl2ZDVGvNPMWyOiCCux2jGLC6tRMjzQWoYFrTMcD6KKPt85WZwKmVUf9lHenZNau3ESa7AZEq1XaAXbIeGdYj0kQkyklIlJXKSMVjgjcdVboohPpt6iDwlrNTlJZHYqhZhgPQb6MdHHhCoalGIxkyWqxhrOzzzeae5YjjTeMEZxAzs+XfJ/f983cnzrW5hduJm//awXMtoDtqthGmwkjlrHYWe5Ye45v2jwRhTNXSM9mQx+lCxQTd97lUqlUnn/oPYalUqlIlzPfmwbEpc2I43VLPvIUefucqYTUpYI8piucHsCRNwwCSrWQ9w7CqUsrsC3nm4ZQ+agdZQiDsDLIbIeIhdXA6UUlv3Isg+kDFbLNXnr8FYRY+GgccgrZ1DQh8hv/9xP8ke/8lIAnvKVz+UD/7dPwSoRo7fWsPOlGmPev6d5K3MHYzQ5w5ALChGNDDHRGMMQdwKdwhaZOaBlJmJbQ2csTSMznTSlazgrvdwmxWnZCIwpHCLzn8UkSJk3Fmf0Pd7P3b8urscrFsx2PbLVauoz1X42t3MAW7SOxul9j7xzQ96Mafoz6bePN4EhpCnhxBJiBm843QbGlPd9beM0h6081+76K5VK5b3JI34x6g/+4A94+tOfzpvf/GY53EQWBCqVyiOL+1oQzxqzL5yut7rBTQrr3XXsLFrvTWOwW4rahshqDADcOGuYeVEu79ykFLAeI9shkQvMvKUpmZQKuWSSEjvWUiBORb5KsgYVUmYzBg47T5mucvfzr3WGZR+JRZQA8uPw8rXv3tPVDkf9dA9TLqzGyDZmjIbNkFlHiebIpTBvLU0xxAS5ZFCKWCCNiZwzOSZ+6ye/h7f+wW+hreep3/D9HH3oX5HPNiQUmlIUrnPMvKVQWPURM2VqDymjkIgSSiYkWTY72QY6V1i0Yv16MCn5tVH7WJN5Y7i4FpV6ypnVmJh7sbONKXNpPRCTFN45X45azBRCzhwaNy1diS3uNmSMyTRO7eNMzi7l5VIYkzxPHapUKpXK9aHW9teHZz3rWVcsRc1mM774i7+Yj/7oj2YcR1772tfy8pe/nBACOWee//znc/78eZ71rGdd1+vYbrd8zud8zhVLUY997GP5ki/5Ej70Qz+UO+64g1/5lV/hVa96FQCnp6c8/elP55WvfCWf8AmfcF2vpfLw42w8HHC/D0WvdlnqvPQJfZBFqd7IwW7MIrqQ2AUZZBbF3uXIGvn7IaZJ1OA43oycbAOlwEErEW/OaEqGZnJl1VpxNJPIvdPtSEiF1msW7X0/brkrN9I0HVwrrVhvI0OIqCnKbt5YSpHD9SEl+lF6jcZp7LQoNGZZYhrGQioZY3ZxB4VtTOQMi9bSWE1RinZSDW+GyDaA3qt9ZfESBaebQOMNWkHKmT5qZt6y6gN+EmZYrfZ9RlYaaxIUWVK6YymLTAbFvDNYo1g4qccXC0Oe4iOWfeCc8jLwWK/5pe//Jm778zfSHJzjad/0Auy5G1n2gZjAOfl+KEVU2bPG7ZXKnTf4rBmjLLF5I3GDshBWlcqVSqXy/kDtNSqVSuUy16MfiykzxMTxJmA16M6Ti8wRrjXTyZOoe8c4CVxyPiOQ1yJg8FbTxzS9xhTTNn3dO0+3GKUIOZPz5T4q5MxmlMcaDWOUfq+UROMcmyDiks5qRqNIKfP6//jzvPbl/ycAn/DF/5gP+oTPkCh1K+5Q2sCFmSfGgpqWtEqG1hsKMo8KMRFzYuElpjtGSdxAyeyqc4bWazZDIMXConFYrTjsxMFK7hWcDgEG+X/TMC1hLRqDQkOBRWOnuYn8ejUthd2b+5mdLF7JvZE5U5zcrIaY97O1MWVI0lcddm5vPnBW+JOLPNeicZQysuxlSqW0YtWLw9d6vPz9ZLXMcHaicxEkPeLXEyqVyiOQR/RPnje84Q089alPZbVaAbIYUJuZSuWRx30p4HYFcR/FknXR2OuuNkddHkLsNui34z1bwJ5dlDnZyABl4S3z1qKm5zrp5X1uQtwrDKxRzJymIPnRx5tAKYWj1tE5PR3my3JPnNToyyExbwphioJT+vL1Wi1KgW2MeGM4u2l2V1nPu+te9ZEhZhbecul04HgTCCkQskIjr200xJwJSSI1tFIMMbPuI6/52R/hf/zuf0Bpw9/4mufx2Cd8HCHJYzNFim6t2AyJMYkjVskZbwytF7X7GArH28AwJLSBzjvWQ6J1GqM02zHhjEb1gc4ZZt6SiwyLrNIUU0hFFtwUiiGWaXEukZGovcZJzIkzinUvkXkSoyLNWZzua0GawhDynZbtdtGDVtehSqVSqVwPam1/ffgP/+E/8GM/9mP73z/hCU/gV3/1V3nc4x53xeNe97rX8Rmf8Rn7aLtnP/vZ/K2/9bf4q3/1r163a/nO7/xOXvva1+5///mf//n823/7b2maZv9n3/Zt38ZLX/pSvuIrvoIQAn3f84Vf+IX82Z/92X2OM6lcX+6Pk+t94WpXpPvrvHktl6WjThZs1lNkQOvMvsdwxk0uD5kbpsi7NDktjTFjtCJnia0zWhStIcmf++lQuHWag0npCnKvYi4SNY2630ted+VGmnb510Vq2s2YOTezXNqMLKcIiDQt/g8hUxTEkmmtiD9CLFLn5kRrpTcpFJQSB1g19UJGa5TSEnUd5T2lXEhJ4r/XfZTlqCwH/NqI++7JNtDHkYX3+wU07zVu5wgbE9sw7mP8wtRzzZzBWyNxd85MMXeW0z5ycTXu3/O7T3tO1z3/6ceewzvf9Af4bs5nPvtHmT/mg0lRnHcLoJXbu1JJPHZg5g0X5p4+ZPoQGFPBerOv7Xcq9EqlUqm8b1N7jUqlUrmSe9uP5Um0PcZMLrK0o5Sin8QnShVKKYyxsBpkJqK480znPaueYUp0MJOAI+Zr/BxOhSFIjLcsFInY/OJmZNE41kNPiJllkOi2zmsReodETIlUikSaaw1KZkXOGIaQOZjcjMaQabzmtb/27/m1f/l9AHz8534NT/xbX0jKmU3MzJzi3LxBAxZD1yq0kZnA/nX7Qoh5itCzmMn99saFpXWG9ZiYT+83F/AuoY3MXqyR5aRznUcrWbjqYxT1zpQkUlAsGnms1QqjFLMpIv54PTJMM51+cn+6p/tpFKRJLNROqSB9TCjlOF6P+MZe0YumLH3korFXzMakFw5cXI+MsdxJRLRoLc6oKz7/HbuZXqVSqTwUPKJ/+jzjGc9gtVrtG5mbb76Zz/u8z+NjP/Zjufnmm5nP5w/1JVYqlXvgZBvop/i7e1vAnS2IcynXXW1OkQzkmAszZ1gOUZZujLrbeL4+yKLMegyshogCjuZu/9z9NOgYYqJMwojzc88QL7/nXRyeJFLLQY3RinMzwx1r+aKQZHixHgJ50knsHIucnZTYAUoCzuxF5SIKDeAaWc+wGgLbMYrTFIVLfWA9BIaY8VaiMebeolBsxsB2yNIUFWkmXveKn95bzv71L/s2PuLj/ybWaGLOlCzLV6mALWCspp0KYm3EGasfMzFLbvbOWUsnhVKJzRhpes2tl3o+4EKLUYpxUjLsIk9iyrxNFWxRdNaSG2iNxihonSXkiFOXo/ig7BX9ucCldcA7WSwzRmG0ppvuU+PMFd9XQ7yci12HKpVKpXJ9qLX9AyfnzHOe85z972ezGa94xSvutBQF8KQnPYlf+IVf4ClPeYq4PubMc5/7XF7xildcl2t5+9vfzote9KL97z/qoz6Kl770pTjn7vTYL/qiL+Ktb33r/trf9ra38eIXv5hv/uZvvi7XUrlvPBAn1/uCkvPe/WJTvp/DybtyWVo04oC0ey/e6v2B7LmZZz3V+Luv2R/eK3WFOOOoc3ir9wMBqyVy7+yi2PmZnyLiCifbcJ8cZ3fclRtpzgWRSUz9Timsh8BmiCKcoOCUIhXYDlO/kSI5Q+tEPp0KnGwHAGYHlk2IxEmkAOC0OM/mAp2D1VD2i/+bXhy3UpYhQGMtiUzKmUubgjeJkESwcSmNGKWYN5bGQU6AKvvPwyqF1hpNZNF4FjOJj3BWcW7m9i67twe5VmcNYx7ox8hv/+vv5q1/9NtY1/B53/ZCPuiv/FX6UFgNI9tBejVvpU7XxYKSBa6CiDlOtiPbkDhoHd6J+hlg1lRhQ6VSqbw/UHuNSqVSuZJ76sdikkjys1FoO1b9KLFwyExhPSRaq/ezjP18Z5rpjDFTKDTW8O5lj0Z6BrVfXBKh+25+MUzuRcshMuY8ufwpLq1HrBahTi4i+r59PbIeIqtB3GmdVjTOYNBYp2iMOFUZJZHhY8isxsAf/vYr+fkXfDsAf+0zv5hP+t+/ljFmhiBuxH1MbPtI4xXWWtDSb+2E6yFeXrJVBY7mDQeNmRyMpbc6P9PMvd33ijNviFmxaC2dN1il8M7I/KTAwZmRfYiZTUg0VnN+4UhZ7ePndrOnWWM57cP+s7in+wnipGW13jtS7aLtOmfYjImDzrEcgohrsizCpTwlmijpv8eYGVPGG022gCpXxO1dbTCg4AGdHVQqlcr14hG7GPWHf/iH/Lf/9t/2trfPeMYz+NEf/dGqKq5UHkGshrhfirovBdyuID5sHdtRDup3wwm4PmrzWWM42UZabxizFMSn28jMSy70tV6jD7LAc8dKIvTmraVz8mO2cZKvDbIAthvKtE5ckmKWBsFbjVGKiAxGOgwxZeaNuCb1MbMdMs4ULm0Ci9bi9eVln8YaFFM0yHRdu4Wx3eKW1Qo3DTpaZwhTzNxtq5E+iv0tU4a2mjKvY8osC/jVuI+U804zpsI4JP77K/8df/jv/wUAH/m5/5APePLfmexRNUNQMFOUaenJak1rFAbYxkQfRIHfh4TWahqsJGLOODQpZbGPTZlxPZBKZtEMHHaexkpMSsoSvzdrDcOQUFosYeet5Id7a9DKTtcjrgetNQwpYbRmHBKxZOIIM8s08JJARW81nb9sE7sdLy9FNU7vLWDrUKVSqVTuP7W2vz78xm/8Bm94wxv2v3/mM5/Jh3zIh9zl4z/xEz+RL/iCL+Dnfu7nAPjlX/5l/uf//J/8pb/0lx7wtfz4j/84fd/vf/8DP/AD11yK2vHsZz+bF73oRbzjHe8A4IUvfGFdjHoIeKBOrvcFrRSJIovlSer99n64b96VyxKIYOJopsnZ3sn96rBzzBtLnqK41d30EAqYOcuNi+aaB7k5F25fDWir7pPj7Fnuyo10GyRCTyvFcoicbIMMFhRsBnF7dUZPsdQS022NTDkkCi9hlGI9iHvqoo14L89vreb/z96bh0ual/Xdn9/2LFV1lu5Z2RkwiSiIyhIhIaBB5BJQUEEJkogCrwJBIriBUVEY8I0SNYDiAm6JEUUIUXZEjSwSohEReb1GBlBgmOntnFNVz/Lb3j/up6pP9/Q63UPPMM/nuubqru6q5/xO1bl67vu57+/3Ox16Gz+4QmklKuqjS08XIn2MkDNKZzKKrDImy7tilDhr9UEcYp1TqCSDgRQ1ZWFQWhTJeRh+WKs5oGXZbKOyFEZunF+1VZESHFm0MMSKH1v2kOCDv/2z/N1734o2lm/5wZ/hi+73IJRWOJ3RFMxKcaYNMaOyAq1o+8SO7jFa3Hz14Kw7KQ2blRPRxzBYGBkZGRn5wmbsNUZGRkZuzpn6sf0iEpAlqVVfuOzlfr7Wihgju63cxw85s5HhQG3Zqt16pjPvAnutzEuOJY8d+rZpaTg4LW82Z6mcYbrvHrz8GpiVjhuaBj0sPk0Ky6ILxJCxiFutVRpUwhpNYQwxS4qFM4qUFIs2UljF3/3l+/md//f7ySlxv6/+Rv71v/0+mjDMd3zCmEE8rTVOa0LMpJikZwNwYLIkfYTCUGrDrLIcmBRMSsNW5Vj6SByE4npw9C2toVKaA5OCzdqhFNTO0g19tfeJBCgyhZFZxqS0XLFR0fYRazTzzhMTOKMI+2Zqk8EV92zvZ0xgDYOrrnzGRitxgVKykHX1pvz/sfMyj+vC8TjDk699YFrIvQEf0YNI5mK7TY+MjIxcLG63i1H7Ixnuf//780u/9EuX8DQjIyPny0plDicuRZ1rAdf5xC5elqN8lNi0i6g2t0YzHRZdNivHLnLG5eBqVRhRnO/fkj+y6KVIThlnpcBdfU9xGCat4vCM1mxUspRUWE3oZSFJIcroLibysNAk6gexTe1ijzFiVdunhFGKjS0ZMq4WyfbHAAJDLIg0ESD51yDuVI2X93O3DeScaXyg85mYI9bIEMinxKIJOKeorcEPSnWQAc7fvfetfPC/vQKAez/q33LNv/oW/LAkZrTDGo32iaQ1hcqURqxUU4aExH6EBD6I7W5E1Aa1EyWGGyIOnU/MKkvnIyjoQ8dG7ZgUhtZL1F6pNKZQOKM4NM+EnNguZIDlY6Z2ls1KoxX0KdEMzlQblaWNEbJCqczReU/XRy7bKFh2EaN6/uEI4iY2OEOVTq8VFeNQZWRkZOTCGGv7i8Mb3/jGEx4//elPP+trnvGMZ6wXowDe9KY38YIXvOCinuUe97gHj3rUo874fGstT3va03jJS14CiGvUhz70IR74wAde8FlGzo2L4eS6WZ1++e1kSivxz5WVWIOL6bJ0MlrLDdppebO/kutcYGyg1modGVefh+Ps6nvYaXoOzyVOuy4Myz6glRKVci/LTp/dabhxt8EaUWIfnnfsNQFjpBatrWWjtPQh00dZsjJGoaI42q4GHSvRwWXTEmc1ISbmbWC3hWlhKWzGD5EJ2iimhSUXsLOUaLuulwUrN8Q5zFPAJxE65AjGGBYhkLTBJk1I4LRiNsTmzSrNXQ9OSUlROc3VWyU5Kw5MC442HdcfCszbBFk+iw+96Vf4P2/9bZRSPPkFL+NLH/LV5DxEH6ZMXUrTUmhDQpTWrY8cXfbkISZiVlkOTgoumzo2Skdh9BjhMDIyMnIHYuw1RkZGRm7O6fqxVZIDiBvrKjIPpLaeDzOdZRvXfz+rHFdMS7QChbqZKLwvEjtLz6IPFNZw9WYJKHHHNTfvs1YLNtYoPrfTDbMjL2JvDU5p6VmSpEE4ozENdDFRupLlIMB2WuFDPi7kMIrr/+bD/O7LnkcMnns/6F/z8Kf9ME0CaxVFMqAVisy0MEwqQzXMQxSKPDgNWyVnVxpKbShLxZWzgo3aURUGozS5D8Qs/Z7VCqcUqlzNb+R7VkpR74v53k8XIvM2UAwzn9V7KnHxlmZYlALYrO0Z+8797+duE+h8ojBp7di7NZE+/oqN8gSx1KQ4u1hqxRUb1dhfjYyM3Oa53f4rdfTo0fXvn/jEJ17Ck4yMjNwSlt3xoctqKeqWFHCtiWgFyz5edLX5RuXWTkablaM1Mpg43ZZ8GhTek1Jyo7VS66zmY8MgoQ3yfRdDlNxOkyitJiSDUoHlkIWdswwk4LjzU11Y9FIGJk2IGK1ofJCsZ52ph+9ZDfF6pZMGYd4GcXlS4vK0eo/j8H2klFn0gaZL7LWBhLg6tVlsan3K+JzwnSKmlsrJtaxWfOL//hnvf91LIGfu/i+fwN3/9VPJZFJWomb3iQOTAmfF4rVyUuyvhjA5ZZqsyIjCPKdMpS0blSUBISSqIb5PhnMJpWA7lSwJdCFyYFqwUTkOzT19ipChdJbCegojjcVl0xJxfzJD7jcUaGaFZdFH+hCpkmHeBY7ORR1vjUYrzaIPlFZU9qufk826WL/fEuV3u/3f6cjIyMhtgrG2vzj84R/+4fr39773vbn3ve991tc87GEPo6qqtbvTH/zBH1zwYtT111/P3/7t364fP/KRjzyjG8+Kr/3ar10vRq3OMi5GfX64WE6uq2X+c6F2slBVWH3RXZbOl7MtTp0Lk1IWo052nK2c1K8hZkRfkFFKkVLCD89rfZKanrxezNqqHbtNGKL5IseWPa1PtL3naCNRej5FAgrdealvkwgAslL0PkhMdcg4Y8iAVhqr5eZ+5Qy7rSemLO6oGRofSCrTNKKEroxmkSIaRV04ji48XYJCQz8MAranjmm0pCTq4o3SkDWQFdYoclIoA3VpuWpWsjUp2KgsMWU2Ksv2pBTHWiDGTJ9kcWvRR9735t/iT3/nFwD41uf+KA/+2sex1wYRSsB6QLBZW5RSWBR9ihzeg9avBjqZA1PHZu3YqEW4cvlGeV5LfCMjIyMjt2/GXmNkZGTk5pyqHzs872CYLcy7/X2h1N2djyLeDgmI+MG9VsTVmRLRUy+6sHbnlQg5y2JI09Dq+Lxj2Uc269OLjUtr1uLv3SZQWk1OmenE4mOi6eXsdSFOuyFmJpXBGOldjdaEGGXGESIf/9jf8js/8f/gu4a73vef8/Cn/zjLADoGpoXFKKisZqNy63SOAxNHGxO9T7ReDaJ8xbQ2eJ+4bFJwcFasF5js4MabYIhjT1RO0/hE6yVJpDSrOc7p8UHeJTW8PVrL9bqQqZz0whu1ZlKYs4px9r+fkyKvnbgqZ+hCJCW7nomdKZL+ZMaIvJGRkdsbt9tJ7hVXXLH+/Z3udKdLeJKRkZHzJaW8vvndDDe1L6SAK61muSrKL7LafFpajFbDJr4MEE63Jb9VObRW7DY9PuZ1ES3XP/69w6CwNlqK9j4yLQytt+y1npQziy4SY2azslgjMSWLNrLoPMcaj0GhC01Mot7enIhzlk2JPkZ8zGirWHZx7bi0NRGF9IqV0uPwoiMEeZ1RCmc0ldP0MeIGlXyjNd5HGi/q7Lo0fO5jf8mf/uKLyCly9wc/ii/9pueQ0YA8B59xJrPTippDA4WyOK0wSnFwo2SvlUFPGzNOQxczTimMUZRKgzVYA33M+JgJWV672/bUpaWZyzBnlXVutMYoWfqyWvK5UxJVyPbUUTu7/vnzMZEybJSWYzGx6ANGwebESdOmMjllYsiypDUMbyZDrN6xpeeKcagyMjIyclEYa/sL59ixY3zqU59aP/6qr/qqc3pdURQ84AEP4L3vfS8AH/7why/4LH/1V391wuNzPcuDH/xgrLWEEC7aWUbOzsV0cl10Yb1IdTYuxGUJREG7indYKWxLe+ks+t3gQrToApuV40js2FkGjixkOcetHGeRAcBO4wlJghL6XmKdndWEkNFGanSnFXttpPWyGNX5RCLR9CJmmDlDHzNdBO0jXg1Cj2HUEGIWUYACDcx7T10qSlez9EEU14Pa+abdDq0Ve40nJkVpFdkaNIpjTU/TByKZutA0naifQxQ32AO1JpFp+sTEGarS0PYiYLFOD7F5DqUVZSEDlc3aMRmW4GalHQYxPQ6FtZq/fOub+ONf/2kAvumZz+ern/DtdDGxWTtaY0gpUzjpDVIEa8E5jUmKwkbaoAgpoHRJyhKtXVrN5Rvl2tl3ZGRkZOSOwdhrjIyMjNyck/uxo8uencazUVn6mNZ9YV2YtQi9DzJraPtIYRSzyqKVwmhFHyLeaLRWLIeZTT8IlH2Q6L26MBTD60tr6KO4xJ5pjlM4jepErGyUwmjpBUPOVM5wcFZSDX3LUe2prKa0lkOLhuXSo7Si6QP/+Inr+d1rn0W32OPqf/JlPPK5P4V2BTFLr2YMWGXwUcQqV80qDs4KZoVht4sUWkTe805EJBNnMKUIRGLKaKfYqh0hJha9xOLNhx43RkNKSfq/CPM+ULjjs6OTCSmx23r6EMnZ4mPGalj2CQX0ThOzRMKfym3qTKyXyIaZySpVZL9A6UyR9GNE3sjIyO2Z2+1i1DXXXLP+/eHDhy/hSUZGRs6Xxkvx2A9K8wst4GolMoOVLenFVpuf65b8SgFRO8ukALfvOXmInlvF9a2K/UlhSRk6HzkwcbLkM+Qx+wRHlj1O6bVFrTUyaLJasVUXhCiNQ+8TR1MvjcYQj5GyxL2VVmO0WisRrFHryL/Di44bdlt8SCw7jzGKEBNNJ43PtDJ0KVIZhVIGlaRR2P3k3/GeV/4A0ffc7cv/JY985o/SZcnpbkKktqJWJ0vj0wVxjjq4UbBRijNYSImYYGtaYBsPSlE5BSpTWYM1mqaPLLokhT4Kq46/16VR6AzHloE+iBqkMpmNWcHReY8zCpQmpMzSBzaSlUZLK+rCUg+fzV7npYnTikPzjt2lJyqYOcekMmxUjs3KoZWi6WXpbKuyHJjKQGW39eNy1MjIyMgFMtb2F85+hyaAL/qiLzrn19773vdeL0YdPXqUG264gauvvvrzfpaqqrjzne+8XvD66Ec/eovPMHLuXEwn18oZll1ka3JuatHTuSxNinzKpSyQmn+1lAXikrq6UT8pz98t6mIyK8UJ6fC8IyZwVhETtCEz7zwpZZa91K56eIsWjadNETX4vkqvYQD5LI4uOpo+ceNuK+ILJzehOw/ZSHR0zjBvk9T5IUudrRSVVVinh4WqjFEKkmKvDZAVl28ULIM40PqcyCETIlROY40h5iz/pcyiS/Q+sGglBjsDqrQcmMhCmCJTW1iGMMRtJGpn2KxlmJByZlKKorkPiRAzlZE/DzGTUWjEZeqjf/ou3voLPwHA133bd/GEf/dsUArtAz7BwaklZ7mRH8lMnF470saYKYwILTIwLQwbpWVr4rhqqxrr9pGRkZE7IGOvMTIyMnJq9vdjaSmDi0PznpQzpdVs1cV6DtL4QM4ye5j3gT4kZpWldIZCS+qCUrK0VFrDso+DuxK0UXq3jcoSogiQQ0wiCPdxLUQ+FQowWtH5yKIPVFZmBgzi6LU7lNFYpehDGiL+El1M9F1i7/ANvPFl302zc4TL7/FP+eYf/C+0upQoO6vZmrj14o/WsFUXOCeLY9Yari4dfUxcNis4suhFpJ0yXcpoZCFqFekdUsaHuLaDijGx6MV5+ejSyxLWpuamvZZ+6L8LoymdJiVxmNppehHBD7F7OWdylgUvpRXdniyJXTbjvMwBYHDdHYT07TDr6kI6pXvyxXBWHhkZGbktcbtdjHr4wx/OlVdeyU033cR73vMenv/851/qI42MjJwjqwi6VaxcOcS8nQ/7C7g+yWZ7H9KtpjY/ly35A5OCmMQtSSIvjjtXKaVg2OIH1k0BMMSNZHaWgRClwPcx0PSZI/PEgbpge1qwEt5XzhCyKPtnleXgrIQMe71nMVjKHpg6+pi5bCoxdp1P7LWey2YFMcFe61l0gXkXiFFi+Fov711MsOgD3eDW4JShLC06SOzf3g2f5I9+/vvwzYKr/tlX8C+f8ZN4DOTEtDRMC0Ma8ra1VqKYQBayrFGgFKVT+C4zKQwxizK+C4nKKUJUdDHR9BlUIuSMImO0orBqWBrLLNrERm1JeBovZ603DIs2YLQm5cy0EtUGZDqf6IOnMBpnZfS07AO7jR8aOrH/LZ1mahQTZ9ielmxPHNPCEofPu7AalGLpI5vD8tb5xMaMjIyMjNycsba/cD7+8Y+f8Pjud7/7Ob/25Od+/OMfv6DFqAs9y2ox6uTrjFx8LraT66ms+M/EyS5Lu4hj1bKPND5SrFyWpJSmD2ntFAqyFLVadJmW9jZh379a3NppPJ0Xt6fOS88SYyQkMEMtuVh62iALVJossRJ2iNvLkMjMuzAs5ye6GNlpIxulY1bLUKH14pAasyibNaLYRsGilQ0mBaAkqvvQXgtKFoYiCasU8y4yqySOYncR2G0Dyy5JbIUSB9U+JmKWr5cZerg8fC4+UxiNtZmJsoCidgalFJvDsIScscpwdO5xRpF0pvGR2GW2aofWMKsNH/7fH+I3r/0+coo85NHfzHc9/0fXn+ussvJ+hoRCxA5WQ8yQEzhtUA6KQmOGzbOt2uGsZlrYcSlqZGRk5A7K2GuMjIyMnJpVP7bXekpr6Fxir5VI7tWSk0gYYK+VvkScjBJOa0pnmA1LTYUVEfF+N6gVeUiuKK1BIz1oGyIzIzOd0xm6hpjW/VDjE4qMH2YxCoa5gWI3BDQQcmS3CUNPpMkpcfTwIf77j/8/7B66ge073YPH/+CrmG5tkttAAqxSNF2kjyLsvmyjwBpNaQ2btaR55AwmK7QyTApL1/TstoHN2rE1cey1nsIaCit9yLS0MkcwmpgSRxtP00lv2PtEWwamtSPkNLz3ms/ueFofUWjaEAgxUziZf1WFBhSLPg6uVOIyLM5c4bwMAuSzkuuu0k32z6pGRkZGvpC53U5xrbU897nP5Ud+5Ed429vexgc/+EEe/OAHX+pjjYyMnAOrQut4rNwtG2DsL+CkgA+3utr8TFvyKWUOzSWC4mTnKq0gDq9niIUrrRT37TD86UJk3sogoukzKSdiyhxtenb7IPasWor67dqyPXFkJLovprxeBCqsZrMqUEqKb2c0pZFmZt4FbtxtsVosa7soyoC2jxxbeuZtYFIalJZ88N1GLFu3Sosq4dDnPsPbf+Z7afeOctk9vphHP++nCaYg5yTKjsE9IKXEvPHsdRGlwBhRdew2PTEmNI5jTZCfhZyJKWGdonKWneDJCfoUKbRiVhgU0EWxii21ZpkiPkV2lzKkqQuDHoYrLZnLpxXWikrcOU1hND4mUZfkTBdEUbLbekDel3ZwMjswLdioLJfPKqal5cDEYYef0f0/M7c0NmZkZGRk5OaMtf2Fs7u7e8LjgwcPnvNrDxw4cMLjvb2928RZvPd0XUdZjvLEW4uL7eR6Oiv+M7FyWWp9ZLNytCay6AKLLnIselHHIss9ahBHTEvDtLTr2r0uzCVfUvcxceNex7GluLiSpTYNMaGNYmINrYdSKfoYCV2iGd6vEBJoRV1oyFBYw6SQOAujNUvf0/rIwkesAh8jvdcopdmuHUcWHT7K55dVxvtIRmLmlIYQ5GuVRrMXE3td4MC0YLr0XL1d4zSoDPMm0seI0oo+Bva6RB8SjZcb8yAiF2sMRilCzszbwOUbBmc1MSdQEuVXOHGs1UrOMaksxxY9Cx+ZOMNmLQOEzdpRWIkY//M//wg/9fynE73nyx/2KL7zB6+V/kep9c/ARmnZKIGsCOS1M+9+dA+7xg+iBsVGaZhVt9vbXyMjIyMjF8jYa4yMjIycntmwGJUz1NZQOg2D8KEP0g8ALNogbrJRhB5bE7teiiqdZlJYji39CW5QnRcR8jpFA4Wz0AURNgCk0+zkLAbxexgWrDKZpg90QVPajDGQEmxOFKTMXh+ZN+JSJVHximM7R3nDtc/m6Gc+wcZlV/O4H3glxcY2izbg42CDW0iyhdGKwomgIpGZlYacoCplNmFLRxcjkDm29HRRUi58yPQ5sVUX69jBlCw7jSfmjNUaciZL5AmJzOFlh8+ZnB1HF7243Q7JG/MuDCIQEe7PY6ALInyJMdNaTdtFDkwLtFJrZ67TxfKditWobPW5jHtRIyMjdxRu13eGfviHf5j3vOc9vPvd7+Ybv/Ebefvb386XfdmXXepjjYyMnIWTC67zdYtasb+Ac0avhzgXU22eUj7nHOWTc7n3O1cVVuNjpLJmcC5KzIczNl6GPztLz04T6Hxk2Yn1bBvikJ2tabqI1bK4U5gCrTSVk4UfH+WcRcgcmBQc2mu5bKOkHGL/Dk4LDi96FouOlOHY0nNs2SN6b4bhzSruI6OVZhkCWYGxCp+B5THe+tPPZXHkc2zd6R486nk/Q1HPsCmvM8KVUqQgwx+tGVy7JNrCaWkinDbstYHeB8rSkpMiK4UZmorCaRQKHRTWiJKkHRwMQsx4nciIw1STE1pD7BKVq8XCt7TUpWW7drQhYQ1YJZ9nHKI6tB7iE8k0XaL3ko8+LQyT0nL5rGRSWCaFWS9FrX5WL0ZszMjIyMjIzRlr+wtjPp+f8LiqqnN+bV3XJzw++VqX+iwXYzHqxhtv5Kabbjqv11x33XUX/HVv61xsJ9ezWfGfjq3aYbRiZ9nTB6lQrVaEwQloVYMrLX++WuayWrE1KS75UtS8Cxxb9hxbytL94UXLkbmnC1Fcl2Bdz4Km8dInXDYrSBGOhB6ShMnNKoczCqcVDLEMN+y09FniqW1hcNYQEhQm4wNMS0ddQBcDTSfOThrQBhRKXHZ9ou8DeojIW3SRmKBa9MScMRpihJhgFeSntUK0yeCsofUBZyXGXCmFteJOVTrDRmWJZBZtRCEDDp8SV00rlBKBQUZh0RijmDiL0nD1ZsWktPx/H/tbvu+7vpVmueB+D/oXPO1HXkHhHJUzTE8TrZFypg95HSW+Wp6KOaGVYlIYppWjcPYW95wjIyMjI18YjL3GyMjIyOkpB2HGjXuStrBROUqjaWMkJ5mJGC1JDpNSEjIqJzV6XZh1FJ70hcfdoHxKlOjjKRrkIUD8uHj+VEKHvdbTDjFzKWd2Wk8fJY47pIi1CrImJBHHhyjxec5qju317HUBHTve8PLncuMnPsZ06yBP/rFfpL7izuIQ5SNaa7TKRDKVNSgFpdF0MUmvomDpI9ZoEVuryLKXeZKzCus1XS+9z9bEsT05Hjuoh3i/ZR8wRuGj9NxKKznzMpBzpu2lj/FJovE6H0mIyFyRcUaxWVqUlsWplKQnVAaaIO5dl01LWp/Q6tydo1Zv+epzGVulkZGROwq368UopRR/8Ad/wPd8z/fwa7/2azz4wQ/mmc98Jk996lP5yq/8Sow5P6XryMjI5welGG6my+NbatV5cgE3Gxaa9qvNm17U611I68HPfuyw0HOy2tzHxLKLg13syV8YInIDXpyCDJPS4Iw+IZd7v3NV5TSZjDUaqxU7jZeYuZw5tNtyZNkzbwNdn2gHxfiyDxilCUkUBVolUtbsdYGb5j19Sly1WWGMpogZW8n3r7TismnJtLRs1o4uJP7x6JKQMlYrtIJlH/CDGlwp0GiqSlNGzbFGYvZiSsSYSRnico//+fLncOyzn2Tjsqv5uuf/PGmyzbyNOAcuK9peFpeMVcyMpXKOPnaDujxhnJYhzTB08TmjfGQ+uEoVGLJOBJ+ZVYaNyhCjRH4oDQSJyejCvgU15L+UwKfI9qSQCLwhjmO7dhycynuw04T1pCflLJbAHM8gnxaWKzZLtipxiKqdOW0zcaGxMSMjIyMjN2es7S+Mtm1PeFwUp/GiPwUnLx41TfMFc5YVr371q3nxi198Ua71hcSt4eS6/7rnS973GzVEM++/rBcdjwABAABJREFUkrhGHf/D24KwdaeRyIOmjyw6z027HUcacbqaDkv2KWcS0r/M247WJ4m7DuLuVFmNNWoQaCic0Sx9xGlFMJraKeadpnKy5N/4xKSQOjZEKJyh856UpL8xWpNSJiSwDD2AUaSoSSlhlF73Rseafu1KmySDGmsMpdaYQpFLy2a0LPqEIeOshiTDgANlAVpJHISVJTCrFYWTKD1QLLsISnqKaWmoCsN25ZhVllllmZSWf/jkJ/m2xz+W3WNHue+XP4Af+dlfZS86ll76sdqd2gFYBjKKyh3/uU05s9cGjFZUhaUyhspqSjsKGEZGRkbuyIy9xsXlyJEj/PVf/zV/93d/x5EjRwDY3t7mXve6Fw9+8IPZ2tq6xCccGRnZz9nE3yElpqVl1jty9hRGidB5Xw2dkQQGUh7mDCJw2S8qdlad4Aalho5NrVM00rrnXNX36qQ6f9GF9VLUvPP4mOl6EcWY0mCNwirFVl1wtOnpQiAmaIOkb8SYyd7z3172H/jHj/1fyukGT33xazh4l2toukjhNFmD9+J2a5VGa8WBiURwV1qzPXG0PtGniE/S1zkt71XvIxuVJScRyJRZZiv7YweXQ+JE6xO7jaewikkSsUYXEp0PLPtEH3riIOJfDbvqQjMrStAiNFkGWZqa1oa6KOhjxCpDIrNoA4XVbJSOZS8ipXPp6VcuYGvB/7gZNTIycgfhdr0Yda973Wv9e6UUfd/zqle9ile96lU45zh48OB5qZOVUvz93//9rXHUkZGRfWiliOR9sXJpvZh0PpyqgFupzRddoHKy8NQP6vWU9hX9WlENuc8rpqVlVlrmXRjsVo9/nTO9vh1UENPSMnHiinR02ZOyLCD1IaGUGgp/Resjy16i2w7Pe5rBNaoLYRhsKFxSlNqRsjQOKWWxUdWZbaNY+IDuwMx7rtoouXyzoukjh5c9ISUqJ/nVfYwcqAvckGf9mWMNTUj4kKgLy1btQMGiizR9Zi8EVIbaaua9DDBc7nnrz76Amz7x/1FvHOCbXvhqNq++C/POk7I0D/PWE3OgdgaTDfMuYnSmcoYYFdZqjIbOJ+ZtoI+JGCEZiU1xWtFnKJzGWiXqkaw5uFGwbAOHF0lcv5xGo0hK4j6skdyPpg9MC8OVmzW9F/vY7apko5Iltys2Ki6bZXYbz14XmDd+eE8yhTXMKsOdt2uxtgVRl59FYXGhsTEjIyMjIycy1vYXxsnvTd/35/zarutOeHyya9PFOMu5fnYX+ywjZ+bWcHJd/Xo+zqur5SJnNNFkfEj4KItWKQ+OUUCKmV3v126xPsoSzKQwXD4rT7jmrc0qRvvosifEzHU37rLXihOsVorN2kqtmjNdiHQ+E2IU59SQcSFKFEWGK2Yl25MCH0VYYbT0DCmDDxmjDVNnsEpJPEWIRKvxXhaVuj7RhYzTiu2pgwTzPtD2iTYllBYHKmUgJU0aPjOlwKdM6xPTQg2xdfLZXL5RDSKTxE6TpPeZKazSa7danzObTiINKys358tC4ZQ4wPZRauTK6sEFVx2vt0sjkdRHD/Hkb3osn/3sZ7jPl3wJr/6N1+PtlP5YQzcsnNUuDYtWZ0fceD0axayUiL/N2p7z60dGRkZGvjAZe40LI+fM+9//ft7whjfwzne+k4985COndHkB0Frz6Ec/mhe84AV89Vd/9a12pnve85588pOfPO/XPfvZz+aVr3zlrXCikZHbHucq/j4y77FGojY2KsdGacWdNaZ1P2aNCK4n5So+78SkBeBmblCr2r8yRhxsQyKtlqaGl+5v30KUBBCQpahuWJCqCkOFprQiTg5R+qDN0nIsZTSJFlmqajrPm3/uh/nEX70PV1Y86YU/z+wuX0TMCedk7uD7RFaZ2hgKZ1BkppVlWlq264LtScG888wbcdOVGHHYWM2avESQaw3OSOrFKnYwpMReG9bvsTMigtmuHQnpaXc6z84isNf2oBQGUEbep7q0pAy10ZAl3cM6jcoKnxKTwlIYPQjfE20vaSmlNTR9xNVnXoxafa4AlZUeaRSRjIyM3FG4XU9vP/GJT5ywTbz6fc6Zvu+54YYbzuk6SilyzjfbTB4ZGbl1KK3Ev61i5bqQmOZ8XoOYMxVws9JSWr0u+oshTu5UKDjB8Wk1lAFohxi+cKqg65jpvCgVaidKhc8ea9BaMSvFNch7KVSNjrS9LFbdMO/oQsSHzD8ea2j6QMoZjVxHOYU1CoWidOIu1YXMsWVHwkAWV6Z548lJhh+f7AObtZOhg1EoJcpsoxShjbR9K9asPq4tZ7VWOGPoQ2TRRw7t9SiliDnRxECMmZgyXdvxrlf9IP/4sb+gnMx40n98NVfe/Z5Di2NpvCgxMlBYg1ayrKSQxqeLiURkWsjAJKZMXVqqnNhtA10nS2ONl/d6Ei1bE0s1xOl5n7BWszlxpJgprCYPn3UXEgaNtfIZVs4SYmZSyusrp5mWlpzFDrcL4ii1PSk4VvYySOs8/ZB17oymMPpm8Xmn42LExoyMjIyMHGes7S+M2Wx2wuOTXZvOxMmuTCdf62Kc5VwHTRf7LCNn5tZwcvVRbgivos1OfOLNnVcTeS142G2P3/yeDDX9apl92QcWXaTLEondN4nSRWalY68NxJSHPuB4bX9LOdNSlx6iuZs+cGSIzvvkoQXHmiCxzymhMjRBERJUTpMiFFbhfV6LLlov16kKgw8ioAhJHGXbXgYQnQ9EMgZFUZjBWVYcVGk9MQE9WCWDidKKiKCNEa3FUQqFuKMaTdsnZrUsa1krvUBGorNjzlit2agNhTEoJSIHoyyQSVkRUxJnqZgxBvogLqwhK8pCrm+0YlJo9LBghRYHrMumJT7K3x+YFNxpu2a+u8MTvuExXHfddVxzzTW84+3voHWb3DTvqAtN6zXzNsgwYbjOmeiDDHXamJgVjlklPdKBSTm6uo6MjIzcwRl7jQvjqU99Kv/1v/7Xc3puSom3vOUtvOUtb+GZz3wmr3zlK3HO3conHBkZOZnzEX+jJGZ9t/VYo9moLJPCMtl3vdppFn3ED8/rQyIVJ850Vh3g6s9WYnhnpZ7vY6Lp/VpYAZwwt1ktRYmwRPpCZzTbtWPZBZm7KBFbzzuPAkmFUNKk9SHyB7/wYv72/e/CWMfXP+8/cfm97k+K4uAbUybnTCKTkwjSNyrHrLRslHbt4KsVTAuZNcQoPaFS4n9ltKIwBqsTzkqkoFaKPiVKo4gxDyJwEYlMSkPtDCFllr1n2ScusyUhZBadkvhypXBGMassCk1hZXZTO+ltJ4Wl9ZHCHj8Dg2i8C7IcVVozLJ7lM/Y+TR9l0U0rCitznFFEMjIyckfhdr0YBafOn70U1xgZGTl3amdYdGLzabUipEzTn5/TztkKOGc0WxNNSvaclerzLqyXovYPZZRiPZTRSgYMPspCV0iZz+21xJzZKKXJDzHJYlRILPuAUpILPbNWnKL6KEtBfZBpSM4wFMCF0VSFIeVMjKCMoioUV7lqiOXzHFv25KzQOnJ06cXpKmdKZ0Vd3keiSlgtsXXzLuBj5si8ow2ZqTPstD1tK8tTWUHpxPmq6QOHFz1tL/nhf/arP8E//NV7MUXJN37/z3G3L7oPvU+EQd1eG000Q751TPioWPSBQmnKiaVEY5UU+HVhsFqh0HRJXJ3mfcAaWVxb9hKz0YZEHzMHJqXEjkTkerVGD/naKWW0lSbBB4UiopFluWlpOdYEKmvZrCS+cGviTvhZUEqhVUYjDcRWLTng5+uScLFiY0ZGRkZGhLG2v+Vsbm6e8Pjo0aPn/Npjx46d8HhjY+Oin2V7e/u8z+Kcu1m03i3lWc96Fk984hPP6zXXXXcdj3/84y/K17+tcrGdXFuf8NHjjNywPZvz6rzzHF16JoUh5nx8Kaow1IXEpy26MNwgl6g5qyM7rafpAnsN7LnArLb4kCiHJfqVm+vsPJ08z6ao3u08y6FO3m0DXYgcXrT8w5GGECEk6SU2a4se9NIpZZRWTLReRx34lCW6OiaqUq/j3ypr8DlLPW0lIjwjn1FOQJaeIQ3RdOIolWgVoBWFNfQxyecaBqcooNTi4KqAaeHQSlTNndHrm+p9zFglkdfaKNo+sVHLc+k0KosQIqaM1oP622QKI7F9TRdBiUhko7IopdioLHttIOe8FlNUTjOtLIvFgn/zxCfw4Q9/mKuvvpp3vvOd3PWud+HQXse8C2zWBZ3P7LSenaUnpsxm7U4Zq5eyLLIdmfccbXqc1hyYipJ6a4jsGxkZGRkZGXuNW858Pj/h8ebmJg996EN58IMfzFVXXUVRFHzqU5/iLW95C//n//yf9fN+6Zd+iSNHjvD617/+Vl0mO3DgAAcPHjyn515xxRW32jlGRm4rnK/4e9EFEWtrRdNHji577rR1ontz5QzLPq6XnEISIfakOF5r+7CKzpM+KKVMGATbnU8cWXR0IXNw5jgwLVDq+PJUynkQkEQO7XUi7jaKFGUpaTUz2Z4UpJS5ad7R+kgbEos2sOg873ztz/DX7/kfKKV51LNewp3u+1UYI4kXzoqY3CeYOI3RMhOonPRthdPrMxkzCLl7mZ+s+o+c8/r/A0qBUeJ4VTlDoUXQk5ViVol4Rxlxvl31McvecdNex5Flh0KJQNtqUOCU5qqtihgyXZI+SxalZDY1Ky1xSBXpY6IsDN0w6zBKMSkkrr31ce3qdTJdiOvls7pYmQ18/lyXR0ZGRi41t+u7Qz/2Yz92qY8wMjJyC9BaUVpDGyK1M+wNww5r5M/PxvkUcFrLAOVsLj4r1TqcpFTfN5TZT+UM05y5abejGc5yyLc4rQkps1VLJvVUyTJO7xMxZyl4S83ndiN1ael8JCbJnk45E3Pm2NKLssAotLKUTqOURhVKBkoZupho+0SMntJo9lrPwUlBbS0a6GNip43MCkMmk5N8/UXnaXqPj9AMKotpYVkkz+7SD5avonT/0H97BZ/44DtQxvDw776Wy+79ZTQ+oVFUhaYwipv2ehZ9lEUjZAFKZZjWmjhEbCilqIGUoMsJpyEG8CHS9oGqkEzuNERp5+Hz2Gs7tJaYlMsmJXVphs9Es9cF+j6L25bNHLAFZSHuUFqxtrQ9suipC8P2xOGMXv8sxDS8VkkTNyvdLYqOOVVszMjIyMjILWOs7S+Ma6655oTHn/rUp875tSdHUOyPGrlYZzn5z87lLBd6jv1ceeWVXHnllRftel8oXEwn173OU1sDSAz00UV/VufVEBMoxdFlj4+JWenYrO26J9hfl3debpKHlDFKloAWfSD0ART0RmILrtyoqAoRYqSc2azOzaHgbIrqxSCiyBkWfeDQvKcLkZ2mx4cs8co+icOTVjgd2KgLuTndBhSi7J2URly1jCJGaLrEViUR3JUTtXQe3rc+gE+RcrjBjQI9LDGFmFEa6TGSGj7LPIhAoC4tdSEijJQUzmqcFfcqq8X9yWpF5YwMGlJiUlqs1jgn7laNjzgtg48EOCuDkpizDAGGPy+URFLUg7OTUUrED0ZTO03OUFpFzPJ7nSJPf+qT+eAH3s/29jbveMc7uPe97w3A1sSx2zr6KHGKADutZ3cY7pROU1npkWShKw3Lc4E2JJzWXL5RcmBSUheGq7frC3IPGxkZGRn5wmDsNS4Oj370o3n605/O4x73OIqiuNnf/8RP/ARveMMbeNrTnsbe3h4Av/d7v8drX/tavuu7vutWO9dzn/tcfvzHf/xWu/7IyO2J04m/83DjPatMziL+DknEMSEkln3GDvOV3cYPgofjvZQeBOpdEDHNvAs0fRyE62bdF8Yk0ejHfE9diAPT6l58nzIxyyLTZ481XDYrSLUjkTk87znW9Mdju0PG2eNuSm6Ij7NGsVE6MvCPR5ZoYBkC7/7tX+T9b/4NAL766T/CPR74NRgNxeAK5XNm20jChVEiTmn7xHbtmA6C9zZI8kU3iPJnlSUrWcxSyK/LoR+SxA+zjhiMOZOSOAsv2kwXpTcpKj0sNHmWXWRz+H7bTlx4QRy1SqPZqou1aAYQIc2QxLFROZZ9GNyUIxuVJaREjtKfmkZx+aykj+kEpy8YhCT98Zla6fR6IW1Sjm5RIyMjdxzGxaiRkZFLwqSUxaiqMPQpDW5IgUmRT7mIBKcv4FLOZDJHFv1ZXaFOx7I7rqBYNQv7hzKnouklomKjstyw29EPyvTSGnKGjcquHaY6H/ncbgcEln2iD+KY1PqAM4Yrt8QRKkboc0AhwwRtFM0QpVE6JdnbSuNToI2RkGTwlFHsdZGQJac65ozTmqPLnjZENqoCpTI+SBNSO03DkLs9xNhpLcoLp+Ed//WXuO5Pfh+U4iu//UVcdd+vYt55AplKK27Y9SgNtbVsVJKDXThNnzIhZJZdYqfzkGBzYul8IiVPaQxHQk8KicYPLlOdRyFNThcifRrehyAqDR+Px7CUVrPsE4tOlPpKy/evnWbRRkqn2G16Yobt5NZLVkcW/QmuAbdGbMz+X0dGRkZGzp+xtr8wvuRLvuSEx9ddd905v/bv//7v178/cOAAV1999UU/y8Mf/vCzvq5tWz7zmc+c9jojF5+L5eS66AIpZmwpLlCTQiIOzuS82sfEsaXHWVEBy7J6Xtffiy6s6/JV/DHINQsr6tlpb1n4METaQOMTO62nT4nNykm9PrgYnYmzKaqXfeDIoqf1kWUXaXygD5mlDyw7cY6aOENWmdoaKmfoU+bwoqMLFqc1fUx0UUQDsrAvEXp9THR9wtSaRSfxzClnlm2gCwEfMm2M7HWReesJMaF0JkTIPoHSaJ3RSpTGhRXlsM4ShedTQiMuTyprkslYC6FXGA0oiDkxLR1GS6x3SiJWmHeBSmusgaQUZnC5bYO4VSmtSCHTqUxVZKYzx2ZlmVWOrdphjYgc5m2g9Qk7uEt937Oeznve/U4mkwlvectbuN/97rd+r53RXLlZrUUj8meKeR9YdpG2TyxMXD8/xEzIIt6YOcuBmePApKRyhrsdnHBgcvOh7cjIyMjIHY+x17gwHvGIR/CiF72IBz3oQWd97jd/8zezsbHB133d163/7KUvfemtuhg1MjIinEr8HWJaz0qUVuJrq8CgcGa4364CN+62GC09xaywIjh2BrtPZFAXhi4kSicznd4n9tpAXcjMYdlLvPjKQVYrWPjAXhs4tuxFLDKco/GRY03PjXvd+uw+Zo4tOva6QGHEacnZYYkriJCj6SPHFp66MDgrPcpf/OFv86f//dUAfPW/ez73e8TjmRaiGMmIg9XMGGpnCVnek9aL0xJKYYxECYaYhsQJ6TeWQ3+mTGLiDFrJ+aeFxJinLL3Kyll3Fe/XhoRWIrrXWhbDWi/Xjt3QG1nFViE9q0FROOmZjVJMnFy7cjLPWLWmlTNDXyVJJhNnaQk0KdN0gWNaUw0zsyFdUITwMa3nGKXTa/GQRAeOIpKRkZE7DrfrxaiRkZHbLyv3nkUX2Kwcu0ihvhwGEcUQr3amAm7iDLuN5F7fbJEqQySvm4HSSh7zqQq9lPK62G2GgcikMGdcigoxrRe0JK5C/lxl2J44UbEbvV7IqpzEg5ROc3TpcdbgvaeyDqXBaU1LkoNzfNum65PkRitF20W64WsppbBqUHgPSu+YZCAUySx9JIkERIZOi462T0wLjU+w9IGQE/M2Yg1MnGNSGjqf+bM/+C3++g9eC8CXfct/4Mov/2p2m4DTihAycy0qdacVFrHPDTlDkkaq0JIHnrNkfO81EjlSakNVyHNrY5gUhoxl7iNGASjaQZUehmW3jSiDuaYP1IWo63cG5UgMshBWOBnKxBix2rIcmpo+ZnaWPQenMgzZ7xpwsWNjVp/zLXGdGhkZGRkZuRhsb29z97vffe0U9f73v/+cXtf3/QlxF/sXFG4p97///U94/P73v/+cBiEf/OAHCeG4Y8/FOMvImbkYTq67jafpI7PKstd51BD3djbn1SPznpxlob4NkY3SSTTc4BK0qrX3L0XVhSwdra7pzFA35systIQkblRaKXbxbFZu6AX0aW/4ni1OWwFHFhGzXhwLHF16UKJktkYW930CZyxaixrboIlI1IECUSl7WUpKKeOMYVKK2ne39UxqS+sDWll22zAskclN9bZPlAZ2cwINNiuSAZ8yBjBaHFFVhl4NzlIKtM6kIMrl2oiza0IWs4IRNywGYYkzIioJKVM4TUwRMiz6iLEKpzWrXqWLgX5wZ7JG1M2rG/8py+e0GqAopGbufGRWKf7zi3+QN7/xDTjneOMb38hDHvKQm30ms9JyxUa1Hgw4I2KXtowyUAiRHKVnWvUyK0V7MSxj3e3g5GbxHyMjIyMjIyO3jOc973nn9fxHPepRPOpRj+Id73gHANdffz0f/ehHR+HDyMitzMni72UfsFqcXGGI4Y4iOF6Jy5VWVMawVRdrJ9801NrHmp7LZ9X6+s5oJoVE6m2Ujj2kV9tZem6ad5Bha2KZD3Ha81bhYxqWk4akidLQeBE87CyDDFSARRchZ/aGe/gpZvoQyVlhraKymlnpqJymdIbWR/bawJ+95Q286ReuBeDR//Y5fP23P4PDC49GXG2dgctmBQcmJWZYUpp3AaMU8y7gk5zDGNhrYFpJ/xKiLHvZoU+aVRYfM6UzDJoU+pA4MHXkLL3kvA1oJd/z0kesElG3UrDbe1KUPrePid1FTzUsThWFYaO0bNWysFQ5cUdesYrv08PMKQ+zIFglqWh8SOQhnn7lOLUfq9W6nwbp2c43en5kZGTk9s74r97IyMglY5WL3PrIZuVojeQ2h5TpgijJT2ZVwMWUObr0VE6K8ZOjLtQQ7VBZQ2G15FMPjk4nF3yNj2SGgncoVFcRfadjNajpgjQZ5aCyd0Yi5LRVp8hzVkwKSxuk+I0eUInKWrowNCTD8zKZEORcpdXEnOmSxElYLY2AWv9dEhW+VmwO+dXLXuxml95TO8OxpcenxIFJweFFR9NJcS8RGqIyV2j+5o/fxB/9+s8A8NBvfTb3efSTOLbw7HWerDUxJtDSDBit6IbHlTXMSkMEfJYYE7IsHoWkRMXvEjrIkCZbxVZtUUq+Zx8y1siik9UanTMR2G0iVgfMxHJ02dF7WZgKWSxvrVZs1QU5Zw7Uxdped2WxG7MMjHZbf4JrwMWMjQGo7CrScVRYjIyMjIxcOr7+67+eX/zFXwTEBerjH//4WePo/tf/+l+0bbt+/NjHPvaCz3HNNdfwxV/8xXzsYx8D4F3vetfg6HPm/8++853vPOHxxTjLyNm5UCfXZog3I0PvE1u1O6vzqlbiTLRyXvUhQSm12CqmGiQ+b7UUtVFZipOuubox3A319ax0pLyK3ku0JlI5w7KLbE1uXqedS5z2DTuNxD1nURFro5hWcjM/Z4gpMXEatGLiFD5mfABjjjtO9T6xwOOcouslGztnmDjD0kd8SjKkCIHdJrAYBhi7jcdHcVqtjHyvbZD6WeeMRhTQzmjMILaIeYji03Bk7tFGavXKWJSWYcikMISY6BL0HrSRG/uVs8T1wpHColiGOOg2Mq3P9CGJS28CT0aTmUwMpZW+p7CaSWHXPyfLPrLoRWTx2p+7lt//7V9Ha81v/NZv8ahHPeq0PyNbtThYrYYQu0sRW7QhkhPrf1OUllp8Fd23VVuu3q5Hp6iRkZGRkZFLzCMf+cj1YhRIfzIuRo2M3HqcLP7e6/wQQa5PiCW/GVEiwckSWY7RND5gjELNRTAzLe26L5yWVmYVPjEtLDF6doa+xWnNsSYQYmJWWiwS6V05w9WbFSEmbpz367SMLkRSSnQhcnThMVYRh9hwUxiMkdgHmSGJyzBLiZ6bOMv73vWH/Pr/+8MAfNU3PJVH/ZtnMascPklvOS2MCLyNWfcPlZPlIB8T1iiOLT1djOisWA7C9HkbAEXptCwbWU1Mw2JYaTBKFqy0Usw7ERlNC8vheScuXSmhtGLpI0pLSsbO0hNypu/FwSsr1lHgWkeaXouoxx3vW/NJv4LEm3dB3J+NUczbQGE008IwKSw+JZxRp5yRrTjVjGxkZGTkjsD4L9/IyMglZXXDe9GFdVF6tiWnvdbTermhb5Ti6KI/bVHfeVkkqp2hKswJrkErVgtY7dA4lPYUDlT72L8Q0w6Dm+mw5NUPqgtn9c3ynHOWGI4UM4XVHFt2xATTymGMYtPJe9H5RB8jnY+ALB/1QaxkZ5Wh72WBq7QapRRxmB3lNAyZtBT98y7gQ0Ih1rQpy1ISWRFyRGlx3ur6hDOJj77vj/j9n/9RAB7xLd/Jv3zSM5n7II1OCPiYaFMWp6ckCnYzDFHselAT5XwxoZSmMqxVEj5KxMXWxJKSvH8HpiVGG441PSEkjNEYo7FK4vK6APM2EHPCaI1VGuvAKbHKvWxWilojJMxgBWyN4oppwcZEFqa0kvd0v2vAdu1QcMGxMTkz5KjLolp9C1ynRkZGRkZGLhZPeMIT1otRAL/8y7/My172sjO+5pd/+ZdPePz4xz/+op1l9bU/+clP8o53vOOEOI2TCSHwute9bv34rne9Kw984AMvyllGzsyFOLmmlNEKpqVjZ9lTFxJ3cC5uUylL7FtpNH2I64Wc1ssijtJq7eRUF+ZmS1Hr8w83hod9KJwxQ/yyiC4qZ4Yb7lLnSTSCLPfsLr3U2j7SR3F33Z4cP38XIjuNLE4dXXaEmNY3veedCBGaXt4j5yS2wFmJll7deE85Y61i3iXqUmLyjNJ0w+CgGGL2bthtSAms1hil2G08MSYS4DT0w811kKX+mOUz0ECM0pfYSrPo5IZ7bY04z2bFwclxAYGzimlhaftISJF5F5hos47U2Kit1O4+4ZymLpGBRAZFoukztbMYlUBBaQw+Z3yMgzhBBhw+SM+013oA/sdv/iK/+Ys/D8DPv+oX+LYnPemsPyOz0spiVOk4OAksusBeE+hiZGjHhj5Rs1k7DkwKZtUYBzEyMjIyMnJbYDabnfB4sVhcopOMjNwx2C/+3m09PmSmE3vKWHJn9NpRyQ+zh4zCGMVeE5g4Q4yJeef5zLGMNcdF4VoplBqcf31cuyodnBR0Q0z4tLBsTwomhaZ2du0mO+88d9qs8CnyqcNLOh9ZDP1fMcTHhRTXsXa6G2L/lJbFLaMojaFwir/8wJ/w2pc8n5wSD3zUN/FvnvsiDkwKCiMuTF0v4h8VRGAdE0wGJ1qt1HpONCkMvkl4H9hpA7uNJ2WYlJaq0CSQ82eJJ9dKXHW3KkPKEiWvlZIY8HWKSWY6xOvFlAchi6IPiUUfZK5ApnKWYIbecVLQR+m1zTCbWk2o9k+q1PAo5cxG4eR9UhpUXkeZb59CJCIi+9OnqoyMjIzcERgXo0ZGRi45qxvey07ymwurT9hg38+yC+Qhrq7xce3ctIq6WBXnEj0hQ4OQxIK1T+kE16DVVnwarEjTsFx1tsKwHdThIa4cptRaZdCHJApt4ORdrZiSKOCVIsRMCIqsMlaLk5TMG6S0jTmBUtRO49tV45IJkaFhyRRDRvb+ynj1fVujqazY2nadNEVKwdJLDEhhZECkUSij+cRff5Df++nvJ6fEg77um3nsM14gAx0yjdEYY2h6sbZdLZI5lXHWEqLYzw7mURSFpsZSZVFyJyBmiCEStETWbZSOujRMhkWirBK7y0BEFtQumxXkLMqLkBO7TeaKDYPRiokzOKvFjaBy68+v84lZJe4EG3WBVooD04KYM7tNOME1oPXpgmNjVj97K3cxsa0do/RGRkZGRi4dj3zkI7nvfe/LRz7yEQD+y3/5Lzzzmc/kmmuuOeXz3/e+9/G7v/u768ePecxj+Cf/5J+c8rmf+MQnTrjOwx/+cP74j//4tGf5nu/5Hl7xilfQdR0AP/ADP8DXfM3X4Jw75fN/+qd/mk9/+tPrx9/7vd97VoepkYvHLXVyRSu0dvgg9ee0tGd1Xl2xigMonEL1EHPGh0TICbIsCK3cXM8Uebz/xvDqunUhjk5hEC5oBTfstthV/YzU/qvhwbwLg9DC0HkRX1ijObbw5JxZdIF2GCYcnBYiZAiJ0ioWXSbnhDMSnb1SOIcMOSUyeX0278FZCEGTYqLLAUgsek/OiomTpaLKGZa9RIYbFEVhWbae0hmM1hyat4QIdljy1yrTR1lOUlphhtiHWWWpjMVZeY+2JwVaQRcTk9LKgtWgEPdiwyQLVNpIRHfKYLU4tsaMs5qN2ko0n8v0KVFq6b+mpRmcxAJG7/tMMvzJm/87v/wzLwHgR3/yWp793c88p58RkN5sa6LZSJamihyYDo5VKwHN4AZbu7EWHxkZGRkZuS1x/fXXn/D46quvvkQnGRm5Y7Dq2RadLN6UQxzb6WLJV5TWkIq8FqUsu8i8DVROQ0iklNioCjzQEE947cpJuHQiaI45M505rtqsThC2KCWzlJXT6w27gUlpCUF6LaNFxLHsEt2QGLEImdWUxurEpJTrhZT5+F/9Ja/90ecQg+dLHvq1fN0z/iOLNlK5yKITobfKmkUrzleRSAoamiDzJyMC/JTzenaw9EH+LImo3SpgmP1oBdpIzLdCUTlNF6T3ATi86Cm0uGOVOWOVlkQND5NiNXuSMU7K0o9pIJqENYZFFzmy7DFa5kx7bZAltokZ3r/jn9kqc2Q1A8vArLJsVJaUM07LEtbYL42MjIzcnHExamRk5DbB6oZ3SvYEFff+Ak4rSEkKuNNFXeyncobpvpiPk12DVotUw5xi/evZ4tT6kxymisFhavWqk6+3YtWc5CTfm9bitBTy8DXFGRZr9NotSxyvNNpB4yX6rhvk0X2SAYzV0iJoLV8jD9+D1uLUNO88CUVOmbaLKJ3IUWJSfMgc+sTf8Psv/15i8HzpQ7+Wb3z2j9GHIUJDyzJSXRixgEXcokprCINlrgdKp5iWmcraQTWihmjAvB5qLb00OSGJ3W3O4hgmbgGarVqaiUUXSCkzLSwhIwtjWV4TQybEIaKlLIgxMh8WlCaDk8D2xKG1YlJIo2WRBuRk14Ct2l1QbAyI49ZqULdqzkZGRkZGRi4VWmuuvfZavuEbvgEQVfbjHvc43vrWt3K3u93thOd++MMf5klPetLaxVFrzUtf+tKLdpa73e1uPPvZz+YVr3jF+us95SlP4Td/8zcpy/KE5/72b/82P/ZjP7Z+fJe73IXnPOc5F+0sI+fGLXFyPbbsAYlim1p7VufV/ajBgsooiVLOGdoY1yKDsFqcOss1998YXl33eMRe4siywyiNM4rtSbH+nhZDZJ2PiaVPVE5TOrNeBKusZj7E7M0H16ONYQm/H2ru0hoUgS4lbD+IEQblNel41F2Iom7ebTyTwqEVlIXic7ueFDMxZHyKLDqonR6cnQxOK7TSNEGcZEVGAaWzFDahEKV3VpnaaZRWbAznQyGOqxa0ymxW1TAM0ewuPanQ7DRy814hDqttiNTBDqpvjVZSz/e9LE6pCJtVQYiReRe5bOKYliJUuHxWYpSmKiTSTmlZPvuTt72Zn3vxDwDwPd/7fH7shT907j+U+9BaMS0t0/Lszx0ZGRkZGRm59LzxjW9c/74oCr7yK7/yVvtab3/723nve9/LRz7yEY4cOUJVVVx22WXc73734+EPfzjf/u3fzpVXXnmrff2RkdsCKzHGqodJSRIo4NSx5PvRSoTbVit2Gs+RRUdIcp8dFFpD2yfi6n6/0VRWszFxWCPi5kUXmZWOA1NH5cx6oWiV2LBy4t1texZtEOF6bSkKw7zt2WsD1iqKpJj3EEIcBCsS8Y1SVM7ymes/xm+8+HvwXcO9v+KhPPrZL2Gvj+z1DTctOllQcoYrZ6XMSJDcOj8kdFivKU2idLJA1PqITxLXbRQ0g0swQFYKHxI39WEdB18YQ+Ek9k4p6Ic+sLeajdKiNew2kcYnagc7S09ZiIgkBBHJb1YG0FgNVoMpFW2X2DWeGGVZK+/7TIt9Qn4/zG2UHtyWkQSRyhkUcPmsHBegRkZGRk7DbX4x6ju/8zvXv1dK8au/+qun/LuLwcnXHxkZ+fxzphveO0uP1op2WHIC2KztGR1+RL1ssUbdzDVo2UW2JhILwjDogeMF5+lYOUEdd5iSF65etbrO/vmNPHdYNjIG8EwLjU+ZdlgCs0Nx7WNeK9+XXcJYqKwlZSl2+z5hjKIPsnRUD7nTClGEdD5JdnhI1M6ys/CEFOljou0TgbR2vLrpU9fxlp96Lr5t+KKveAhP/P6fIqExyL+Jk8pQ9ZayjXgryvGUFFulZhETOUFhFVVhKIzhwEQU9InMso04J4Ouwsri0m4b8F4+v3r4/jdKS9NFlElgjUS0+ETSqwgQOa8PCTUMzrYmjjaE9bJZ5TTbk4JisMOtnTkhFu9k14DCyrLWLY2NAVmKWkUyTssxsmNkZGTkXBhr+1ufxz3ucTzrWc/i1a9+NQB/8zd/w33ucx+e8pSn8OVf/uV47/nABz7A7/3e7+G9X7/up37qp7j//e9/Uc/ykz/5k/zpn/4pH/rQhwD43d/9Xd73vvfx1Kc+lXvd614cPXqUt7zlLfzJn/zJ+jVlWfI7v/M7VFV1Uc8ycm6cj5OrQsQNs1IWiHzM51UPaQURqf8Lq/GD8+qq1tbn6Oa6/8bw6rogN+APL3pCjJTWcqQPHF30+CTLRfPOo1D0KQ0xfpm9xlMVhtIaji575p3HKE0fxblqWtj1mVaxzDEnll2k0AZjFDlnIgnfy9AgpERWigqJLAg5YtDklIkJjjVeBgxRcq9DAj+oqVMW8YNFkbQIJXJKVEbhbAFkfMjUhUUhERMpiUsTCiqr2K4LQBaWrNFDfALiEIVER8hbLEtqfUj4JDF/ZFk8m1QGFxSF00wLSx81m3VBYRWtT0ydYasuUGrlSqXoQ+Tdf/ROXvoDzybnzFOf9nSufem14036kZGRkZFbjbHXuO3w+7//+1x33XXrx49+9KPZ3Ny81b7eBz7wgRMe933P7u4u119/PW9+85t50YtexLOe9Syuvfbam4k0Rka+UFhFnfeD81M/3Es/Uyz5yXQxSTKHM8QkkePz4R76yX1hynB0cNitnKEuMrPScOft+mbClt1G7j10IbLXhLXIBKDxnjaunJs8TRdZhrhevCoHwUsIiU9/9u/51Rc+nWa+y12/+Mv52uf8FHsBcooYIyIfWdqSPqw2Iqi3RpaqVo5QbY7kIXnDh0RtDRBJGVRWRDITqymMIRNBiVNVGyJGJQqvWPQBrTS9l3SSKYpWJ/a6wKKNRBKLNtOoyEaWFBBrFTNt8NFgFPiYKa3Mr/a6SBsiIWa0VsxKicmLWSLf5T2XuHKQ2VPTRyaFHRMtRkZGRs4RlfNZNgAuMVprcR7JYlkYY7zZ310MTnX9kds+f/M3f8N973vf9eOPfOQjfOmXfuklPNHIrUVKmUPzjgwcXfSEJDfx9y+/nI3FKi5NS8TaaoP+WOPxMa1dqCqn2ahOHfMCcHjekTLsLOUcm7XDGc1e62Xpxmk2SrdWpYNEAO51gZv2Om7cbfmHIw2QOLroKZzmTls109IyKSzzLrBoAwsf2Vt6Elli/3LmWONZ9AESoCUO8F5XTIFhQKMUTmsmpeHY0pPJfPTTO+y1Yb3w1UcZBh373D/w9p/6bpqdw9z5n34ZT/7RX2Q225D4jEFlrzXctNexs/Rypj5QWMPls4I2SKRgafVa0X75Rsmyi1grjVHKUBiJItFaVPI+JDYqy/a0YFponJbIv5Vj1rzz7DaRmBKz0tIPv1bOUBiNNUoGLyiUglklgxiQBajLZ+Upfy52G08X0nqhyRnNwWnBTuPXVsGtPx4bczrs4KC1coqqC7NekBoZGRkZOTNjbf/5IcbI0572NH7zN3/zrM9VSvFDP/RDXHvttWd83vlG6a244YYbeMxjHsNf/MVfnPW5Gxsb/Pqv/zpPeMITzvrczwd39F5jFTV3KifXlRX/4UVPynldn2/V7rSLVCez7AOLLhJi4tC8Y9EFDk6L4W9FXRxSlrrtNNdMOUvNm+VrS5yfYVJYbtpt+NSRZnBqlSjrrdpJJIHVLHupZfcaOfuscmtlcOn00H/0+JRouojWiis3SpyRyIXPHGvYbQM3HFuy10Uqp5g4Sx8ydWnoeokF7H2ii6Lk3SytXHtwht1tPTfOO2JKGCVResXg1mW0liUvJcplcTf167NqJH6wDwFtND5knFEoxB3LqMz2pKIuDZXVXLlVMx2Uyl2IHJr369pca0VKmcsmJZiMRTMpDEpDyLBZitPqsgt0MbFZWbZqUY+nnLl8WmCMwRm5qd/6yP/+8w/wH77jibTNksd/8xN51S+/jis261FMMDIyMjJyqzH2GrcNDh8+zP3udz8++9nPAvLe//mf/zkPfOADL+rXuec978knP/nJ9eO6rjl48CAAhw4dWkd67+crvuIrePvb384VV1xxUc9yvtzR+4yRW4dD8469xvPZnYamlx6uHMTE5+Lqu+wlgq/1kesPL8gpc8VmRWEUV2/WlE6cZmOWpSMfJVlBK1mSslpROsOVGyfem085c2TRk4d5ytFlL4kZGXabnkUX6X3k0zsNe20gxITVilnlqApNbSX2/YbPfJrX/fC/ZefQZ7nqmi/mW37kNZh6ypFFRx8yxkAfJNp8WhoqazgwddTOkciDqMdSO7Oefyx9xAcRSoeQqQqNBqaVZVZYScEIgZgGAU7ONH0a4v80RtIGcRbuvD3Bac0NO0sWfSLnREhyz+Uu2xWlMzRdpHCa3mdCFmdmY0R80oWE95HFINi+arNiVllmpePqrWr9GS26QEx5PQu6aqscxDAS+z72WyMjIyOn5zbvGHUu3MZ3u0ZGRi4CjR8sSUMiJFFsrzbhz5VTuQY1PlJavVZld16iM6Y5n7ZhWMV+7HeYSoPCAKAycq79Fqd9TGilyEhDslUbFl4U8iFlFr0o2Y2WQdMccUFqjKKP0mz0XgrvGMVlyhrNzEl8XoiJrUlBoWVxaN7KYpEs/YTBNjfThyjqg2OH+F8/9700O4fZvsu9ePwP/hxlPaHzER9FFRJSIomQnMpprJJ4laKQmD4yxCwDK5MSWevBVUCRUews/QlxgppMZTUxJGKEtpMov2nBeslo7iOzShqBlETRQZ/JWex4g8tsO8esslilKAtZllJKsVEZrtyosKcp/lcuWiunr9Wi2C2JjVkxLa0srY2MjIyMXDTG2v7CMcbwG7/xGzz2sY/lJ3/yJ/nIRz5yyud91Vd9FS996Uv5mq/5mlvtLFdffTUf+MAHePnLX86rX/1qbrjhhps9pygKHvvYx/LTP/3TJyxfjVxaziW67HydV/dTOVmOXy3Qr2r9cqgL19fk9NdsvSh9rZZFfKXkujvLns/udvSDAlgpiENUc+FkCagfFoms1qDELWlF00f2WrnpvNf0+MhaeOCMLOcv+sBO08tifxtYtJnygMZajdWaaqoJAZYmEJbSf7QxopSijaIEjkki+3JWOKswSq0XvGKSeOcQMl1IFMZw9ZYdVMJZ/t4qjHIcW3qME4dVqzMpQdKKeR+YVYZJaSm0Yt4GicdWitJorpyVGKPZbTw5QZ8Tvs3MKk1VmnUE4aKTiEOjNROtSAl224BRmss3CmaVIwMTZ0jAJ/7uo/zAM55M2yz5mq/9On7+F3+FzUk53qQfGRkZGbnkjL3GrUsIgSc/+cnrpSiA5z73uRd9KQqk53nMYx7DE57wBB7xiEdwr3vda738FmPk//7f/8vrXvc6fvmXf5m+l/jnv/zLv+Qbv/Ebec973nPRnKNuvPFGbrrppvN6zX43rZGRi4VWSmYQWvoNlWGjtue0FBVioull2XO39SLKRvqLaWFJHBdllwoKK4KYG3Za6YW6gNIwqyzLXpyHV7W/9GzyNUSMLPOP3cbLzCdnlkHcklRWlNYwLQ0bpSOS8SnR7h7ht178THYOfZbL7nwPvuVFryIWExatp/OZZS+zkJWgRiHfQoiZ7CR1I8TM0WXPwiqcMbLkiqKPUSLItQjAY5LXHm56vIdEwsdEGJyKnZXowHkvLlilVYDl6Lzn4EbBpHTMu24QjEtvCBLB52pDzLI0ZbMhJvn/UutFzN+QxdUqwl7rUUpROb2e7xxZ9ISUmAxOxrPKrJeixkSLkZGRkbNzm5/m/qt/9a9Oq+Y409+NjIx8YbGKTGuDFOil1edU1O9n5YLUDUsvq0WZ7dqx6MI67zokUTvUhZHoupBI+bgiTIrS48MaHzMxSYFvtcJZidZYLfvA8fi9Qosa4bKNkuZIs1YKzNuA1VAXeh1Z0oZIaQ1ZZWkcciKkRBMSMaR1xnbnE5PCMCssflD2F0avF8CmpaMJLU2bSArico/3/8ILWB76DJPL7swjn/ezRDtlpwlUhUZFRR+DWOQaRYiKaeHYS+JAFSOUlcYYUao7ayitKEbaPpM5vrxmlKjzUYmMkmxxbehjJHUynGq0vG/KKAyZLmScNuhCBnKrRSdnFIXW689xs3ao4fcHpu6MLl9w/PNa3QPbfy/sfGNjJILEjM3GyMjIyHky1vafX570pCfxpCc9iY985CN8+MMf5jOf+QzGGO585zvzoAc9iHvd617nfK173vOet3iQ5JzjP/7H/8gLX/hC3ve+93Hdddfxuc99jo2NDe5617vysIc9bK3uHrn0nItT1MqeXyuJGdBaQRShwP4a+Ezsr81XFVUbkyziW43ad81TRWf34fjN+6o4LkxYdIHDi54+JOZtZOk9pTVsVhKvnZIsW/kQaX1m2QVSFuWz6URl3MfEvA1oBX3KdD6RlfQkdWFISVyXUsoEACU18s4ycvmGYVpoImANOCsRCM4qCq3wUb7fiTOEEIelJZgWBYHEgdrR+IRWGaMVVWWoc0ajqAqNM4Z564clKFkqMxoan4hOo7KiC4k41OMKaPvI4dyjh1gMoxRXbYmgYK/xHJg4CqP55OElMQRSShza65kUhu3aYYy4PZRWRBEpi1tVVWgqa9hrA3VhiBk+df3H+e6nfDN7u7s8+Ksewq/8xn9ja1aPYoKRkZGRkVudO0Kv8bGPfexWu/aVV155wTX5c57zHN75zneuHz/gAQ/g5S9/+YUe7ZR84AMfOK3zkzGGBzzgATzgAQ/gO77jO3jMYx7DjTfeCMD73/9+fv7nf57v//7vvyjnePWrX82LX/zii3KtkZELobTiwlRZAynjk/QTZ2LV1xxdejofaXzkc3sNTRepC3Fq0koTosxHyJkI+BjFZSlmaqfZa2WJatW7NX3E1dLl9SfNdayR+UjrIz5mckws20hK4AqYOotWUFeGtkvs7R3jV170DA794/VsXn41T/6x12DqLfaanr0uEEKkDzKTmGlDYS0oScxofMaoiLVyLpmXQEyBnBRVKXF5XUjUbhC5ZGi6RMqRylk6L/HmhVPH48tLmVXsNIE+wEalCBkOzXtSStTO0ASJIJxVkoQRkvTXMWU2hpSMZReYd7IcVhWayhgmlcyLQhax+LKP/OPRZv2ZFdYwcYaqMFy1IU5SdWHGfmtkZGTkHLjN/0t5pniGc4luGBkZ+cJgpT5fuf3c0oWUU7kGaS1KhDZEamc4uuy5cTdQONnkP4FBSbDsAjHnwV5WsqtDzDirObbscYPyXSsZ0MSYJQZDaypnyEniKXzMlEacrHaaALRMCisK8ihOWW1IqAyg0MgQyTrN1sShtajLr9ysxG41Jom2GyLnjNZ0KaOzQetM6Jb8+S/9ELuf+TjV5mV81bNegZ4dpPGBImlyNmgNzkgDoytZ/ln2gczgopVF6aGUQmkl9rZKUzqIOZKAeRsJEazJ6CTLW2RF6UCRaHxmQqKPEZsUaGmeameZVYpQyfeSAaMhJfk+68Jy5RCVVzoZ1NTFuS0orWa5q/tgJ98Pc0azNdGkZM95GDgyMjIycn6Mtf2l4b73ve8JUQ2XCmMMD3vYw3jYwx52qY8ycgp8TOsl8ZutwGVErRslNmC1JH6+zqsnMxkcXbVWFNZQGk03OK1OraEniUihOH7NNChqV0tRpdPrxamcM41PdCGy23h2G0/pZHnnwKRgVoliOuU8uEEFdtuAT4m9VjFZ3UzOmT5Fmi6x10q8Q+00VWmHmAO5+b7Xeva6nhDBAF2IHN7r6bzEftfO0IcoLk1ZUQ31v1ayzNR5i82J7dpyYKNCAU4r9lrpMSpjmdXiaKqVHpadMgenjs4nWp9IJApX0fo0qLCTCBMQccaii+Ss2ZrKTf9VHPnK3fbgxNF6cZq984GaEJPEYwSJ87ZGUejjw5UCsFoiC6vCkFOmtIZZZbnxc5/lu5/yBA7ddCNfer8v4zd/5/e54sDmeJN+ZGRkZOTzwh2h17jPfe5zq137ZS97GT/0Qz90i1//ohe9iNe85jXrx/e85z1585vffNGcmU7mXOPwHvjAB/KmN72Jf/Ev/sVa6PHyl7+c5z3veTh3ZpHlyMjtidoZyAxOupJc4X2mPsWPeYiJZoiRiznT+EDOcGivZd6KexEKjjX9ME+JKE5MVbBGesGYjnePTReZlU56uCRzl9Vfr+YxxRBNHuIgBh/+c0Zh0SLkGK6nUstv/cSz+ezHP8Zk6yDf9MJfIEwukwWnmGl7WSqS2YDGWE3WGatEVO1jHGYmanDcNWTAolmkQL+UfmpaOEprqIxGm8y8S6AUSklM+kRZnJb+yaeEaiMUenAFzmgFlVOEkETkomXBCwVblaVwEmmulaIPaW0CEJL0bxpxNc5GhOQaJYtUyPzJKMVGZakKy8FJgbMyW5Io+THRYmRkZORcGf+1HBkZuV1wssvP+bpFrTida9CklMWomDNNiEOBCs5EhuS89YIMQxSHUjBvPEeWnmmhuXyzolJSZM9KGVysFBQ7Tb+OzaudofFhcDySaL7dJgCJtk8sfUdKWf4j0YdIjOImNa0s2ke2KstGXa4HUcs+oJQ4H00Ky5FFj1aKReeJPoFKaAJ/9gs/zE1//9eU002+7vk/z+xOd2PY2SJnsaat1GAlq0RBb5Bs7ZUiXeL2PJtVgXEKrcQhy2hxuYohk7I0NMOV6YJEGC68NF4kRa81JmlIEEJmUlpZchoi+fY6jwUWPtL5RGFl8NLHtB7EnetSFBxXp+x3ODgV5xIbMzIyMjIyMjLyhcS8k/iDFWeLFW6HqIPaGRTczHl1eo43Zq3R6KHW3qosxijaXpafFn2kG5bxdxtPXRj84Oa0GmqVTjMr5U5/MURQdyFyZNGz9BHIzCrLFbOCg9NyXQcu+yBuTE6W4j99tKHxkc06YozC94m91tP4xLwPZGDhA7VPzK0nRsjDTepjy0BpFGXlCEl6CBsUIUXaYAlRanlrM1Ybcpbo6N1WhBhXbU6pC4uzmoN1QSJz2YYsbilYL3MpJfX4Kt5hp+lxRqIyuhDYWQZmsxKlMjfteUqrMFoisCeFpTQSSVEXduiJZPGpKiy1S+QsjlgHJsXwfmqUhpxY38RPOeGM1OFmqMFXi1ZHjhzm6d/2BP7hU5/kXvf+It74P/6Qe97lytFhdWRkZGRk5A7Ay172Mq699tr147vc5S68+93v5s53vvMlPNVxHvKQh/DEJz6R17/+9QAcOXKE9773vTziEY+4tAcbGbmIaK0onWbZR6rC0DeJhQ9UwZyQjLDsw1pkAqxdi47utdy416MU1JVmrxE3KBEQRworwg+iOOpaLdF9ZlggaocUCx8k0q714o676t1Wcxij1Vp0HWKmizKTsIMTLogDko6eX/3xf8/1f/MXVNMN/u2P/xLlVXdn2Uvf6geBjRpSKnwQUY0sDElMeVkWlIWm6aIscGnpQXc6j8mw6KQvvHyqmQ39aNeLUEdlRUhQWEVtzTqmz0UlDleAdZpCJdqQmFaKmOT6MWYObBYSC1g5Noeki5gybYgsukDnM7PKsRLDTytHzhL5rgeBvUEEKYXRXLVVrQVBE2e4bFqOiRYjIyMj58m4GDUyMnK7QMl+zXqxaeUgda6kJMX5XufZbaTgzYhL0ErNHZNYk26UjkNe1BEhpfUQohgi8jJwbNmz24jFbASWXiIqMlBZifBQCpRWVMaglAyYFn0gDja225OCurA0fWBSGBSKeRfoggyBll3EKs1G4UDJwCln2KgspbNs1paUMlu1owtDVB2Kpg+0fWCvCyy7QBsTVsF7fuXFfOaj/xtb1nzdf3gFl9/tXvQJfIikrNDWUCiF0pnWZ7qYqI2mnlhAsTvv0Free58y2sKksEyHZabVm9OrSCuZIoQIKPA+DUtisnBlGBoFrTB2tYgkcXZun/NAYTSFM4QEB6eOm+b9upHTSp1gy3vGzz/LEA0GO2HEXnhkZGRkZGRk5I7OTuNpvdwYb3uJTwjpFLX2vhvg9WDd3/iIjwlnxFVzp/EcnncsOnFUPe68KYs21UnOm91QLJbO4Iy4uM4KR+PjsPivWPSBRR+YlXZ909dqcV9a3RiuBwUuZI7MO/bagA+J7SFuuS7s+uvudZ7eJ1nEb1cL/KLUPTzvKAtDTnCs9aQERomLa4gJMhxbRIzREl0d5cZ7HNy2jFFYLdELzim60NN6idE7WFZMK1EyT0tHH+Q9uXKjIiYRCWxPLXttxKhMpzQZEUtMa3F4Wi32OwNaFSz6IKICV7Jde6alJWeYFD3OKIl+CJHSaDIiyMgJppVdK4xzlgjwe185QwFHl17U1IU57eeXUyYhQw2jFXu7ezzlWx7P333sb7nzXe7Cu975Tq655q63zg/syMjIyMjIyG2K//yf/zMvfOEL14+vuuoq3v3ud59XbPfng2/6pm9aL0aBROpdjMWoZz3rWTzxiU88r9dcd911PP7xj7/grz1yx+Fc486npWXZR+rC0HpJZNhrRWRSOcOiD/Re7pH3IdH5yJGlZ6fpObzwJDIqZ9oeQswUxqGAaeGwWsQahTX0IRGSOAq3CWpnObYM7LWeraljyxYibkZ6EHJez3WMUYQ2UVhZrPIhDkkVet8CV+TXrn0BH/vQn1FUNf/ux1/NFff4p9y0aGlDJmfpWRWKPkSJabcaoxTWaIxROKcggcrSv4YsonStEztzSfzoh5hzH6WXyzETcmJaGhatLFrVw7xihTWaclgYU1nmRmmYsSx7EcF0WeY7VwzJF86IiMhoxbQQF+LGRw7PezYqOXNl5dwHa4cPmWOtF8ep2kl8XiERgwcmBZfPyjHRYmRkZOQWMC5GjYx8gXKuxfLtBa0UEbFfJUrRXTlz1tf5mGh6cYDKwLITe1dr1JCRnZh3gRt323VxutP0KERhgRd1tDPDUlSWa7YhsfQRg0IPtqaf3mm4fFoy2aqOD5NipvcSZxGSKLGPLHoKo7nn5RNqZzmy7Akp4UNmUppB3ZBZ9DLQCSnSJyiNpio0U+eoC7HErZ0h5oyf98QsDlNH5z2LPnLTXkcTIpVT/Mmv/BTXffDdGOv4uu/9T1x17/uJeqGXxkEWqyKdpNpRWE1KGaukCWq9p+kjs9ISh8g8sjQWs9JSFxZrNEcXPa1XxAhai/NATqCMwqFQRDSawlrsEI03cWb9WbaDlayo0qHNMpQpkCWsrVrew52Fp962J9jynommj+QsQ7TVglt9Dj8/IyMjIyMjIyNfyMy7sF6K2m29xB8jfcMqnnkVPeej1GkhZfa6QJ8Sm5XcKD/W9GgUjQ+0Pq1vxksEnFq7qC77SGHlRnKIIkoAuGxWYJRi2Ue2p45tHIf2OtoQQSExfT5htFrfGF4xKQx1YTg072j6yOG5lz8v5eaxM2pd9y33DQKWPspZfWRSWLqQ6FOi95GJk+X/eRvpoggstJY62ShxWt3r/OBqOrhWqYzJsoAUcqLvsixrZZg4R1bQ+czBWSHxCJsSz92nNJxTU1jDwakMGqrCrF28jNKndTvNyFDDaImdSClz1WbJpLTDMKNko3aEIabamZWq+kQXsBX3vrJk4sw595Jt2/KtT/1W/vL/fIjLLrtsWIq654X/cI6MjIyMjIzcjHyeQtFbm1e+8pV83/d93/rx5Zdfzrvf/W7+2T/7Z5fwVKfm5DPdeOONF+W6V155JVdeeeVFudbIyMmcb9x5OUSs+ZCYFtLrpCxOt0cXPTFJ7NzCS18UUmK362h9xlmFjuJQ2/jErDRsTRwZyEpel7OIJrYnjna49q6X/qsqNPM2MG8CW1WxjtDTCiKs5zpaKXFbMhqDCKkzoFHDklHit3/mx/nQH78N6wq+68dfyV2/5CvYXYqjL1l6w5AzOcn1tBIxuSxIGcyQ6qFRKCT+rvUJo6EP4FMmIr1OoTW7beRgF/FJeqZpaWl8IkcIWcQ0bp9QRRbPIkorQi/uV3ttJJGpnAho5m1g2Qfph52ldHImiTtUTApDW2r6IAttk8Ks5yxdiFgrYpyNWpbS7rRVjw5RIyMjIxfI7XoxaqU6uOaaa3j3u999i6/z2Mc+lo9+9KMopfj7v//7i3W8kZFLwvkWy7eXYqrc5yLUeRnKTIdIh9Ox6MJ62AKIAqLpyDGTs7gtzSrHsgsshufNu+MDoa3aUW1WxJhpYyQPUSJdUByYOCbOcONeR0QRQ2JaSUZ1FyLTwmGMLBX1IdEO6gujxcY1ZxlgbFSae142xRnF0WXPXhvWi1yzyrDXRonLGAr+lDPTwnC3yyYcXUg8X+MTs8pitaILkTZGml7iTYzW/OXvvYoP/9EbUVrz+O97Ofd+0EPpPSQSShmSz6SY0AzxHkgEXkqZZRdp+oZZZdmqHfVgmbvXBlmmUuIeZUOmcrIklXLCGkXfZqyWWJVpaVh0EaUMGkDDxGm2alFIoCDmjDOiOt9t5PzTwlJaw9ZE/nd15UbJjXsd8z6waAPTyq5teU9HN6g1QJoW+Xm6fS0GjoyMjNwRGGv7kZHPL6ueAE5cilotGp1cZ1fOMB1uqi97iTrexWOUYmfpKczKCaljtwvMW0+GYRHKUBmDtYq9NtDHROW0RLw5vY4WODAt0EhNu1k7bC9LRyuXJ5BlriJI/TspDEYrbtrtONb0+JilprSamTMkJGbADu5Oq8iI+SBAgEF8YKGPlm4hyuOQ8nohLCO1o48JjKbQSL/VR/rheaiM1YrNypDzsCAWIKaENQYz3NTenjiu2CjFoXbR0YeIU5oDdSFLWyGxUcryf2E03mr6kJh3nsrJoOPkz2UVh+1jZhos1igOTEuu2qoIMa2Xpc40RlXD97i/NzyXaOkQAk9+8pP5oz/6I2azGW9729u4z33uc+YXjYyMjIyMXALGXuPi85rXvIZ//+///frxwYMHede73sWXfumXXsJTnZ66rk94vFwuL9FJRkbOjVsSd55yRinFRm1Z9oGJMxglyz3NIIg52nhxw0VmLlYZpkVG+YxXsvl0+axgY+JQGbmnD8OylWXe+kHs4bBaovv6EDFDm7Kz7Llio1oLoQur8TGu5zohZllcQlyk/ODMq4cR1Vt/9T/x/re9AaU1/+5HXsE9vuwh+CSOwu2waLTXeqSLkSWj0gxuuCnjtKJyhsIYcs4sfcAPM5qc8yD8EDG7RuFNIg5Lp32QBbBlH6icJiqJ6euGmD6rNdbIIlZOsnDV9JHCaWJUGKPxg0A+Jc2yT9RFHqIILWbfPCKkzGZVUFpZfuqHmRKDUN1oReE008KwUTm2Ju5W/GkbGRkZuWNwu16M+sQnPgGAtRf2bXz605/mE5/4hFg6jozcjrklxXIbItPSMjvDYsltgdqJYrqwsmgTkgxlpqc59/7hTufjEKMnSgirxW1pmIXwud2OmNKgHpAieHsi/kbzNqwHIgpx4vJRmgClxEFp0QYOblg2h9fEJNFtafgojBY7VKtk2aiwolw4uvRsTwumpUwcrtqsuWJDFOl9SKQh57odojuOLD2QmVSWeSdKhElhWPZBFOBZ04aEQaN1wmnFX/3Br/Onb3gtAN/8vS/mQY/4eqpC0XSRY60nJlFXNCFjLBRO4j1IGR8iKCVxKYXmTpsV8y7Sx9VYJaMQBX/lEo0XVYRSms3a4n2mCX5tsZsTopQPiRgSpStIw2fQhYRVit5nFr3Hh0xVyM+qs2r99TaqkmWX2Os8h5YdSoPRnHIxKu0b3AGUTq8bskk5ukWNjIyM3NYYa/uRkc8vy+54fN6qbt6s7Tqe7lRoJWpWaxS7TeDQvKMwsuA0bz2xC6QssWvdEE8X9tVjVklsXmE1PiRUyXopqi7M+vcpSczyTYML1Fbl6K2II7QanF1RLPsEJPa6QM5IJN0Qk51zXkfuAetBQB8SfnBCqpzBGsWReU/lRB0dU+bIvCeT6UOkcpZJ7TjS9ESfaEJYR3KXTurVGDOVNYQIk1IRkkbrTKEtk9JRFprtScE1l09Z9lHO6TRpWsDgZqsH8YQfYuyaXkQCENZCiy4knNY4K+5aPibmg3iiMHKTvnKaKzakv9iaFCJcuBXchFNKPOMZz+BNb3oTZVnyP//n/+SBD3zgeV1jZGRkZGTk88XYa1xcXvva1/I93/M968fb29u84x3v4P73v/8lPNWZ+dznPnfC48svv/wSnWRk5OxcSNx5iAml4OC0EFF3Fjemjcoxbz0kMEoxqwzOyLISShIXQorUxmC09GvOaKblSgyeMFqck44s5P69s5rNynJ40ROz9EghZXaanowjZUflDMs+ynxkmOugEMcl1BBNp+h85h2/9Sr+7E2/AcCTvu+l3O+hj+TQvGVvGTm67Ol9RilJBDFanHBDTJRDvJ8d5giV02hAKemRFJ6uz/QxYQzUTnOsCRgNFkXwiWONCHu2J47dxhNz5sDgmOVDEsOBlBhaZ9BZelqtMEqTcsYAvc/rSMOdtqcwCqM1Clk6q4y8n/NOnLYun5VopdiqCzZrJ3OloWcTt2S9FnuPjIyMjFwYt+1NiHPgjt6EjIysuJBiedHJ8s9qEHFbRGtFaQ1tiOJYNLhBWaNuNrxZdGE93Fmpy/uQhs18zYHaUTmLsxKrttN4UsrstYFEZlZadhpRBcxKsS71URaVVgMIWUBTXL1VojYr5n1AZdioLTHL8hNZDZFwehj0GG7c64dTZipnWXaRRRfWqnytFJPCMinkWdsTx027HUeXPZdNC0BcmETFDq1P5KzQWuL+tJdFJq3gI+/+fd79mz8HwLc+54V8y7/5d7Q+Mu88qlKAYtEF9ERhlcIHWXSKg2pCDQtd08IACqU12xNRsG/Xlj5CSAlnZRks54w1DA2OYntmSQu5VuUMhTZoo1g0gWKiqAv5eWsHhUoHxChDG4kvNKQsy2ibVYFS8tluTx1dTORBkeGjvCeF1QyR5fQh0UeJ3QNOcCKQXO/bvkvayMjIyB2RsbYfGbllnO/iS0qiWoXjC0OTwpxxKWo/8jyps1OUG8w+Sg0cc2ajsmxPpNY8vNcy79Pa8clozfbUcpftCT4mDu11bNZOnJ/2uhPOffcDE5Y+nlX84axi4hyND/gh5sAYcWr1UZaJVg5R3fD9GgXaKECjtKLvM1sTx+HdnpQzISfUoAiOOVE7yzIH+rASOihqZ9cxEAqJgfABtiaO3mcKp9koLFlB4SS+Tr5XmJQlXWjxw43vVdxf00c2KnHS6rwIMpxJdH0k5EwfI22Q3mWl9LZGszlxzCrLZuXQWlEPUQwgvdS5OECdKzlnnv/85/Nrv/ZrGGN4/etfzyMe8YiLc/GRkZGRkZFbibHXuDj81m/9Fs94xjPWsX6bm5u87W1v4wEPeMAlPtmZ+bM/+7MTHl9zzTWX6CQjI2fmQuPOJ4UIsieF4crNkqNzz6F5S+EMSsG0ksjz2smsxWpFE6TXCCET9dBjGb2O3vNB0izaPrJRO0orgpQ89J+KTNsnSqvIKHYbL8kWPuK0uOD6JM9t+8ixJpBywjnNLFmshff9j1/jPb/9agAe/fQf5J8+9Ov53LGWeedZ9kGi7chrNyVrFNLSatKQkmKU9L0hZrKReL3OJyyGuoTcSy9cF4bGZ6ZOE5Cov1Wf2IRI5QxNEPH6tLIUVhyIfZRZR85QDb3z1FnKQtP6OJwvURbyPRulaUKkdgqfJLVjr/GEmCmtZlpZYsrMO8/2ZCJfv4/kLDOWwkqfueoVR0ZGRkYujNv9YtTFYFXEj83RyO2VCy2WNytH08syym3ZOWpSSrFeFYY+STG+2wQmRV4vFvmY1or0vc6LAn4YgmxWbhgQDFEdE0cfE1u1qCXmnacPSTKpSycxHzau1dsMzlGT0tJ0gZAzMcH2xKKNoh3U3yuHqNrd/L0MCeZtYFoaSmfoveRNNz5SmFMv96wGGzFnNoazO6PYaT0hJIxWlGhmtWVaSATGn//+H/KW17wEgK9/6rN4/FOfiTWKmRGFf+MjlRG1+bwTJytvxWXJZfA50iJLdoUxkGCzstzt4JTdVor3o0tPFwIqS4FujQyxnFX4XgY0ldHEJFEgbYp0PrIxsVit0VoaCD0MvzIQSFTO4azGaYkQLKwjk5kWTn7W+8C0MMQsKhMZ7KX157wfO7x3K6eo/QOikZGRkZEvTMbafuSOxC2N0W68PL8f+gKlOC8V6ko0oJTiWOuprMFqxUZZMNnQ3LTXcXje0/mIMYat2pCqPIgVEkeXPUeXnq3KcfmsYFoaYtKnPfdGZfEhr4UOhT1xyT2mTMrQ9FKrz0qpN3dbqe8V4vIUYiZk+X41ipihG2L9fNLEKO+HcxoVNEYnNmpL5zMTPRwui0NqyhJALc5RhpxEWBBzpjSW0iQ2qoLN2jItHc4oCiMxCTuNR6UhdtpJLbtZWVnQ8om9VoQTq+WowmiKWgYTbYgsh6WoGDOz2rFRGe56YIJWUvve2o7AL3nJS/jZn/1ZAF73utfxDd/wDbfa1xoZGRkZGbktcUfvNV7/+tfzHd/xHaTBAn42m/HWt76Vf/7P//klPtmZ6fue17zmNSf82dd+7ddeotOMjJyeixF3vnr+so9sT5z0UdGx7CJ7bcAaNfRfmd5HtF7F2Uk/Y4zCaFi0AWsVRiu0hkQiJgahcjrB0chozbLvaL04H8UMThvpv2IkJOlxQF7fx4hWsDUImd/31jfwtl/5KQD+1bc9i/s96ls5vOiHWU8gp4xBgZG5Se2sxNVlmd30XlEXCmcUGplx1NqIcCglNFAX0kOmJKKUrsgolSmQVA4UkBU+JDwSAagHAXrKMuvYryPKrcwr+hBxQ39qtSxQ7bZpHWsYIygnLlmdT+v3zu+LO9dKDQkieT3bWvXnpT1/d9+RkZGRkVMzToeBvb09ACbDRu7IyO2JsxXLILakrY+kfLyB98MQJK3UPZUbBg/6NuumI9atlkUX2Kwcu8j3uxwcsgqj6UKkD5nWB44tvcTeDQ5BpdPrpahJIbnT805yqRsv6oikNcsuiDWsUrRGr4cKEl8R1/F2pVNs1U7e8zw4EVmF0xLdYbQS5yUlBXRhNQemM/7xaEPbR0pj1soLrdUZl3uu2qywWiIztD6+wObj8FovlrFBJf73u97Dr137AnLOPPSx38bjvvN5JwyPKidft/UJYzU+ZLxNTEqJDyFnll0gzDM9MnzanMpA58CkYFpajix6pqXFp8SyDbRDzrZRGWM0tZMG5OrtkqOLQEgJHzJloXEaGh/YrCybtQMUiTz8bMrZpoXBDEtNVuvh59ozKx3HlomYZIC1WReknCmdPm1k5IrbQ2TkyMjIyMiFM9b2I3cULiRGux9qznZwjSqtvtlN9jOxElXkPMQHoDiwWdLHyGIual6JpUvsLgPLEElxiEwIgRBgVhkymcOLnkUbufPBitrZ05xbarnLq/KUzliFNRgFRpX4mAZX0+NRDfMuYLWmjfL9OqOJMQMZUiaExMQZegClSDHjLGg0U2epHagMMSfIlqKQa3f9sGSlwRgDZKmdJ1aiHbJE+W1PHItOHH1TyhilmA8x4UYpfEpkYLN07A1OXE0fUUqcrWLOcuN8EE8sg0RRbFaGSWW5bFJitGJ7UnDlRnmr9nOvfOUr+dEf/VEAfu7nfo6nPvWpt9rXGhkZGRkZua1xR+413vSmN/GUpzyFONRT0+mUt7zlLTz0oQ+9KNd/xCMewZ/8yZ+sH19//fXc8573POVzm6ahrutzvvZznvMcPvWpT53wte5xj3vc4rOOjNxaXIy4884nNipL5TRNHyVJoRaB+LQU96PCrK4nUefdbgtKsVFaUobdJjCrLJWzWC0LR2YQcaBEKNL5yMIo+qRZ9pE2JEotUeVkmBRa5h3DIpAI9xObE8ckGHYajzGKv/5f7+C//cyLAHjENz+Nh3zLM9htI60P+CDLQ1kpSiexecqANYquScRBrCNx4xqtNH3MWCPCGZ0zdWmpncGnhFGRxnt8TlgLPoBVMi9RSlEOyRgAanAe1kozLcU1S3oyEfE0vfS81iimhaHTkuQRopL3urAURhFyYrfJEhloZe4hqR1DRJ+TtI1VTL0d5lgrofekHN2iRkZGRi4Wd/gJ8Y033sgnP/lJlFJcccUVl/o4IyPnzemKZaMU8zacECe2H2c1OUSOLT3LLqKBWSXKga3JbXMxCmBWir1o6yOblaM1cci/FmXEsWVPBrEkHSLcVpGBqwaidqKiBoZ4vEA75FzHFGl8wgSJANEcX6LKORNTZuklY9pHRePT4F6U6X2iMOJKZbTi4LQ45fdwcFJwlJ42RjYG9fiksGccZK2403bBxBkaL8qMvTaIQiJ6Us78f3/1v/npH3gmKQYe8DWP5Rue9SMo9sWmDMOrEDNNiCz7gE9JYvxAvgeriYDTGlUoZqVhWljI/P/s/XmYZGlZ541/nu2cE0tm1trNJqsMg8swgDKKjuICtAu+ICIjiiyiKCCyiQyCAsoiIwKKgAi44AYKLryC2IOX/PypMA6Kig6DLIosvVZVLhFxznm294/7RGRWdVV3VVNr9/O5rr4qMysy4kREdtZ9P/f3/n7ZagMbI8udDo7pfGLhIzNraIdoj73Mu8jchyHbXLYyUlaDVaxiVDtQkHNCAU4r6kpcryqrGVd2NbjbHkR/zkTMYCPbVGL/Wxt9yhhIBce5IxQKhULhlk2p7Qu3Fj7fGO15HxhXljR8z5nUSSnllbBq+f21lQPozXlP4wx9TGwtehZ9IuaMFYtQFn0E5ED8mu2OIzueA9NKxPkKDq3VUqffRPz3iZFwS+fYkD0xK1SS+rdxhp0uMO8io2pY9R2ebxiGehlZNlApc6z1hBjJCeJQj3cp01iD0TAdORqbUVpisTsdMVaR0tIJdRmlraiMQatMYy1aySE5LMVo8hruHzuMkQ1npaQvkQN0iakIKSNXqVBkZl1kp41oFI3THJjWNE5zcOo4vNawb3zy/uNs8Zu/+Zv88A//MAAveMELeOpTn3pOH69QKBQKhYuJW3Ov8e53v5tHPvKRhCCi/PF4zB//8R/zX//rf70g13PXu96VZzzjGXzP93wPt73tbU95u89+9rM89alP5e1vf/vqa8YYfuZnfuZ8XGahcEacjbjzcSWOQ4s+sn9SMe8C82Ghem1w1bUaKiMOuEZLtHhjDcZkYkr0vcwHJpVlXB/vUpUzWKUYDY5TANdvd2wuvBzEI/eh0NJjKbWKnBu5oaeLmXFtAcUH/uLPeONPPZ2cEl/5zd/Bgx//DK7ZEufhPsr9y7WC0RCTiI5QrJyPrZZodQ1oI8YACsW8D9ROM6kdWkMIGWPAeIXPmZExxBiH182QEkM8X8JZRe/BmoSPkRHiEuxyXrkuN5UmBMXaSCLdSWCd5rK1iu3W06fE/qai9TJ3SsNejtViTBCSRPO1feSarVaWd2zm0BCPDqwW/guFQqFwdrjVCqM2Nzf58Ic/zE/+5E+SUkIpxX/6T//pQl9WoXBGnKpYDjGz1e9uj4d46u3x5ebAVZstt1UioUnJXtT2nBsjh9GKWRdonMSk9SFxdNaLE1KIg8Jfc9laTbWneRhXu6IoAB/iKrd53kWclaGEHcRKS1GSG9T6k1oRU2IGsiUxvP6V0bQ+MHIacCtnrpOxFP2oYaM8pnzSSJAlJxP3TIZNh+tMR0aGUR/+x7/n6d/3XXRty32+6ut47I/9DPMoblWLLoKSa8/Ic130gVkv4qicM5WRgZRWijzkh6somxAhSO71vrGTuDyjqa0ZXhMrTlptoI1J3ACAZmoYe0MXIiFK1N51Oz1rtUYP2ygbjcQQyrBp92duVBnGlV29XqPKDJbAYRD6KQ5O6tWWvR2audXP9/D+j1yxmi0UCoVbA6W2L9yaOFsx2llS4QDOyC2qHWL4/J4YvpgSx+Y9fYjEnDk28/jh/8XKGsaVODRVWtHHzNHY0faRpezn0HpNzokYE0ZL7X0m8d+11fiYaKyh8wmlGVxFJYI7L2CnkxhqbRR6WB2IKbPwQ6SEhp2FOKFOG4NGM6oNOkPtJBJh7AymVqQISoxWVxvD2Yo7akqIuMnqIcZPWNb6rY8opFZdLm94Iw5X815cbysjfxdCpo0SR92HhNWwf+pYry37B3XYuDJctt6cc2fUd77znTzmMY8B4KlPferKNapQKBQKhVs6pdcQx6W+71efa635vu/7vjO6j6c+9alnTVR91VVX8exnP5vnPOc5fPmXfzn3vve9+cIv/EL27dsHwNVXX8373/9+3vOe9xx33QC/+Iu/yP3ud7+zch2Fwtnk8407B7n9cmmmD4lxbSUCPENGljXWG7eKfsvI0s24tlw/68WVtpbFlDiIgKrBXXjZ12Skf9RGEUJis5XeL4aMbRStz9x+v+M2Gw0pifOt3Je4JrV9IKTMZz7yIV75nCcSgucrvuFb+O6n/zTXznomlaWLkZjFOak2hmPzfphtZTIZHzOVVWRkNqQ0GKNRCYKSpXpjNTplFLIIw9C7Ka0IXWZUaZzJTEaSWFFVCq00m4ueeZ/IScRYBkn00FrJ/SC9sFEKPThGGQ8HJhXOyefj2rHPKBpnWB9XEt0esoihhvnMyBmUSpL0kjKjiaG2mukwExlVpqRfFAqFwlnmkvit+sIXvpAXvehFJ/27nDMf//jHB9v6z4+HPexhn/d9FArnk5MVyyEl+iAFWhfiatP4Bgxb2FojKns0m3NPHiLhJhd50TWtLbXVzDuJt6usFMpaO+gGYYzTVFZchSqjV85Pe2mHbfc+RXxKOMxKkd+nRIUMWUbsDo4UUtQ21tCGSB8iOQ/3M7z26kaGS8u/MloPUXLyfE6MBNkr7gFWQ5u9t5n3kZwzn/23T/DE734421tbfOl9v4LnvuKXuW6ecQR2ukgbE+MhmuTYrGerC3gf2ekCMWWclY32cWXF7jUkKqNYb2qUVkxHlgTM+sBa7Wh9YjzEgiz6iFGKkbvhz8xOG7h+1rLoI26IJdw3ciLAA+ye56eUDMFG7obvU+MMrZfYSGc0jZVhn1GKQ9O6iJ8KhULhEqLU9oXCzeemYrRPFDg1zjDJeRCYi8PsFh6lJKJ5SboRUf+J9FFq1mNtz3YbaENgex5AQTcIm3KWg971kWPkDDnL9Y5qS+4jG+MKMiy8bPv6IE6kPkmPIq5Q9gbXfar47+X2cTXE54FGjuxhrXZsOc+ilwi+6CWKetFGZj6sIgY7L5HZITDU2pkUM8lKnepDpkuRRlsmjSGRV05ZWkeM1lilSUYeN6RERg7elyx8JERxpt0YOzZGUlcfXq+JSZy1KiMOYLM2snxXaisCKqvVSkylkIWRyzeac75F/L73vY/v/M7vJMbI937v9/LKV77yRvudQqFQKBQuFKXXODcs4/OW7OzssLOzc0b3ceTIkbN5SQCklPjABz7ABz7wgZu87cbGBq997Wt51KMeddavo1A4G3SfZ9w5MDjXypJJO8xMMrA+coSUxH1WS3/T+sisD2y3XsROWQRHBycVRssydxfSsKChB6fdRFaKeSezFJA0h1kXUFmhlKRPHJ7W0vOdQBp607/54N/xY098FO1iwb3v/wCe8ZKfp02aY21ga9HjBxFVrTU5JyojMexhEDplYFI7+hDxIVPVirEzxJSkb/NxNT/qQkApETXFJHM0Y2Tpfa1xHJzUdEF6UKNl3rM1D0Bmu4srYdf6SJ5PzuKEZbUalmUyKI1zmgOTij4knIH944oQ5ZonlUXXu3Mhssw26uH9kdmVxVlN6yOHz8PiS6FQKNwauWR+s96Y+8qN/d1NsTzMu+9971uK4sIlx4nFckyJnOVQfKfbuz0u0WPOqD3b46L4X0Zh+JipnMZ5zZFZf9ELo0BENBtjTUp2EA15UgaVpbCVyDzZGjhZE5FyXonGwqD2N1ockGZdWEVtLHVlaqi6l38ao2iUkSaijVROE7IMityNNC157/0h1ypitBvedhmX14XdwcjuHYEziv/zsX/jMY/4No5cdy33+KIv5QW/8KvUzQjXL/AdxBRplOa6tqP1kS4EYobtNuBjQqEwJtGGYfij8mprBDLNYJ2bh7jAbTxrtWPeS3O1PnKkId5QBmXD9jyZRGZkLbfdGNH5uBpWGaXZ6QM+SBb3tJGs9FM1e3p40VsfSRn2jR19SBwYF0eoQqFQuBQptX2hIO6vCx9vVBx/Yp1zqhjtG4tX0EpqTWsUW4tA5xMxJYzW+CBORT4mGnfTQ8IQ0xDjl5i34lzlUybETMqJRRdRRg6ll4sEWil2BjdbHxM+Sozz4fURCx9YtBLtvN1H9kURSM37yPrI3eC6WxNpnLlB/LfWinpYWhg5w3YXAHGCzRnWaomz60Kk7xOfO9LSp0jby4buNdstnY8i2q8VRosjqdIK7zOzRSQhm7wdgTpJr9HHJBvCUeOMLKZkBYs+oLUaRFGZnU4cWkPKOK2pnGatccN/8hycYeWE24ZIjDI0EOctqIwZtrXl4PzgtF4tWZxLPvjBD/KQhzyEtm35tm/7Nt70pjehdYlzKBQKhcLFS+k1bvk885nP5M///M/5+7//+1W836m43e1ux+Me9zie/OQn32jsXqFwoVkuq9ycuPO9VFaEUWm1LC+/u6zROJNWj1Nbw9gZFk6WLrTVeJ+GecnwvVmRVcanxLyLhCwiKaUVPkQaZ2mcXGcic2Ds2Deu2PWXOh6tFFf9+yd5yvc+nJ3tLb70vv+F5/3cLzNPmqs3F2QlCyryPBTWKmJSZOXl8ZPMKnzKqJwZOY0GRrUjxMzCJ0JMhEEElRJ0fWRcGZaR7hnFWm3JWXFw6jg4rel8IAG1gcvWGnJu2ek8KosQq/UJpwPoTIqKDHQxMrKaecriLKwUIUqs+uFpxcZYhj1rtaGPmT4mTvZPkNaypN7FyLSxjGtbRFGFQqFwjrjV/3adTqc8+tGP5iUveQnW3upfjsIlxt5iOcREzJnaHi+KGlUnFwbVFlK1K2aZdYGdhWKtdux0Ipi5VPKL9SAs2hhVpKFYDSmzMXKnjKcD2YpwRrHoM0ZrIA3DE3ldl4XqbsQIEvahFSSJzBg5w6KXCDmtYb1xdD6x1pz690k/CNqWg65TiYF2urByBFh+34mRiMeOHuEHv/vb+eyn/5073/ULecWv/A7RTTg27zm28GzOOoxWXLc9bHGkTDcU4SlltDZMG8m0bvvEQsm1TWpDY7S4OhmziiYE6H2iM5K/vegjbqQlmrEy4OU6EzK4SynjcyImee0uX2+G6D/DqPP0w8/pjZ1LpSw/p8ufaWdk8JUyjOvPf8uvUCgUCrccSm1fuBTwMa1cT08mfI/klTPU3jjlU8Vo35goai+1NYyrzLyPpCEWQKllPHdikvONbiTPurByb8pZrmVr0YvQXivaXgRX67ZaLVlstZ7KSq0JrOq5ehDLh6RRtSWS6bpE5xO1lZp3mu0gEtu97kUvwqguxBvEf49rEUY1lcTnyXXKi2q0wijF2FmObPfM+khTadoY6GIixowxWuLtBoerg+OKCGzNPV2UunbRR8a1XfULVit8ykwrQ+U023OPNYr54Mxb6d04PaMVVimmjWGtdughGmO9ccf9TOyN2N4/Of49OFnE9rnkIx/5CFdccQXb29t83dd9HW9961vL79ZCoVAo3Gq5Nfca//qv/3rOH+PP//zPT/u2P/uzPwtA13X80z/9E5/4xCf47Gc/u3Kx2tjY4PDhw9z3vvflbne727m43ELhrHPDWcTNWwZeftvyfpyRL6SY2Vx4lIJ9Y+kv5z4y6yLz3tP1svRxXJOqpJcagsgxKMaVwWiNq5RE8G33aDTjRmOdZrsLVFaBEkGpViLWapzhs5/+d77z//lmrrv2Wu7xxV/KT/7Cr+G1w2bIWTGpDKGxQzx8JmdZNKm0wbuMiTL7GWtDbcW1KWVJA9FKoZQs7ez0ARs0Ec84aOpK3Kd8Wi7TOyqn2D+p2D+pqExDGyKbi35wcJL+MStJHPE+rpJHjFaMncT2LUKi9wnvZdE8psyBya4oalwZmsrSsDvj6MNysVycp8aVRPlNG3FcNmUJvFAoFM4Zl0QF/9CHPpQ73/nOx30t58zjH/94lFJcdtllvOxlLzvt+3POMZ1OufOd78wXfdEX3eoamcIth73FcuvTYA26KyBZa25cGKSVYlxZUsrMukDn5TB+5OwNtrAvBY5zdOKmI0H6kKitoY+9OExZjYI9Tlsc96czGh8jjTH4kFbCqGUhm5I0Cj6deuM+5TxEF0IzDLHqk7xHsom/6wiwzAbfy872Fk/4rm/n4//yf7nsNrfjZ375d1jbd4jNuSfEhNYKZw3XbrfE4frmfcRoICusUzROnlxlNCOniTGTlFjgbveBfaOKtUayyUfBMG0UMWXaXoRRfUj0Q2Owd+uhD3El6rJKM+/l58sqzXQQM63Vjm1EHLXo4yBUk0HQ0hK3H17nVSNnNePhtR1V52cgVCgUCoWzS6ntC7dmTkf4rrWiseIOtIx5m9T2uPpoGaM9qs5MJD6qpK4zRq0WIXyQunHRx1O6xm634hIFEqW36CNH556Zj+KWmhVdjCjAp0gfDEYrnNHi6prkMDwOh7/VcGgMUDtNSJlFlF7ER3FkbX1kXNnjrjsMbreV1Sz88dfrzK7z63rj2GK5LKIICY7MekISp1zIHNnpxfEqZEa19EQjp7GDCF8bETKtjSS+L+ZMyJnWB7R2zPvAtHFoJYIyoxXjxkKWGD2NYr1xOK1wTmOQ+94YXJ72j6tVhPeJTrhn4iJ2rvjUpz7FAx/4QK677jq+7Mu+jD/8wz+kaZrz8tiFQqFQKNxcSq9x66Kua+5zn/twn/vc50JfSqHweXOms41TcWJaxcgZtluPH6K7Z33kmq0WZzS9lyWOEDJaSwLE3EfGgNUGpSGmTM6JcS2uSNPG0vaRnBXXzzqun/WElAkRrtvqOLRW46OVFI6ciYCPkU995nM87uHfwmc+/WnufLe784o3v5VNGrxPw0xArl0rEUU5Y2kqPSyPKGyniBlyEteq2knUYIgZG5W4+WqNMQmjIKtMpWWesFFXZKWokqSmrI8s05Hj8rUaqzUbI0fMGafF7Viriq2FZ9ZFnNUSxRckKr2xms5L/1xXmtpIjB6oVU+6fN339qvLWdyJCYOycBRWLlufh7FhoVAoFG6CS6KSv9e97sW97nWvG3z98Y9/PABra2s85jGPOd+XVShccJbFckbENs4q2l7ENKPK3Kgoai9uUOzHmGh7GUCcbAv7YkcrRSTLNcd8k5EgKcv3mKFLmAzb2lttoDIKN7g+LV+CpUOSHYYkIWd22rAa6rjBNtZqdcqNjkUfyVlusxQAjYZrXMapHJn1Q9wGzHovESdG3qOlGKjvOr7/Cd/NP/3937HvwEH+x5vfxvplt2O7C4wqQ8ygkUYhDc9Vqcyo0uQEPoNBUxmNM4baDRvylSZnGRyN7SCsy7IpknJm4QMpi5DKhyQ2un1gNAyt+hDZHJoGgMrJ/ZGgcdLIOKskckRp1mpHZyJtvzvoWjpq7cVqhWsMVZCGp3G6WMoWCoXCJUqp7Qu3Vk5H+A5AzHQ+YYdo6KYyzDqJrWucWcVo11af8RaxVorKaLqckLAAhrg3mA917okOVPLYctudztP28nk/iLNqrTBaDrKdUdTOkof7cyaT0yAoCrLFu6yVF2H5+JpKQdDiXNWFhB9qwuWh8eq6ByHZMh7ixCjqaW1FxO8j642jNZFrtjtCTIwqw1VbPTu95/pZT9cnjJG6duoMPkUxho0KbRU7rccqQ8iyBTz3gbaPKKc5NveMnCWEzPrYUVvNsUU/LEvAtHFURnObjQatFM4ofJSD9kltGVeGQ9Mb5mgvnXBPFrF9Prnmmmt44AMfyKc//Wnuec978u53v5u1tbULe1GFQqFQKJwGpdcoFAqXKmc62zgVJ6ZVdINDEUg0+nyIOZ/WFmcUByYVfYi44Ry/C5G5j9QmSwSdUmy1QWYHI0s3RJ9bg8xGcqZ2GmM0nY/M2kjXLwa3X03tDH62wxMf9e188uMf4/Lb3YGXv/GtVJP9sN2x6COqzlTGApl9I8WxnHFWesA+Jpw27BuJs28bAiFBStBUmvWRzGwWfZT0ixAxRuYek8oxrq3EuWvFqDJsjBz7pxW3XRuxb1Ih60cKC9xu/5jthedj125zcNKwb7LsTTOTxpJyIkaAjLNW0kQGR+XJcN/L5z1tTq+pO1HIdjONwgqFQqFwGlzSU+U73vGOKKW4wx3ucKEvpVC4ICyLZR8zOWcWfSAmsSg9k6JZnJM0CzIhZdkCgBtsYV/s1FZLw2ANnU83GQmyjMCorWKny2QkEmRzLpap+1MmxSQRfSkPDkwSh+GsZmvWM2sDKCme523EKo/RMO/DDSIMuyBNA+xu99fWEHNmex6GDfnE5sIDx0ciLudTOUNOkR/+/sfw/r/8CybTNV73lt/jrv/xP3JsLreftx0+RZRWKCWb5Tln+qjIOZM1NEphjWGtcYwbaYLEFldEVIcmNVllQpAovLE21Ebjg/xstL1nq/OMncVpcRzYbgNtiMe5O9VGs9N6stGEBApFHRO1daThvamtRMD4kGhjJO9xTFBa0RiDs5qdNgASX7LWuJttJ1woFAqFi5NS2xduyewMwiaQeLm9DqW11UNUgCJlOQDvBleo7S7Qp8R645j3kZjEBRS42c6ZS1FRbfQQcSxORp1PbC0C4yozqsywfZtW9etO51n0kZASISUOjiuOKUVIiZwyjdOMrGE6LBd0g/Pn0uGp7SJVpRlXhpQzMQ+xekaTcxaBfoKcMinDiZqx5XUvn/+pNqg3hviBWScLDCNnUGSu3VlwdOYxWhYCKq1ZHzlxgEWcVeddwKfIdbMAGSa1RWuYD85YicyRNrDdR263f0RtFFoNjlIxUzuD05raKtZGFVbLa5uzDBUOT2tGtaWx58/56UzZ3NzkwQ9+MB/96Ee5053uxJ/+6Z9y6NChC31ZhUKhUCh8XpReo1AoXOyc6WzjZJyYVhFiWi2JXD/rQMl8wwyOtxmJOJ82llkfGVeGLhjmvfSvO21Aa5jUjogsgWTEXWqnjWy2HpUk8nt7ERg5zaRJKCUOvwsfwe/w/B/8Lv7vP3+YA4cu4+VvfCtu4zDH5p047SowGNYaicWLVWIWIiOrsUZTuQpnFDnBsYXHGMWiD5Bl2UZrxcG1ipRgPOu5OkHKgZgSs85TO4NWcGDi2DeuOLze0Ax9a+M0a41b9b19TKjh+RotyRk+ZhQKY8BpzajSjJxlpw/S6/aDc3LM9ClxeFKjlWbWhdOarZ0oZCszj0KhUDh3XDqKh5NwPrKtC4WLmWWxvCyVtrtIs4xYOM0Cajl80UqxVolYZTlsONkW9sXMyMk2fWWloA8p32gkiFKKECJdkNcgxDzYte4OpY7NExrZTKiMxmrYWni2u8DWwuNTgiQRIBkRA4EasrkjldE0TuNjXg2VaqdXwrVE5sisX13T5sKz1fZszjzHBoHUtLGknIcC3fPiH3sq73nX/0tV1/zCr/w2X3Kve7PTebSSxiRnxcFpzdY80DaRyinmfSAsMpU1aA1GIcMapbAKaq3RBqwWa1ilpChXFfK6ANZoybhWEqcSYyY30PlIPTwfBYydYTqyjJxcd2Xl+fuQ2O48MWfGlR02/xVKqZXYzJ3C5UxEbJmNkePARKwDThZBWCgUCoVLl1LbF26p+JhW8Xl7RVHjyqwESHtpnGGSpY6d9xKTvYUnZ3FhWirIb+6B6fLbxOVJ0/p0XPTcfHCzEoemKHF/XqLzQkqMnAUkUiDExNG59CMGqSGtVlijsVoz6wN9iCgxIMX7jBpJ7ZczGCVOoiFknN0V4eecV0sMJ1733jjxUzGtLVpJ3b7oA9fsdMQI642ljxGFbEVrJe9PJGONOJwqYNEH+hjZ7Hqs1nJYrxSVMcQYQMO8k8P4PibWGkdTGRqnOTCpqYxmrbFYs+vqVTvNaOhLxvWZb36fD+bzOQ95yEP40Ic+xGWXXcaVV15ZBsiFQqFQuEVQeo1CoXCxc6azjZNxYlrF9sIzqS19SKu+5LbrI7oY6X0S96cs8eNKsXIpjsnQdpEuJojgU0/jDCl5JrWRPssnDApPpmsD1mq01kOknbg95ej5iad9Hx/+u79hur7BT7/+txgf/gJCzBxbBHxIjGrDuNJYY9lceEJW6KzpfCamNCRdmNXMZnPhCUbcrSaVIcbMrA00lWVSOya1uFmFlLDacGhacWit4fBERFEgS+vrI7d6ba3RrI+k/71+p6Myipg040oTY+bAtGLSGDQSA6/ITBu7Wlw6tvDknLFKsQiRNaNlNjQsQZ2KE4VsUGYehUKhcC65pIVRhcKtnWWxLIMHRYyZjsT66PSHJK3fLZabyjBrwyqC7+bmWF8otBb3oTZEyc7uwikjQUAiTLZaT0iZ2hp2Os9OG0kZ2ZrvxXZ1ESJ+2GhvfaQLEVBMa0cXA9uLwNFZwAcRAYU4xMVpLeKpwfZ2XFlqp1lvHCD53MuNgLaPbC56PnOspY+J7YUIiGqriUkKfgO8+RUv4J2/9zsYY3jRq9/Il3/lV6+cpZzR7B9XbC16FIq+Toy85fKRYd4lJlVLyorNuScrMbpqaiMDLKePiwB0WlMZQx8jzsogp/WBfeMaVB6GPJkQEiHCtFaMastG41YiKRgGfs5w3U4nWyJ9oPPSYBxea+hjZv/YMq0trZetjJRX8z60kniTmDJqiF45MYKwUCgUCoVC4WJm3u3G5y1FUesje9L6dIlWEqlmjWJrEei8bPpao2lDpBkE6DeHvVb9k9qilIi2ltFziyHieOEjx+ZywLvdBkKSmnZSD9euYNFFKhvxIRFzIme9cnqSGlwzQ9H7jAJCTrR9IA63qZdR1FaTggisFAxCfXXK697756nwIa9uY5WiDeLotOgTmcx4+TxyZuYTCy9b0T6As4q5z4QMRklhapTCGY0dVaSY6UIm54BPsoE9qSv2jWoymZjlv2qPKGrZA0xqe7Pdvs4l3nse8YhH8Bd/8RdsbGzwnve8h7vf/e4X+rIKhUKhUCgUCoVbBWc62ziRE9MqpF9UaK1Y+LiaTRglCzKdiYSY2e7E8ilnWYAOSVyqNiYVjQ/stDI/MihSGhZYhl5yu/XonBnXEiO31jhQitooFl3Pzz33yfztX7+PZjzmpa//TQ7d8e5cs7VgHiLzNhFTZv/EolAicsoJlcFZ2GoDVdbHpXJMGyczFS9uvlZraq1oaln27rzHGkVlHUpJygWAVeBTZmvRS4JGZSU5Y0gJWbK9COQsKR+1M1RGc2it4tC0ucHrnbIsvOcsbs4LH+kGAVpnIrWViD83OnXvd6KQrcw8CoVC4dxyqxNGzedz/uVf/gXvPXe60504fPjwhb6kQuFmsyyWc86DA5Gn9ZEQ02kVy32QwQdAUxkU6jjHnktMFwXI9nUbIk1l6FM6aSQIiONRGKY2OSeuH4Q7TiuUVitxT2NlyyFEhig4cMYMrlrSJEgEiWRaL3wk50w41mKHLfzaanxIqJrVQCTlLO5LiHPA0VnP0VlPHyMaeW9zyhij6EPER3jHm17FH/zmmwB42oteyT3u9wA+e2yx2iJYaxzWqNXgKsW8ikUZVYaUKpbbH/M+Dva3GWs1MWSqWmx068G5SZzEDFaDs0asa63myE6H1YqkMlppaqe47b7xSlCnkKiTUWVWQ5/GGZQSJ6urt1s2F36wqq2Y95H1keR9j0/ynnYhMjtJBOHFGj9SKBQKhfNHqe0LFzsp5UFULzHVIMLx06nVQWqecSXOo10QYVRIeeVueibx2UtOtOrfGFVUVqz+G2donKEPiaPzHquhD7IRWznN4WlN7SSSYXPh2Rg7Qs4c3emZ+UwmMKrMqi6srEYpEURpMp3PHEk9G+MKa3a3Z80QyaeGWlwPAvkbu+4bc8xKKXNk1tF6ifKLGUaVHhxgNX2wVNaI+L+P5EWPVpacYOE9OcHGuCKnRO0Mk8rSpzREJCT64frGtWFau+E1ycw6z6SxHBien9WKUWVW79OoMkwvwqjylBKPecxjeNe73sVoNOKP//iP+c//+T9f6MsqFAqFQuGCUnqNQqFwvjnd2cZe0h63YdhNq5j3gabS9ENMu1Jw2bRZ3ba2hsPrGrahDbLsIssgCm0UKivGlaGP7ZCUoaisIabMpLKr2HKj5HYbo4ppY8k547TilT/xDP7qf74L6yqe98o3cbv/8J+4bqdlswvMF7JgYq1eORRDpveRPmaxG84KHzNdjDgvcyutFGsjx6KPbHdBFr8b6Smdkue9b5zxERQZp+VrIYr71KHphLWRzGdmw+tQWU3tNL2XGRHIw9dG5hv7RtVJ3ytJw5C496YyhJQJaXBcHl7ffoiCP9kc40QhG5SZR6FQKJxrLr4TuTNgZ2eHa665BoC6rrn97W9/ytt+9rOf5elPfzp/8Ad/QAhh9fX73//+vOIVr+B+97vfOb/eQuFcMK5FcFI7Q+U0oZNiWSl1nJp+LylnWr8riqoGO9Ju2Ea4qS3sNGyQdyGRct7j7iOimpG7cAWcM5pJbZl14ZSRICElee4qc912x8yH1fb+pLEcnNT4mEWgZGSzYNFHYhZXpgzELFvvKsPhac2oNkycpYsSZyjZ01k2yJWWwUqGWRfYP6lWg52t1nP9Tk/nI0bLe7Y56/FRHstpDRre87Y38Y43vgqA73n6C/iSB3wLANdstewfOw6vN6sBlNGKkKAL0pyE4bHGtUUpRUIEYTHJf80QnTd2GrdnSDdyhmAyaVjpV4hzweaixxrDdu9xg5uBNGYM0YE3fP9HlaELSRqXENlaeK7f8RityRim2d7gZ/VUTZ08l7I5USgUCrc0Sm1fuCWy8JEMxx1GLw89T5dRZVh4iX0LMVEbQ+cTRismOZ9RpN6prPrFBUoz78QddSnu16OKnc6v+o3aGdlircQx6vqdHjPcbwiJnUUkhMShtYZRJbe1WrE9l+WBRCYmxQEtG8Eg4qkuJHzMTGuzEulXexY2zjRiYKv1zHo53N9sAz7G3TpVKVIWsZIPiVkOrDUOrQKKISI7J1KSreKcM+ujSqLwnKb1kSOznrj8ulWsNxVGwWUbDQfGFVorGmuOew6T2l6UoqicM095ylP47d/+bZxzvOMd7+CrvuqrLvRlFQqFQqFwVim9RqFQuBS4sdnGrA/kBHk4209ZljZCEgFQ7UTIs1zMtloWUbZaD0j/tHQmrqxm0YuIZ1yZVfTdMgJ+WjuMhmNzieILUaLQFUPsXOPYXIhbUsyZrEQ4tXwOv/pzL+TP3vm7aGP4oRe+mjt+6X9huwtsLSIpZTbnnjZGRpXEqVutAYvRir6P+JhJJEKAScp0MdFHiaqzVmYoCy9pIG1IKAX7ho3rceUg51W8O8hiOMD1s47tzlM7Q2MM1sqSeR8TZHlltZLXSik4MJGFF3m9ZabWh2XihSydb7aBymicVaQsr3ccjAxqZ2h9ZLynDywzj0KhULhwXHyncmfAs571LH75l38ZgB/+4R/mVa961Ulvd9VVV/EVX/EVfOYznxGbxz385V/+JV/91V/N2972Nh760Iee4ysuFM4+zmimteQvrzcWH9NKyNP6iBtcfhSshjJ+KGRBRFFr9bJYVhitT7mF7WNaDUtuYCaVISKb67MuyHZ7bS5ITMS0lo2F1scbRILMusDmQpqBWR/potiVbowqrBVVvtWa/RPLuLJ0IbLThlUO907nUWjWG0NTmSHqToplZzT7rGxG7BWfpQyzznNgUlMN0XggcSpHZyKKWmss1+500pBEiY0bV5ZJbXjvO3+PN//sCwB45BOfwX996Pew3QZiTFhj2GwDB9d235HaSR52HuxyrZWfkZQT8z4xruxQgCeck/c4pczWIlC5RGVE3JazuBHo4S3MSNHuY2ZcKfY3Fc5qbr+vYTo0XKfCGc24Msz7yKFpTRskx3xz7jk26zk2FxvbZcZfiAkyVMOWxKUQP1IoFAqFz49S2xduiXTL2OTBNWp5GH0mLDdRozUsfGBSO/pOLP4XfWRyCrHNyQ5uFz7S+sTYGaxRx1n1O6PZGGtSsix8ZLsNpCx9g9GKcaWpjSIBIcnhdVNpjFFMGkvIiS5EtvsIOx1jZ3drzZzRKKxSVE7ikUFEUVopWRJQ4obrjFo5Vy0504iBY3Op9zfbnn4QejXWyAJBlBrXKEXUirXGMh8GAE1lWNMOnxI5Z2IErTPjynJwWklUg9UcXvO0PhFTQmvF5esVG6OKSW1ZH+3WxQouaF90Ojz/+c/nda97HUop3vKWt3DFFVdc6EsqFAqFQuGsU3qNQqFwqXDibGMHz5FZz8KnG/xeWpJ1xmggi7vv2shhtCKmPCRfcFw/4ozGjTQpZZxVXLfdYbS4QfmQ6HxgUls2xo5pbbl6q0WhmI4MGkXlNNdsRXxKNEajtV7Nm37vl1/F239dft8+8Xkv54vu/40cmfU4rTk661AaFiEy84GYLCl6riHTtIa1kaPzgYySHlIp2j5itUQCehRdlznWerbbgNMaZyFGWdxPyJxjY+RYdJ4+J9aHPi3ELK5Oe0RJdmk4YDXzPjCpDNYaep9YH6IBQxRhWr9nprZicNia92JUIMv0itZHrt5pOTCqSTlhjCJnmc3tvZ8y8ygUCoXzyyUtjPqjP/ojchYBwZOf/ORT3u5JT3oSn/70p1FKoZQ6rnhQShFC4Hu+53v453/+Z+54xzuej0svFM4qByYVbYiEaJhWdohAk62BPqSVO9FerFaDsGe5qa3wUQrYk21h73RhtTEAcr9tiEOu9OAYtWczug2RNsQLthm9MRT/eyNB2j7ymaMLFj6y8IF5lwanJMP6yBGiODzFPZv3IydF82VrDTtt4LqZDFLsUMzGBAenFWMnIqpxJUIenRVrjQiMWi/WqZXVGK04NvOsjSSDe9FHRpWhj2nlWtU4EadNa8P/et+f8j9+/GkAfMdjfoAf+JEf5bObLV2IbC4C4wqqkWx4NEPc3epdG2ZuIYqjwLSqsCbQ+0TrAyEmtheRkRPHJ7QU4FrJwGvWRmLOOAOVMYycYrv1IoJLmXpwEhhXp/f+TmpLzJnOJ9Yrx3V9x7FZh3Py/NMNf0zpgzQvy8HXxRo/UigUCoXPn1LbF26JpOHn82SH0WfC0lXJDor1erifeR+xRh0XzXeqg9t+EPwDJKc5MutZr53UvuyKtbSWLeKNkSMNLqmyhazoYj7ucYxSGKXpfYasVnEBbUg4FUlZ6t+mUmglQvnOJ7qQmFaWyhiOzju6YVO5drJs0Nhd59szjRhIwxABWDnkrjdOfj9EETKR5PUIaVn3q5VrVjPU711IK5dYAKOk54lJFgnWG4czCp8yjbOriMHlFvWFdtI9HV7xilfw4he/GIDXve51PPKRj7zAV1QoFAqFwrmh9BqFQuFSYjnbuGarZeETo8pidWKn97S9uERBxhjNaHAAtkOsm9GKDaVWveDyz5Mt6GitZGFca+Z9ZN+4Yrvzw/wg0QaZIbRBxEk+KnzI0MlcxBpZllFZ0YXE//zdX+XXfvFnAXjCs1/EV3/Tt/OZY630YUr6QKWRRIsM1kg0nlLicNXHxMLLwnSIWRaosyIOblWLVlI9Oh8kXj4nOq+xRkRgGtg/rQYDgIoQ5THXR4pD05pJbVn0gT5m+mEW41Om0bDWOGLKzNvI2siyf1wx68KqFwVWr8WJMzGjZV7itMaoSB8yTme6EAkpodXx5wCXSuR6oVAo3NK4ZH/T/uu//itXXXUVSinuec97cve73/2kt/unf/on/uAP/gA1/KN/6NAhnvvc53KPe9yDD33oQ7z0pS9lZ2eHxWLBC17wAt785jefz6dRKJwVRs6w0TiMUoN4SVM7g9OaNkbynkJNaUVjDG6P6Gk8DBj6ocA9cQt7c+FXw4V2iKQL6STbCVFEL1YrRk4clWadFKnrN+EodC6YDsONzYXn2Myz8IGQh3i5mJnUalV8tiHitGbkLM6owXErYZUo/jPQ+UhM4ma06BPTRgRM40rERAeH4nrJcks/xCxxHl2gdobOB2Kqh8hDeV+6XoYo09rJ96TE333gL3nB036AFCNXPOy/8aQfeyFaa9ZqS+cj13XiCrY+svQhsfCRNaNxw/ClsYY4uD6lnIlJBE6dTzhjGNVpeL+kMQohM++iDH8UdMOwywfog1jCghwEWSOPManPbNiz3jiu9R0LCfpmXDvM6vWW19dohTWatcauRFfH5p7Da/UF+TkqFAqFwrmn1PaFWyqncxh9Oiy/rXJ69aezms5LjPa4yhK5t2f7FeTgdrkQsPC74iIzHJQrDUdm/UmXGdRgOauULEm4QYDVhUjb7/YDk8awESxhR6Kguxhpu4QG9lVa4pa1QSHOV0ZJjN5W57l+1pEQodOkdivn0nFlbnbEwMKLY2uIiRjzqq9Zfq22mj5EZl3EWkVKQ0y2YhV9V1lNH9IqqkKWHCyNUyilyVm2kLVW9CHRODnIroahxKlcvC4m3vzmN/OsZz0LgJe+9KU88YlPvMBXVCgUCoXCuaH0GoVC4VIkprxKn1guWKckvUq153Ypw9bCM6os+yduFcW3XMhe9pIpn2SeM7B3oXmtdnQmMu87coadTuZBjTW0fSIjrkijWg8pEZZ5H3nf//s23jSkXnzXDz2LK77zsVyz3UGSZRcAbSAlmDiLjxmyzAI0IhSKMdNYzU4fUUpJ8okB7zMhSDQ7QB8yfUjUTq+cpazRTCpL6xMqy1VOG8PhaU1cuSDvzhuOS/xI0PrAxqgCwipWcDkCO7EHPv6Nkq/5KE7NtTP4JP2lxLSLEOpEY4G9r30RRRUKhcL54ZL9bfvP//zPq4+/8iu/8pS3e8tb3gJIbMBoNOKv//qvuetd7wrAFVdcwVd8xVfw9V//9QD87u/+Lq997WtpmuYcXnmhcPbRWoYUGbh8o+Ha7U4sRpvdmLwTUUgRPRqGDlsL2R4/cQt7pwsrUdRW61euRkrtxsdpJdamflDgh5TZ7gJ9Sqw3jkUf0UpdkAKvC4mYMpPG0MdISolZH1aipMruDl+WvUEfEylmnNFs90GEYDEz6wNay2BHXiPN2Mlw6MB4VxR14pa+MWoQJknBjoLPHJuz00oUSspBmolKokP6qPjYh/+en3zKY/B9x1d/4zfxrJ96BVpLoS9xKCLQan3EaLXaZBtZg9ISizJpDLM2Ug2b+0YnFPIeVVajO1h04p610ciArRlehK6PdDFhkdxusjQHMcPl6w2V0YSUT9stasky03xj5Jh1nq3Wy3BOq+PiUoBVbN9GY9k/qVbfX8RRhUKhcMuj1PaFWyp7xUVw44fRN8YqBttI/d0FqbO3kPp83keu3elIw+F5HyILn4Y46V3nKGc1Vis2F142YqO4g55smUErRSTThkjnI6Cl3l/1A7JQMTV25UC6NQ8cmYtDqkRwJ6xROK2YNhatDMYqNtvAYlg+qIwI/51RWC2Hxyc6Xp1JxEAXxBW2DRGlwGkNQ++y8PIYVmtmMZBQy3NsrN6NOdRKDRvLgRAyjVWDK6+mshk7CPmVgrVGDvXbIbKvC4lJfbPe5vPG29/+dr7/+78fgGc/+9k85znPucBXVCgUCoXCuaP0GoVC4VJjOZNxRrNQEaulD1FJZhZWK7RSKJVRWYGS/qz1iYycn3chimhIK4gyuznx/H0v641jpsQhqbaGtcZSec2xhceiGDtx9dVGUw290DKu75//6kre+BLpKb75u76fB3/3D3HtVieL6inSD8srTmtmPhIRUVTOMouZ1JbKaaJOhF6hgaSkUQspY4zE3mWt2Jp5vJeebFJZDkwrDk7qwZ1YBEniUKVQSDLGWuNYH1mUkkj4lEFn+Xrj9Or7nFWkLO7KG2NHbQ07nb9BD+yM2jMTk3mNMyJikz5UFpG0Ekes5WxjyaUQuV4oFAq3RC5ZYdSnPvWp1cf3vOc9T3m7d7/73YD8g/XIRz5y1cwsecADHsADHvAA/vzP/5z5fM7f/u3fcv/73//cXHShcA4Z14Y2RNYaR0YEL10QYUllZUNbKWRj2wzb1oob3cL2Ma3i8/aKosaVYVSZG2y8N84w2bPZ3fnE1lCIz7qwElKdL/Y6XfU+sd2GQUCkGdeGatgiABk2+SA7B0vFvhmclJzWdMFjlaauFLURJ6blWMsOgx7glPaqrU+r+MFxZVh0EWMUXYz0XWLkDPvGFa2PXPVvH+NFT3k0i/mMe3/FV/P8V7wepQ073a51rVJK7GuDxP+1PjLvA1dtSySdVtIYxJCJGXzMbC/6VazHsbknwSo6JGVW3xdTGgRliT5D30pzctgaUpRNk5TyStB0usy6sPoZWgQJ/p7WEjtitWJj5FY25XFojCqrQSnmPrJu9AUV2RUKhULh3FFq+8ItlaW46HQPo0/FMhp7GXOn9W5EXGsi1+/IYgTA0bmnHzZyFRLfN3KGupID4EUngiTdiTPqqDIcGFekIVZuWWfVVrPoA2kobY/OPY0V8dDS9n/ZDyyXKozqGNWa/ePIkVnHvI+0QQ6l+5DZWnic1VTWMK6tbO0OcdAhZmxjiEni6uDmRQzIxvAQX6illvcxieuT0XSDgCkjIqqcMkornDm+rnVGERZ55azVh4hChGfNsExSGU1lNT6GVVzizRW/nS+uvPJKHvWoR5FS4glPeAIve9nLLvQlFQqFQqFwTim9RqFQuJQ42UxGa0mrONlMBjjObXc5k6mMZtZHJpWhQ3qfSc436mI8GVxwF32EnNEanFKoxnJwrcYPiy/zLtKGyHrj+If3v4+fefaTSCnxjQ/9bzzyyf+diCRoxJzZbiNtyNRGk5Gz/8YafCWReU4pppVlZA1BaVKS/rf1CadlQeXYvGe9cYydCKjWJpa1ynFw6hg5S2XVEDcYqZLCR+kJjRKH395GrK7IWVJG7AkzqlkX+Nxmou0jWYlD18gdvxh0Yg+8pLaQql33qaVD1LjajVoXEZv8eSlErhcKhcItlUtWirq1tbX6eP/+/Se9zXXXXceHP/zh1eff+Z3fedLbPeABD1h9/H/+z/85OxdYKJxnnNErx6L1xjGqDaPK4owZ/l7tCpoGJ6gjs/44UdSJW9jzbjc+b1kAro8kGuJUBbRWMqxZH8m1dD6txEnL+zsfnOh0td0FfJTtcWfkGg9MKqaNpXZ62AjQaA19SiiliEnyrq0R4ZBIoRR9TMy7QIyZtdrSOHmu261fvZ5diGzOezYX0rwoBSElvI/0IXFk1rPTBuZDkxNTJubE1Z/9ND/2hEeyfewoX/jF9+J5r3ozSTu2Wi/WsYiAaTHcTxcis0Vgu/WEmNlpA31MhCzOXePGMW0MRsHRhWdr4cW6Nstjro0sB6aOSWWxGhZ9YLsLMBTqS/WXxCpm9o9qOi82tePK4mM6rffDDy5aANudZ9bK8542lttsNNx+/4jb7htxm42G2+4bcYf9Y26/f7QafHU+rdymZsN7WSgUCoVbDqW2L9xSqQfBfWOlJu8G588zIeVMP9Q+y/s5vCfCWaKwDeuNI6RMThIHvVZbDq3XHF6raSqJko4xszGuuM3GiNrJRutOG7h6u+XIrOdzxxbM+8FJ1kk0nxviGzovDlBrjVtFSe9lWlsOrdWMK8u0sdxu31j6kiEqYFxZRpXlsvWGA+OKOx2YcOcDEw5MatZHjtts1GyMnET2Oc3GsFm7FEVNantazqE5i2ApZ2iMREcsHVebIYqwHpyzABkehMiJb0vOmZAzKSdyzsz6iLWa2mnq4X0Y74mmODE28WLk/e9/Pw972MPo+55HPOIRvP71r1/FBRUKhUKhcEul9BqFQuFS4mzNZGQdWhyXrBYHo0V/0/MZZzTrI8f+SY1RCm1k2UQBXUyElNBahEL/9x/+Ny95xvcTguf+D/xWHv/sF5MVdL3EkqcEWSUMCqtgVGnWRjKPWWscG43DVQYfMyln6kqzMcQBGtmXXsWeH533XLO5IMTMWuXYGLmVc/HBNUm4aINEyDdOsz6q2D9Y+Sp24/zmJ3kNRpWhtpKQ0QeZAl2/061er1P1wHtf/3El71FICR9lEX59VLE+chxeqzk0rTkwqYZFp9KDFQqFwoXgkrXc8N6vPj7VQd5f/uVfkodTSeccX/u1X3vS293hDndYfXz06NGzeJWFwvllWlux6/RxtT2+GLKPuyAuQCdyqi3slPKqWFwMAqNxZVZDgJuitoZxlZn3cg3NEDmX0rkv/E7ldNU4GcpsLzwhZWonVqW1NXtU/XIfCnEtOrLTM3KGnDIZaSLMoPBXSgRmIWWMgn7I4TiZvWplJd5OZXBW3LqWGxOVy0ymlquvuppnPPY7uO7qz3HHu/0Hnv8Lb2FBRWw9zmj88B52MRFCQhmF1oouJro+cWzRE0Lm4LRi36QipoxVUFeOhY84pQdBXKKxGqs1ikxt9cotKiUwWZFUxmpDZeE2tWXSLJ0D5Odl7Jzkjp/GpgnsNl2dlzxuHxPT2rJ/XKGH1+hElg2dNYqthbhNtUZ+luZdZGN8yWp7C4VCoXACpbYv3FIZOcOsC1SDECck2eSdnIH75d6t08rKgfRyw7S2mquOtSgGQb9WTBvHWuOorGbei5upYjdGL+TMTuvJWcQ/Mx8JUeriDHzm6ILb7hsxdgY5Qj6RUyt/xpWlMlJzXr/TYY1i3BhZShhXVMZwh/0jUs60PqHIrK871ht3g61duHkRA0oxbPIiCw5JxEqtj4M4y6zeg9SG4ZA8yVZwZaRGVrDTS+S0yWqo9xXrjWU6RJWPq8HpauiVlr+6Llad0Yc//GG++Zu/mdlsxoMe9CDe8pa3YMyZu5cVCoVCoXCpUXqNQqFwqXA2ZzJtSBKzHhNjZwiDo5Q16rTuLw2JGesjR4oyKzk4rdAoWh/54N/+HS9+8qPp2gX3+aqv45kv/nnaKDOQmQ8klYkxUWuLrhJGyzyiqg0xJ4koN4oQMspkupjoY8YqRVMZxt5yrO3pvSyAO6WIMdOsWTbGEo231jgUIiI71nr8EGnXOMtkcPndP5YYu3aICOxjGlyGd/890Eqx1lhZtg8RO8x9rDUcmFQnnV2c6jWrrSGERExZ3KKG97WIoQqFQuHCc8kKo9bW1lYfX3/99Se9zfve9z5AGp773ve+jEajk95ub0PU9/1ZvMpC4fyzMXIYrZh1gcaJ4GkZ4ZbSEAWhJIajGba3l0xqu3LoWfhIRrarQxJV/qg6s4PzUWVY+Dgo7aUQX/gzGwTdHE61VbHMvF7+L793W3+p6rdacc12Rztc57S2IoiymuyTvIZkFkMkSAbmPrDYHCLmcj6pvWoXIn2QrQfZFnDknNleeLSGa45cz0/+wH/jM5/6JLe5/Rfwije/DT3dx3YbCBFiCiu71coq5loxqQwG8CnTDXF6CoVP4iowrWSzwkfJHj+4VtEeleiUhU8w5ICbkIkpMakNZIWzajWYmtSGw9OG1kcqY9g/dhijpXkAiWO5ieFeGt5/kIFUFxK1M4ycDJOWw6tTcSFFdoVCoVA4P5TavnBLRcRLEnk9cobtIXb5dA+ju7Abe72sxZexdSDRALXTHDAVV222g9uS1KCz3hNiYlwZyIjr6QmLEkqJ6H+7E1fRy9cblBIn1J3W01Sanc5jtKJyEsm83QZGVT5pjMDyOVdWtoytURyZ91il0cC0MSjg0LQeNnyNiPwHR6dVr/J5RAxoJcsDjbP0Ua49IzWrRBpYUgbdesa1oU+WeRvwMWNjxsdIiJkjs46QMqPGYJRi39ix1sih+siZVf27N+Zw+fgXG5/4xCd40IMexNGjR/nKr/xK3vGOd1DX9YW+rEKhUCgUzgul1ygUCpcKZ3smU1tNFwAliSGdT2wtAuMq32Qs3zKNwyiFz4kUMxvGcmwW+NdPfoyX/cj3Mt/Z5h73+nKe/fJfQltHCgHIqJzRQw8aoizwNE4zrS2j2jDvIz4kYgKrMtYqYkhoo/AoQpSPVYKQMyZkqsqQhig8QWY9OWeUUuQoyywbIxFFLcVPRiuOzT0pS7S9s9KT7p9Uxz3/xknfnGNGG1mO6XzkdNvRPsjsot6zFKWVQml1XmZihUKhULhpLtnfxLe//e1XH//t3/7tSW/zzne+c/XxV3/1V5/yvo4cObL6eDqdnoWrKxQuLNPaUluJwutCHByLTq5qP9UW9tJdqh02FGqrz/iQXytFZTTdIMyqrHw8OYdn8De2VbHoI5FhaBEzPmZOrEe7PRFtWwvZMuiHDfEwbLajMiFm5h1YJVtnayPHsbknpMSksqst/SXLgUk9CIDGThMztD6xWMx51TMfy8c/8k/sP3SYl7/xbRw4fBu2Wo/Tms1W7lchW/jjymB1xMeIM4Z539MMdq+1M4wrI42FyxwcNxzZ6dAotFLsn9S4uWcRpZlprJYtjNowdnbY/5dmYt9YHJ2c1dxmo5FolszgSLCM2ss3Odxrh4bOh7SKKllvHM3Q1FXmpn+2LpTIrlAoFArnh1LbF27JjGsRRjWVoU/pjA6j98ZeL4Xk43q35loenIeUcVZTuYoDk4pFH0nZMnISY9yv3EyhshpnNBpFIuOsovWB7TbQxzlNZcThM2Vqo+ljJOXMgXFNJtP7tDood0avXKyWB/g+JnKWWvHAtObgpKELkX3jittsNDijOTCpVs/BWn1W+4PaanxM7BtLHDVKYQ2EkFeirnFl6BvHkXnPtLIoIKaEUeLGuvCyTDByhsPTmtoZDk7lmsfVrijqZDGH9WluE58vPve5z/HABz6Qz33uc3zpl34pf/zHf8xkMrnQl1UoFAqFwnmj9BqFQuFS4WzPZEIeep+Q2Deu2EKSLuZ9ZOEj1bKfk2N++pDoh36utuJ+XFvNbOGZDWkWV3/m07zwB/8b28eu507/4Yt5zivfxNp0CojDVM4QE0TAaU3MEWcUk8aunk9tZAkmJZktGCPPMacsYicgJ+ld1bBovT521MYwqQwHJjW1MdRO04dhYFHLlo3VmlkXMFrROEMcBEohJeY+MlGKY/OejMwllk7AsqDDMP9QWKNwRjPrIilzysUgcUOOq8SMpjKoLIvyy5uf65lYoVAoFE6PS3aifJ/73AcQ6/93vvOdXH/99Rw8eHD19+9973v5+Mc/vvr8G77hG055Xx/96EdXH9/2trc9B1dbKJx/nNFsjDUpWRZD8XgmW9hLN6WU8ur+bg5LMdTyfva6NJ0LbmyrorIaHyONNXQ+0YdEqnZtU+d9oPeJ2mqOzHv84ArVhUillbgjxYBCEXPG1dDGSIqgjCInBmEUx4miltsIAOu1Y9ZLjMeij+gUeN3znsz//fv/zWRtg59901u5013uuhJ3OaMkAzyJG4DRiq2FCKV6P2w9GMXIGpRSTAZhVEyyzdEFES3tmziO7Xj6EDFWc3jsJCNcy3VPG3HL0loxrQ1re+JMlsOfrYWnC0kK+gxag9U3vWmytKc9uuiZ9RIlM9pjATw+ja2XCyGyKxQKhcL5o9T2hVsyzmgmtWXWBdYbd0aH0SCiqPVG4tsmtb3JZYY4HC7D8aKovW6mS0JMKOTAt/Vh5bx6neqYOEvnIyAHvVopNkaOymjaflewvlwA2IvVahDui9MnStM4ue5z3Q8s4wvHtSwrbLcepw3aHS/qskYOyjsSOWV6n4kxUDlDZTS20UxrJ4sHTg7fp7U9LvLvVDGHFwtHjhzhQQ96EJ/4xCe4293uxnve8x72799/oS+rUCgUCoXzSuk1CoXCpULKmZQys0Vg7gMhWfqQV6KdysjCzE256u6dyayPHbM+ALDeOFojIp6QMt0gdjoRqxVKS1LFvAtDf5q56qqreNlTv4frr/4ct7/zF/KcV/86qp5ybNGxMaqYNjJ3UcCs9fQpoZQi6kwImaCgshL/TgafEvvHjrlPzNpA1GAQ1yalZY41rSwLJSKj/WPHoWnDxkgi9OR5emJMLIZeb1IbDk5rnNGr59gG6XWdUYBi5DQ5s3r+48pghtnIqDYsell+nzQWhsSMG1sMiinL+6QloaPzgQRstZ7a6rLcXSgUChcJl+xv47vc5S7c+9735kMf+hCz2YyHPOQhvOENb+Dud787f/VXf8VjH/tYsU/MmUOHDt1oQ/OBD3xg9fHd737383H5hcJ5Q2vFpLZnLCBZziuWf97cSIjlt514f+eKG9uqaJwZ3I127UxbLyKlENNK1T/3kRhkS7+yMiiyy9i8Xuxgx5WjcZqdNqA15EUmZJgONq0hptXQpPW7A5PaGXGqMiLS+qWfeib/8P73UdUNz331r3CnL/wi4pDf3TjDTitCorVBuLTwUmhXWlNPNLNF5NC0Zt+oIuZMGMRvsi2R2Jp7MhLDgs7sH1WyJWEkSnG5CT8ZHMOW0SxKHb8xAbsNlVaKupKP953GcG9z4cUZq5MGbFIZprUM9/be/01xvkV2hUKhUDh/lNq+cEtnWlviUHueyWH0UswEImyannCgerJlhmVN2/m4EkWtNZbqBHfPeR9Wt62MwZlEmyI7rVzbvJIYgJWI3ig2F55RZdgYV/iQaGMk74nrVlrRGIPbG9dd2ZXzKJz7fmBvfOHBSUUX5fmsNceLunxcbiOLuL9PssygY1ptB49rw/7B6WrfuDrucW4q5vBCs7Ozw7d8y7fw4Q9/mNve9rZceeWVZYBbKBQKhVslpdcoFAqXAj7KWf7CR2Z9WPVQKWfI4sDko/Qgy8XjUy2znziTWasdo0oWSJoher0fFpDTnn5Oa5kZ+Ji4equVxWqlcFZzzbXX8YqnP5bPfeqTHLrN7Xn2q36dQ4cO0Ufpo67b6YgxSd+pYOYjMWa0ApWh9YGNsZM+a7UoLX9uWMNaI4vkiz6wkzJGabRWjCtNXWluuz7i8JoMuVLK1M4Q8+DypGSRXWmIGY7OO1ICa2TRPCWIWV7EPkRClBnGcpln3kdCTGRgXFti8viQWW+cOEKdYjFIenxZCq+dpjKyqOSsCK98SMwGUdXJUlsKhUKhcH65ZIVRAM997nN5xCMegVKKD3zgA9zrXvda/V0e/sVXSvG0pz0NY06+tflv//Zv/MM//AMATdPwJV/yJef+wguFS4ClK9CyiL65IpTlty3v52bqq06bG3O62us61FQiOlr0UVyPBiFVHxLbC08XZIOgNpaUswiilOLoXKLztFY0zg1b93Dddo82MK1lC3/hI2tGr7KlgVV03MbI0sfE6378ufzVle/EWMcPvOi13P4/3ItFCDitCTHROCtDmijNTj+4fo0HpwCtQOEZOc3aSIRG641FKyXX7INY1+YhCjBmmspyaFoxri1diBilGFV2lcWth3iVk1nD7m2oZMvh9DZNOp9W9z+pDeuNDJVEkHX6/wydb5FdoVAoFM4vpbYv3NLZGDmMVqd9GL3XgXRS2xuIouAkdVHejXBu/a5o50RR1E4nwnYQd8+d1rPTBcwQO+djou0yCiubuylxaK1mY+RWB/WTyh4ngNrLcnt3VEl0wXYbzls/AMfHFx6a1hyd9Wy3IupaGzlizLQxsqYsW3OPqx1KK/ogSwi11aw1jsNrNePq+Nf+dGMOLyRd1/Ht3/7tvP/97+fAgQNceeWV3OUud7nQl1UoFAqFwgWj9BqFQuFiZqcLzLpAN4hzfEzMfCTnjBti3vYuoex1OjrZ+frJZjLTWqLs5l2UhAyrj+s5l2y3nkUXUcCkNhxbeI5sbvOLP/b9/PvH/g/rBw7xrFf9OvW+w1y71aGVzB8isNMGfMhkEj7Ic8mI85TVmkm9myJR22XyhYiLfEpMalkOqrpATJlmISkecVhiSSmzMbIcXhutFnVqYzjSdoQosfWLPu6mWoTEWmOHRRYRW1VGy4J5ynK9LjGuLFut9MiHpjW5zgSbRfBk5ZpPXAxqQ6QNicYarFHElJn1gdrIvGjeixvxOCRMZYbbx1P29oVCoVA491zSv30f/vCH84M/+IO8/vWvX211LFl+fr/73Y9nPvOZp7yP3/zN31zd/n73ux/WXtIvSaFw1tBKEcmy8Tyo/pubEQuxHMwsN6dvrvPU6XJTTlfjytCFJMWsk2J5c9HTh0RlNUdnnQinnGHhIzutx1rFdhdwS/epLJF9y82EkdM4q5j7yM4isG9U0XlpHpYCocrpVdG/NnK85IU/wR+99ddRSvH0l7yae3zF17DVBdlKqAxGa3z2pLRsfhQKsWJ1RmGVZu4DhyY1G2MncSVOIvBClAFbiCJSijFQWYvTiWljV8/j4KQ+I2HSiQ3V+kiEYTc13GsqjdMaZxQ+ZhL5lE3bmTz++RiqFQqFQuH8UWr7wq2B0z2MBhEX3dRW6YnLDIte6km/J1b6xBp+3oeVKGrWB7H/TyJir51mfeSYd4Gc1Sp6eeEjx+YepRVrw9asAqyRg+rduO4bxjss+t3FAjj3/QDcML4QoDKBhY9szv0qAkEOrSWqWhxd5TWzelfUZbQc9Acfzyjm8EIRQuC7v/u7ufLKK5lMJrz73e/mi7/4iy/0ZRUKhUKhcEEpvUahULhYkbSFYWnbR3a6wNyLsGieYVIP/VMU56KUpPeSWUamqQzrgzvusg871UzGGc3GWJOSZeGjpDPk3XP8RS+L1OPaMPOBnTYSfcdrnvtD/Ms//i3T9Q1e8obf5tAd78b2IjLzPV2Ux7JG01hN5wOV0YycGQRcUcRJtYG8m+yxjCA3WpapU9b0IbPd9mhEaFRZM/yZIGsmjSUnxea8JwyL8ZHE3EeUUtLrhkQfIgenMvtYLrHboQecVBajobKGRR8HMVWHVmrVQxutmNYOZxVWy8K6s3q1GLTTeWzSTCsti0aLAFoxcma1DOVTRsXMVuvpY2LsDM3g2pVyXvWRhUKhUDh/XPLV+2tf+1ruda978TM/8zP867/+6+rrTdPw2Mc+lpe//OVUVXXS7+37nte85jWAbIZ88zd/8/m45IuWI0eO8I//+I989KMf5ciRIwDs27ePu971rtzvfvdjY2PjAl9h4XxSWy1iKCu50F1ITHI+o0FGypl+KIyb1SbAuR0W3JTTlR2sWud9HOLcPJuDRe112x3bnccaTc+w2Q5UWa9clDYaR0aEUQCzNrLoIjEn4rBtf/VWSz0U/o0zVE6ztic67g2veRWve/UrAHjmC/8H3/ptD+fa7QW9z8w7sZi1VqFRLEKiMgqjZTBVW41CEVLiwKTm4LRiWosYqnaalOU5To3GGYn6s16K8kVg5Qq1f+xOO8JuyckaqtMd7vkoIrtaaSY3QxR1qscvFAqFwi2LUtsXbg3c1GG0Hmq+kbvpWLYTlxlmfaR2hjYOEXl7YqWB4+Kjl6IoWB78GhpnV3U7GULOHFqr2Vz04iI1fO9aLTXxTYmBLkQ/sOTE+MLKaJpexE1diHQ+rkRd2ihsVtxmvaaxGpBDca0UMcHWIhx336cTc3ghyDnzxCc+kbe//e1UVcUf/uEfcr/73e9CX1ahUCgUChcFpdcoFAoXGztdWImiREAjTkaN00CmMpppbQkpDa5ScTXvcFYzrSzzLpIzjCvLvI9YMwiBtD5lD6a1YlJbJvXu13xMgwhJ8+mjczqfmHUdr37eU/nH//UXjMYTfuYNv8Vd7/HFtD5iJ5qm0my1PcdmnkUXhpg8i1Kwb+TY6j0qZ3zIbC08+8cVh5sac5I+VyuF0RlrNDWyhDJOMOsimQQotrpAymCMW4nDUOLOvN3tpm5kZJZgdKJxmnkXqOzuUossu1us1hyZdex0gUltWWsMrU9sjCpizqQssfJkcWTuo7wPPmTMsECUUmbcWIxWVFai+0KUOL3RMK/RShbv+5RYbxyLPq5mK4VCoVA4f9wifus+8YlP5IlPfCKf/OQnueqqqxiPx9zznvc8ZSOz5OjRo7z0pS9dfX7FFVec60u9qMg589d//de8/e1v58orr+TDH/7wcdsye9Fac8UVV/CsZz2Lr/u6rzvPV1q4EIwGJ6DKaqyWwcCij2ckaFn0UpTboShUw/2eS07H6WpSSzxe6xPTWgrR1ie2Osnubr0UtyGLjeq4lgHRuNLIbjzsGztUhmu3O+YhMm+lMM4NpFnPZWs1yWimjV05RTVO8we/8xZ+6id+HIDnvfCneeTjv4/rd3o2xjV9AJ8i8y6x3QdI0qTYxtBoQ8rDa4o0M1oDWRFiYn3k9jyvOMSAyIZ/bTTWaPYNjgNGq5scsp3IjQ21bmq4N6ksPolt7XYbiEM2+sUusisUCoXChaHU9oVbCyc7jD5TTlxmaIdN1nySWGnYFff3Ma1EUePKrpymlvXVpLbiOtUvt31FDN+FhFaKzkTqYcPWjU5dk12IfmAvpx9f2JBSxsfdfthphTbqZsccnm9yzvzoj/4ob37zm9Fa8zu/8zt8wzd8w4W+rEKhUCgULipKr1EoFC4WfEzMOlnAWMa41U4DhtoZthde4t6G21itWWsU8y6w2QZSG9mxnmllmfWBw1MYVZaj857Nuae2MgegzatkixtbwJl30iu2fWTRR1JKvO6nns1f/s934aqKn3/zb/Ef7/PlbC48SkFKGTJMKkdlDPM+EEJGa+h8whkRZulGE3Kij7KIfnCaqNXxCzwpS/LFfFjeiRkmlQGTmfcZo6WX9CERTUYhs4XWR67d7ul84JrtbkivMJBhc+7xMdN6hdGaIE8PpcSZOeVMSGnlPJVyZn1UsbnwTBrDvIvHzcTGtcXFhI8Sr7fdeaqkwbBamtGDa5U14jS1Ma7IZEZOBFedT2zhWW8csy5QW31RuA4XCoXCrYULf3p3FrnLXe7CXe5yl9O+/eWXX85jHvOYc3hFFzePfvSjVxbAN0VKiXe96128613v4gd+4Ad4zWteg3PF6vGWjNaK2kr28cgZtruw2jhYCn1ujC5E5sNGuWQ4S8F5poKcM+V0na7WGodW8pyckZi3SaU5Nk8oPWwDOMv+SUVTGdYaEUcth0nLgU4Gji08MSRCBh9grVZURrO2RxQ1rgx/9u4/4kef9hQAnvy0Z/L4J/0IfUjUVnHdjichGyE+JCqtUFbRpcR8EG4pWGVxr48cY2fpQjwuUk4rJWKuSrYYjBZhW0wiFlNwzkRupxrupZS5bqcTp60+XjIiu0KhUChcWEptXyjcNCcuM6TBIWkVK83xh81+EJp3Q53eODkQzkidabVCKUVjNTFmnJZD2toanFGEJAL8thdhVB8SaagzT+RC9QMncibxhSEmUgKjwdzIAfXpxByeb172spfxileIK+0b3/hGHvawh13gKyoUCoVC4eKl9BqFQuFCs1eItIw63zd2dH5IoqgMV2+19CExqSwo6eNCzlRGMYuR6EErmW98brNFAwufcFYWozcXPQcntcStx7QSY53Yy6SUWfQSPX7NdsexWcebfvYF/MnvvxVtDC965Rv4ki+/P51PTGvLTudpM4DCKGhqy8gZfExURouwqwvM2p5rtj0qAGSu225X6RqVUVijV9flB9GRNZI4UVlDTpnaJvIghNpceMbOsPAiaJp1Xj4e4s67mBhXmi5k+hC5ftYRUmbfyHFoWnPdDhxeayTqbvie2moSmcYaUsqsNY6Y8klnYkv35c5H+uE9W2ss1TAD6sOuQ3Mz9MCNNaw1jspGthYSa9+aSONEfLUxvjj6yUKhULg1cIsSRhXOjJ2dneM+X19f5/73vz/3u9/9uPzyy6mqik996lO8613v4oMf/ODqdm94wxs4cuQIb3vb21AlyuoWzbgWYVRTGfo0KNoXgXGVGVXmpI4/KYvoZTkEqZ1eOTaN63MvZDkTp6vJMCTZbv0QlTEMg7CMpjB2lmkj1q/OKFLOjIfh0byPxJQIERqrObBWw05HF7IU0zmTknw8qgx/+ed/xpOe8FhSSjzy0Y/jB5/1PGZD8zOuHdMm0PaRxhhiJUOruQ/ECKrWjGtLPeSEmyEnPKXAxsgyqcUmNy+tXQdW0ShDFF/KUuCfb5HbpSqyKxQKhUKhULjYObHOUmopKM8opZAQAaELUi/GlAnD32tg7nfrdoDK6FWf11SanMX51A718FbriTnTONlkbn1kvKfWvtD9wMk40/jClPLnHXN4Pnn961/Pc5/7XAB+7ud+jsc97nEX+IoKhUKhUCgUCoXCqUgp0w0WRstF7HFlxOVJKbogsXYMiy7X7nToITrOaM24dtTW0AWJZAspc3TWYY1CK0WTNZU1XLfdS1+YZZml0jK3ODrvSVlmKY3THJn1zPuIVrJs/Zuv+zn+4DffBMD3P/fl3OXLHsDHrp5RWVm+0UZRO83G2EiyxfAYWwtPRpbSG6dRZOY+Me+kn1JKsdN6yNwgTs8oxbiSiLvaaSqjODb3rI0sW4tAH0WUFXPm00cXKAW9j/QpMW8jbRSBVNtJDKFPmd4nErC58FTW0MU8LJbL9dVW01SWUbCr9+PQtGLWBfaNq+NmYo1NtD6iBqcqkFlFNbhPtT6uRFG108ctzMOwWFPJXGnRizCqC5GU7EXVWxYKhcItmSKMKnDFFVfwhCc8gYc85CEntQ1+0YtexNvf/nYe97jHsb29DcDv/d7v8eY3v5nv+77vO9+XWziPOKOZ1JZZF1hvHFuIpeu8jyx8pDKyba0U5CxCnH5Q2oMUgMvc5kltz8s29ZmKcKyRInWtsbS9ROllEvtsxagyqGHrQSvZt89IAT+uDClrjIkc2YmQwadMjBL51lSGcW1ZHzn+9/96P4/7nkfivefBD3kY//2nfxaQCLw2RGZtZHvhyeShIFY4a2mcZe4Da7XlthsjjFbkDCHJiKuxEq+303mJBPTiHrWM1NsbPaeUbIVcKJHbpSiyKxQKhUKhULgU2FtnjSrDThuY+YhRCmd3a2A/iObbEElZYg+WoqjKGqqhVm+cXh3Ou+FgPkSJoAYGN9PI1TstB0Y1KSeMURdNP3BjnG584dmIOTxf/PZv/zZPetKTAHj+85/P05/+9At8RYVCoVAoFAqFQuHGWPhIRvqnkDJK7S4EWyOioOv7yKQyzHu/cv5VKKpaYr+t0rQhcnTeo1BYo4gxEQYxVZj37B85js16Zq0Ii3yIaC2L3GuNZXMh3xtSJsTE0XnH7/7KL/E7b3glAN/1Iz/Bf/76b2Nz4amdYatNLHykMZrL1hsqsxuJp5XCGU0fJcVjWjvaIIvllZbHNxqcMSgytZGZBUO0XWWXIisGgVaidgalFEYHYlbUVsRSbUz4IPMFVGbWB3q/jJWP+Civb86SoOGMRN85Iw7JWcnyi7NLAVNEa+mnndmdQeydiR2d9yyGVI92mMOMlfTf0gNLE1w7veqdx5XB7umBR5UkkoSU6UOistJ7n0myRqFQKBRuPuW3LfA3f/M3LBYLAL7ma77mAl/N+eMBD3gAP/7jP86Xf/mX3+RtH/7wh7O2tsaDH/zg1dde/OIXF2HUrYBpbYlDJMd642hNXMWhdUGK3BOxWq1ylUEKvul5LO7OVIQTkjyHPmaUholzHF6rVznV48qtIui6IS5kidaKtcaQsmHWeY7FQBsjCsn7/sD//lse/R0PZTGf81/+69fz31/2C2x3gUwgJRErbS48sz4yrgx9zDir2WmDNEFaMe8T1+50HJrWTCrD2mj32hYrq10RR837SG01XUg3iJ5bb0Q8dSFEbpeiyK5QKBQKlya31tq+cOtlb511YFzhYyJEOfjtQ4Qs27ytl63jWeuZ+8S4Mmgjm8STardu11qtDt4bY4bDZSnKprUjp8z1M0+OsuUcUkKr42uzC90P3Fp417vexfd+7/eSc+bJT34yL3zhCy/0JRUKhUKhcIum9BqFQuFs0O1ZWgFWrktLlFISR9d6rNaMnUR9ayUzitAHALYXgbmPEoueJZpurbZst4GkljOPxKJPVFaRssTxHVt4Pn0koZWisoqYE2TNH7/9t/itX3gxAA95/NO5/7d9N5vznnmfWKsNMcs5fTayMJORePbR0PcthVE5ZVIW8dNtNgyzxjPrIiEmqsHpuK4MtTE4q1DDSnrOmawUtbUoFYhJRGSNM/jgmftM5QxdlMVxa6DzGZJEw+eciQligpShspCSzBrWRxVKK7bbwPrIYY2i7SOV1uwbOxb97ixiXFkqq4+bic26QM6Z7T7gB1HTMg4RpAduBtcvEDeuEwVPWikqI7Obdoh570K6JBZyCoVC4ZbAJXEyeeDAAQDudre78Td/8zc3ettf//VfByQW7qEPfehp3f+jHvUoPvGJT6CUIoTweV3rpcTTnva0M7r9gx70IB70oAfxp3/6pwB88pOf5J//+Z/5oi/6onNwdYWLiY2Rw2jFrAs0TgYc/VC8pbQnWkIrGmuo7O5gZFLb8z4EOVMRTtsHttow2NOCs4qcMm1KNM4QklicLgVUx5EkjmTWB0Ch0SwWiX+9bge1dRXPfcJ3sLW5yZfc+8t5wavfyCxq+q4nI69bZTRGaTbGDpVhc95jNKs4EoUmM0SexETKhq2FxxmJ8LCNRAF2PuFMpLaGY4uenKWR2hs9tz5yZLhgIrdLUWRXKBQKhbNPqe0LhbPPss5KKbNWO5zRdCHSx8RW6xlFw07n5SA8SM1rh5p51ynKMK4s8z6sBPZuENgfXKtZeHHyrJ1hrZFD69rp1W0vpn7g1sBf/MVf8PCHP5wQAo961KP4+Z//+RJ1XygUCoVbPaXXKBQKFzspZXY6z6KPHJv39DGzNvRzlZW5xTI2bmfhAVgbOUbDnKILIjwKKaMNuCCRddXg9muNzBq0Umx3IqzqYyIkRetliXzmPSllGmehg6u2Wj72gf/Jb73ieQA88Du/j69/5PcjUX4inNruMzFlFl7jjMyKlu1HyplJtdvzZVjFkh8cV+yfVFyz1YoATCt2Wuk5M5kQZFG8sRLVLjF6mp0OZl0kp0zvpQ9NOa8cltYaxeZM0eqE1ZqFD5L6YSFnjbMaDfQh42NCk9EoFr2InOzIcXBSo7Wi94Mj1/B8lLrhTGx95Kitpg8JtPTPldEoLYkde52hxtUNRVFLlmKo5fJ9yvmktysUCoXC2eeSOJ08duwYAJubmzd528c+9rEopbjb3e522g0NsLI5LNw43/iN37gSRgF8/OMfL8KoWwnT2lIPKvhuULPvHXjsRTFkJtfmgjn7nIkIJyMKqWoYDmlguwtsjCpShtaH1fNyRuPMrqjKx4RHrFK3Fl5sYhvLtVd/jlc//bu57pqrueMX3pNn/dybuL5VhLwYNjH0aoMCBWNruW67Z9pIke1D4nObLTllfE5YZVj0C263kVkbOXJO9CExGiJTJHIuDM85sW/sjhMULaPnlgX9dutJWWx6U8q0IQ6/BxW11Yxqw9jZsz7UutREdoVCoVA4+5TavlA4NyzrrJ0ukIHL1xuODfVpJmO0xmSorUIpzXSPKGpUiSiqD1IzAzSDwL4aDq8nQz9wdJ5RSuGMYlrLY+6fHB/JfjH0A7dk/u7v/o5v/dZvpW1bvvVbv5Vf/dVfRevyOhcKhUKhUHqNQqFwseJjWs1WdlqJNw8xr87Efcz4GLl+p8fHhDOyqLJuHI0VUZTVYIc+bdYFppXFB48P0qNZq1hvHErBZ44u2Fp4aqfpY8YqxK3JgPaKSGZz3pNy5iN/8xf87st/lJwS9/7Gb+cbHvN0tDEYBaPaUFnFVuuJw6+/eZdIgJ9nLlsTsZBWEucO0MfIrBNh1LS2OCtip5gyTWW4++VraCXOxqeaCWwNojCUIiRxf1omSXQhYpRmZjUjo+hTwiaNNYq1xqGBNiSsVuybaFnwMZpDa9VqxqOVYuYDa7VjcxFonKZ2MntYunftnYmRZbloXMn1rTcOt2d2oZQswZ8Yn3ciS/HV8p+S8k9KoVAonD8umQnzmWw+lubk3DGdTo/7fDabXaArKVwInNFsjDUpWRY+rlT/q8JVDaIaJxEcF5rTFeGMaoNRNUZ7VCuiqDWj8TGyTM1rnLmBpS0sFf6RIzNIgNKweewob3j247n2s//O5Xe4E8985a/S6zFbix4QG1WFxmr5/u02MG87tFZYpQiDFeykNhwbGoB5ENGTNDyOUa2ZNo6qVRId6BM+Sna3HV77k0XP+ZiIQ8MVovyntWJcHf/PQYiZlohRMKndWR1qXWoiu0KhUCicfUptXyicG6a15fb7R3zm6AKlYJzSqjZsrEFrqVf7kAgps1YbGifCp3kfVqKoyundCIDh4B3kILi2hn1j+dwZhdFSI1+M/cAtkY9+9KM8+MEPZmtri6/5mq/hbW97G865C31ZhUKhUChcNJReo1AoXGzsdIFZt+syF1Ji3ge2u0CImZgz48rQWEMXEiEmjs4jWsG+ccW0tqSc6Xyij4mYEjGLGCqlTFNpJpW4+S76wLGF5+qtlhAzWy2Ma01dOQ5OJHq90pqrthZstp5PfPiDvP3lzyCFwD2/8kF8wxOeS0zS28Wch9g4xchatI44rVEqE0ICC0cXPYcmNa2PxJjY7ALeJ5pKIvaMlms8OK2YdREfEpsLT201+8ejk4qIcsor16adLhByZmotOYHRigOTmhATXTAcm3uMUmgkpq4Z0kJGFfiUyFEW4kOE3if2jSsaK+5TvU8sdJD4PzIHp5JpV++ZVSxnYl0Up6l5r8lBlt2NVmglM57GmRvMjk7G8p+dve5UhUKhUDg/XDLCqDOh2MefOz75yU8e9/ltbnObC3QlhQvJcmP8Usg+vikRTsqZRR9Z5MC898z7iFKZRZ/YXgQmjeXQpKJ25gb3nbK4Tx2b92it2D92fO66Y7zpeU/kqn/7GPsPXc7zfuE3ucMdbsfOwmO1wmow1lBpjdGKY/OelOW+cgKMwVopiPeNpVHZagOVUejl80iBvlXM+8ioMlw/A60k+zqmzL6xWxXve6Pn9jZg1mgaJwdA8y4OudwZrZSIwIweIlEUxqizLkq61ER2hUKhULhwlNq+UDgzxpXltvtGbLeecWW4ftbT9pE+JBadHK4brTAKjIGFj/iYVge0ldOs1W64r+PF6Sln+pjQSrExclRWnKdOFRNQOLv8+7//Ow984AO59tpruc997sMf/dEfMRqNLvRlFQqFQqFwyVJ6jUKhcK7ZXHhaLwsobR9Z+MhO6/GDICqkROvBKCUxd13AWXFS6lPChwS1nJePKsMISY/IGTYXPc5qYkxstwGrDX0MbC0CWgMRFCKg0kqhgHkvoqraGq76xEf4/Zf9CKFvudO9vopv/uEXY4wsYY9jxBk9uFpJ7J3VGqU0ISVxj1KJnUWiMYY+RI7MPHWlGTtxm7JGlsIbp0k504bE2Gk2Rg4fEzvDQvu4ssfNBFLKrI8c8076WAnny4TMyr2485lp45h1kelI0VQaayRCrxqET6FLtFGWhbKG1kdCSlijUGQysDnzOKvJaYiIRxbbT8Rqzbiy7J+IQK1xmrXmzBdU+iHJZDnzOB0xVaFQKBTODuX0snBG/P7v//7q46qquM997nMBr6ZQOD1OJsLpQ5QNhSiF6Liy3Gaj4ZN+jsUwHwZEdHIfa7WhqSwKKcNlyz4RooijjFYE3/PbL34qn/mXf2Syvo8Xvu63+II735lxZSCL+9H6SIrlLkiTs+gj48rQxyQNx0ScrVLO9EE2GGKEmQ8YJZF4OSG54EhTsFY7fM6EmLBKUVtDysdHz52sAQuDHZa1GnuCY1POUpTrwXEr5bxyoDqbXEoiu0KhUCgUCoVLhWWstFbiDNp62W69bqcn5yyOpX0k5X516Gu1oqnMyimqcfoGgqflAbzVEg19qkPjwtnn2muv5UEPehCf+tSnuMc97sGf/MmfsLGxcaEvq1AoFAqFQqFQKJyCnS6szuS3Wk/nZRZRGY3W4ky0MywyOysipJAyfRfoQ6Syhi5E5n04LvGhj7JkfGTWM+sDtdUopfAp0raR7TZitSzBKA3raIxRXDPr2GkDFsVnPvlx3vpTP0S/2OF297g33/jDL0NbQ+U0ISY2F4GJs6Ag5oRCxES1g7aXpRnvIZL5zNE51opgqsqgtB1i9zJGy9J1H2Umk1PCGek1940lkr12+rjZw5FZT2U1R+Y9SokoadZHaqslVjCKqCklEX2RM5PK0sVEF2SRxxmNRhFSJqOYVrvfBzKXaH1ipw+sKce0kb75wKQ+6aJ2bTU+JnH18vI4k5zPSNi0XDQCcXRe3m+hUCgUzg9FGFU4bd7xjnfwsY99bPX5FVdcwfr6+gW8okLhzFiKcDJBYuca+RXY+sjnNherxmPeeTJQWbMqeI/ME3UfaU4Y/ISYGFeG+aLnl1/0dP7lQ++nGU/4yV/8db74i78IHzNtL/nazughv1qGVY2VfOvWi1BJcsCloF8WyCGK+EkhMXjWiNPUvrpi7gN+2Bxx2hCSWOWGmDg4bY5zijpZA6aUFN7LTO2UM35oHkLKbHeBPiXWG8eij2ilVvdZKBQKhUKhULi4OVmsNMBm6xlnw7zNxJigMqzXDrfnQHZcmRuIouRAXmrKZbxebYu75/lga2uLb/qmb+IjH/kIX/AFX8Cf/umfcvjw4Qt9WYVCoVAoFAqFQuEU+JhW6Q17z+THlWH/2HFsLjOImGQmYbWcvXdBllr6kAkpMqksiz5SGb2Kncs5c2TeM+8jGkgxMwuBDHQ+YjREJLLPovA5cnQm8W9Kwcf+7ZP88nMex3zrKJff9Z487Nmvop6MqZ1mWrtV5N1CB6xSpEEUtXR1Wmss8z5hNPR9Yh4S00E6ZZXGKEVlFPvHFesjh1aKrYXHGw0amcH0ga3Wn3T2kHKmcYacxUmrdpq2i/Qk1hpFN8w6+pAlHSRA7WRZ3KfEwschnUJkUAZxRu59wmmZg/T97gwGJb1tHxPj+uSLPyNnmHWBykrSRkiSRHIm7sll0ahQKBQuLGXCXTgtrr/+ep7ylKesPtda8/znP/+sPsY111zDtddee0bfs1eoVSicDqd0TsoSTbdWW2atZzYU47qysnWgIMaMVyKEQktmtVLQdoHXv/jH+If//5W4quYnXvVmvug/3RefhgIeKXCnjV1t4KehcG6cZnvh8SGz1hjaPqGVPPa8i/iUJM5OKxrrmDYGBqtb1ykRPfUJVYmN7PrIYY1eWbLeWAM2qm6Ye904w2SIF5z3kc4ntpAGZdaFlZCqUCgUCoVCoXDxc2Ks9MbIkTKs1Y6daqgNh8NjmyVSeXSS+LxlbQiyzbsUWZ3q0Lhw9lgsFnzbt30bH/zgBzl8+DBXXnkld7zjHS/0ZRUKhUKhUCgUCoUbYd7tziCWZ/Lro935QGU1XUg0zrAzJEtYLY6/imE2EBNzH6hsxcJH1oY+bWvh2WkDZEmmUBoqbchklFZMnOHITNyCs9LsdJF+uIbto9fxKz/+/WxffzWH7nAXvvsnXsd4Yx8qS7hcZRSqsXQ+EBN0OVFZETtprVl0kY1RRVOBBFokVIY+RxprUUri1r9g/4jxENGesoiqlgkXMcsi+KlmD8s0C6eVzFaMYYEkgcSUVzHwKYsj1bgaZjCVgV7621kbmPcBHzNVo4hRhFKLPpKGSL5RZeRPJ69r48wpZx9aS1JHGyIjZ9juxIXZGrV6T2+MsmhUKBQKF54ijCrcJCEEvuu7vovPfe5zq6899alP5cu+7MvO6uO89rWv5YUvfOFZvc9CYS835py0b2yZ95aRs/QhYrUnDg5M1urVRkYXMiixbT3aBrYXPW/9xZfw/ve8A20MP/Fzv8SX3f9rMFoywbGy9QHH50V3IZKRjYfEroXrThuHXHAp4EFcnYxROC2b/lopNkaOfZOKY4uezid8zKSc2WoD+6c17RAFeFMN2MnQSpy1rFFsLQKdT7RG3LLmXWRjXIRRhUKhUCgUCpcKJ8ZKpyx18XpTMdMeHxJ7j2JjyqQsm6x9SPQxrQ6e90YcTGpbBPPnGO89j3zkI3nf+97H+vo6f/Inf8I97nGPC31ZhUKhUCgUCoVC4UZIKdMFOZdfDPOI8Z7YchBxTBcStTP0KdH7xHYbUAqMho2R5bpZz84isN44fEyElFh0getnHSAxdj6Ac1A7hUKTcqCLkdbLwvVaZYgJGqu5+rrr+Y2f/AGOfu5TrB+6LY/6iV9ivL4PrSRWPcSEj9BUmpwMUe+KiZxWTEaywD0PHrJi0UtUX8yJBsu+xrF/4viCA+Pjov9av+uUVDuDAia1YaeLJ509KAVkec0U4Jymtoq5z2y3Xu7L7Hax48rQR0nDqJ0mdok+ZhJAVsQIcx8wRolQyjE4dBn6IEKrkTPHXfPJGNcijGoqec86n9haBMZVPukSOpRFo0KhULiYKMKoi4CPfOQj5+y+L7vsMg4cOPB53cdTnvIUrrzyytXn973vfXnZy172+V7aJUFKmYUXJbpYb7KyC62tZuSKovtS4XSck3Y6sandN67RWmO1DIOOzHtizEPRaukDeGfofOSPf+N1XPm2XwHgh573cu7/9VdQWS2bCyu5k5ByPu56ANBglWbkWG0YzNqAGYZM48pAhrmPq4HV8k+tFJURS9kuynPzKdGFyKSq2GnD6nFO1YDdGLU1jKvMvI+Du5Vkmqdky899oVAoFAqFwiXGMlZ6UtuVi+pBKol17sVFtQsSq3wiVss27fIAd1SZErF8jkkp8fjHP553vvOdNE3DO9/5Tu5zn/tc6MsqFAqFQqFQKBQKN8HCy1J0HxIhiVvS0iVoiTOacWWGFAvHNp7eiyPSduvRSpFzpo2Jo/Ne3Ip8wkcRPJESTmsgslZX4jLlAylBzJmQREjVRxFd6dDytpc8hes+9S+MNw7y0Oe+DrN+kHmXWBtrrNZorVgmrDdWE8nECLmCro+0PqKVJubEyFoqY6grhUYWuddGlrXGHScw6oP0mwBNteuWNaosKXPy2YNSRDKVM4wqSx8jk8bho8fHTEyJ1ovjlFLQa4Uzmq7PzLxECo5rg/WK5MAocMZQG0VdadYax8hpKmvoQ2BcS9rHSXRNN3jPJrVl1olYbQuZM82HZJLKaInIU5RFo0KhULgIKSeZFwH3vOc9z9l9v/SlL+U5z3nOzf7+H//xH+eXfumXVp/f+c535o/+6I+o6/psXN5Fy9JpZ+nqcxx5UOIPQpvaGsb1qS02CxcHp+OcNKktISW2WxEQxZgAzaSyzH2kj5mYPRYRPv3Z7/8Gv//LPwfAo37k+Xztt34HXRBrWQAziIeW2d8+Zpbzo8FECqcU1mgM0PWBbCQeb2Ncraxjl9euhh8xtadCr6xmu/VYJGvbKEXXR5oNw+bCUztNiPmUDdhNMarMKm6wH57bwp9ZdnahUCgUCoVC4eJiY+QwWjHrAo0TwVMfEm2IpLRnIUQrGmtW9S3sxh8Uzh05Z572tKfxG7/xG1hr+b3f+z2+5mu+5kJfVqFQKBQKhUKhUDgNlssm7eAaVVt9UjehyRAr1/nEWu3oTKTtI1Zr+phWYie/1XFwWtFYg0b6uc25x5nMuDGEnEk+gYLex8GJKWKtou0jKXl+58VP5bMf/QfqyTr/z3New+jQ7WSpOkEIBqosjk7WYK1iEQPWaBqjWTeGq7Y6nDFoFMFndjrP+sjhtEarhFawPnKruUHKebWEA1A5vZrFLGcUp5o91FbjY6Kxho2R47qdKEKy2hBipkdmeDHLnC7kLCYGRjFWlhgBJc7IGdhoHChFbRT7RzVWKyqjUcNrOWnkmk/2Hp3ItLbEJM9tvXG0piwaFQqFwqVC+c1bOCUvfelLeclLXrL6/Pa3vz3vfe97ud3tbndOHu9JT3oSj3jEI87oez72sY/x0Ic+9Kxex04XVs5CwE0OCNoQaUMsA4KLmNOxrgXQCqa1Y9FHPrfpAZg2Bt2L3evCJzQKWyvef+Uf8tafl+jHb3r0U/iqb3s0Rkme9dbCgxrcnoDGSkHdh0Sq8rDtIY+pUDijmPdghti9ro9M60zVaNKw3QGsBlJ7RXh+KLY1UFnFdhdwVnPNdsfCB2mWhoJ+XJ/czvXGEFcqyTtvQ1xln09u2drIQqFQKBQKhVs809pSW71aCKmsPk4AtRcFZSHkPPLCF76QX/iFX0Apxa/92q/xLd/yLRf6kgqFQqFQKBQKhcJpskyOSMN29I31UOuNY6YC8z5SW5lZVEZzzaxjfWTph7lGHzNWJ/aNK0LMHMk908aCEtclHzNzH1l0HqXU0N8ZYvD84Sufw8c/9H5cM+I7nvsLHLzzf2Bz1uG1ZlzJsvjCB/aNK5SS3i9GmYWhoHaWgxNIZIxSZAXzNqOAI7MeZxSTkaMyBh8T263H73FKqpxmrRanpHG121Oeavawb+SYdYHKaia1YeEdOWesUmDAGkNIIjbbWQRyAo3CGMWk1litmPeBTKTWEhPY+cikcjSVoTaayzdqttpAztAMc6L6FP3wiZRFo0KhULg0Kb99Cyflla98Jc997nNXn19++eW8973v5a53ves5e8zLLruMyy677Jzd/+mwjJQAcRZaqtVvQBQVv9WKkTM0lWHWBVLOKyvMwsXD6VjXggiPfJSNhNpq+pCZ9YEQM+OhWDVK87EP/v/41Zc9m5wzD/7Ox/KwJ/wIRouL1FbnSVFC9NYbS8qyDdB7eezWR8aVXeVkKyWPu9n2VNrSyTqD5IqHRMqy1WCUFPTS1ChSlg2EzYVn3kUqo0gojILKaBZernuWIopMiBmtKxp35sOsZUOybOT2RgIWCoVCoVAoFC5dnNFsjDUp2RIhfpHw6le/mhe+UBYwfvEXf5FHPepRF/iKCoVCoVAoFAqFwpmwPD5f/nlTy8qT2opbUh/pQ2JUWw4r2FoElFL0PlI5w7yLGO3JwLSyoDIxyCzryLyHLMvf48owqgzzLvCHP/9CPvyX/xPrKh79/Ndwpy+9D7MucDQrYkg0Dplb9InUZJRRw/l/ZlRZRpUhp0w1rdheBNo+ykK4gmnj6EKiqQxWKXY6L73j8HztIEpaLqg3Tt8gieJkswc9OFe1ITKpLFsm0IXIxsSyvZDFHjKsNRaFRAc6q1aOTCEmyIoDE8fIWXxMTCrLbTaaQXym8VH6XqtFRKaAkTv9tI2yaFQoFAqXHkUYdRGQLzKRwWte8xqe8YxnrD4/dOgQ733ve7nHPe5xAa/q3LPThZUoaqv1q7g1UchLpJlWUhT6KC49IWW2u0CfEuuNOA1ppYri+yLjdK1rGyduTxJ5Z+iCRyF52mYoxv/pg+/n55/3JFKMfO23fDs/+pMvoQ2J7TZIvnUbiFnsWWMCo6Xo1Uqx0wYWgxWuVhABtLhHaaVQGiqlZftBq+FnMmGVYm2kCDFjLSz6hE+JRR/YnMs1jmpLiBmjNYs+DKKqjDaKevjZ9TFzbO4ZV+aMovCWL9WJDV2hUCgUCoVC4ZaB1opJbYsr6AXm137t13ja054GwE//9E/zQz/0Qxf2ggqFQqFQKBQKhcIZs3cpGk5v0dgZjRtp0rBc7Yyij4l5r5iOHCNnUArWGse8CwSV2ekCSkGMGXLGx8y+UcVkEAz9yRt/hg/92R+iteG7fuwV3O1e/4UQxelprbHMWk8ii/DKaGZ9ZK1x+JAwRmOUlsg5KwYBViu2FFirGTvNqLL4kLFG/t4NszFtFI0xuD1CoVPNJE41exjXIoxqKsPG2HLNViQlWUKvnWZz7gkxUTtF6yHETDIZY5Q4NVWKjETuAewb/X/s3XeYXWW5/vHvu+ouM5MChKpIU2nCAT2AigeVJIRQg3QQEJAOIihVBBFBEAtVQOlFeiAEQqKohyNF5XcUEThIF0JPmbL3Xv33x9p7ZyZ1JpnJTrk/18WVWTN7rf3MiGStee/3edxmQMuy8i5bMGcDve8MfDOQNhqJiCxflqv0RldXFzfffPOQvFZy11xzDSeccELzeOTIkfz2t79l0003bWFVQy9K0ub4vN6hqEayfu4QTcG1KWcZ1TChEiYEUUonUd72NIibQSpZNvS3da1lDEn9NYasedM8ot2n5Nn88x9/4+enHUkUBHz+y2M4/YJf4Ng2RZPvMKiGcT5uzxiMya/j2QbLGFwrDzz1BHFz1F6aZiT1zwGUfZuuakzJd3CMoRIm5L2nDHGaEYcxZWNDBj1h3pbVdfLrhnFSf6BxidKUjIwsy/Lz4vzByLUNbtGjEiakWUZ7P7ubNcf+mb5/ioiILAnd24uIzDFx4kQOP/xwAL797W/36eAsIiIiA6NnDRFpJcsYEvLORyT5OkOhn92ILMtQ8h1KzBk1l2QZ7b5LwbUpujZRkpFmeZjHNhmeazHceERpmo94qyX892+u5H8euBWAPU86n/W2/hKVMGmujZQLNpYFcQphkpJkGUGUd6xKsoyy7+C7+UKAbQxBnK+FFVyHjqJDdy0iTDJKvt0MPbUVnD5rDoa8I1TRW3CnpAWtPbh23l2qJ4gZWfYJk5RZPRGWMdTiFMe2COIEg8G28jW+mZUwD3IZg2UbSvWfeUfRZVjJyzeSm3zjOYDvWs3/XUp+/7tFze9/M200EhFZ9i1Xwaj333+fww47bJGvy7Ks36+VOa6//vo+O1KHDx/O1KlT2WKLLVpY1dJRCeaMz2uEojqKTjNBPj+WyW92HNvQWY0JopSanVCotzQdVlIwalnR39a1aZZh15P7WQauZWFZEMQJb7/+MmcedQCV7i4223pbvv+za/EL+cxtYyCOU8IkmxOCSue8V5QkdNXb3hrLIqnPmu4O8nF3lTCmGsZ4tkWcpcQx2JahXHCwTb7DIUvBdwxFJx+35zsWcZLSHaRkKbQVHEqeQ3vBJkys5gNTlOTj+IIoZVYlwliGdt+lFqVYJu5X56iw3nGrsathUa1/RURE+kP39iIiuccee4x9992XJEk47LDD+MlPfoLRPbeIiMhi07OGiLRSPqotpeDYBFE+faScZQP6vXqaZYRJSslzKHs2cZoRuhaObdHm22RZRsHzqYUJ3bWY2EmxMVTihP++90YevfUqAMYfdSaf3n48lSjFMuDYhraCQy1K8YoWnbWIhLzeJM14a0aFkW0ebb5LlkEljCk4NrWoESYC17EwlsWqRSdfc8ky0nqYyrYMlgHPzkNHi+qUtLC1hzbfIal30Fqjo4htDLMrESXXJrQMYZzSE+abzqthQpgkdCcZxrYoOjZRlNJRdLCAD7prFBy7GdzyXYuO+sdl31GjAxGRlcByFYyCRY+d6/3Lw/6OqNMvHOHWW2/lyCOPbP7MOjo6mDJlCltvvXWLKxt6aZrlM4mBan2UXqnX3ONF8R2bkpdRCROqYR6MCuKENHXUHnMZ0d/WtbUowbasekApo1xwcCzD9Lf+zZnf3I/ZMz5ivU9vzumX/hrj+CT1jk+VICarX9sxBs8xxFlGnKT0hPluA8+16anFzU5OQZjSU4vpCvJ52GkGH/WEuI5F2clncpd9G8fKb8jzf89skjQjquUzt2dVIwwZw9s8hpc8OgoOlrGABN/Nx/+FcUbRtXi/KyCIEmr1FrHtvkslzGdfL+ymv/EABlBwGm1l9ZAgIiKDQ/f2IrKy+8tf/sLuu+9OGIZMmDCBa6+9Vv8dExERGQR61hCRVim6Nj1BjOdYOFY+DaIaJv3apNxQDROyDJx6BykDDCvlE0tqsU1ajchScF2L4WWXapQwrOgy5d47ePDaHwOw82Hf4isTDqanlk+biNOMNM1IMTTmvRVch0oSk2EwxhDEKVEM3UFENUxoLzjEaUqYJEC+8bsWJQwvugwruxQdm9nViJJns1q7v1jhL1jw2sOwopt3wQpiVmsvUPIcZlciaklC2bOZ2RPSWYvBAzuCzIYUsG2D7+bdo2ZVIwqujY2hGiaMLLu01UNRRc+mbQD/u4iIyPJrufmvfX8fTvr7uiU9Z0Vy1113ceihh5Km+Q1IW1sbjzzyCNtss02LK1s6qlFCRp5Mj9MMY+bMFe6vomdTjZI8tR+neI5FNRrYja4Mnf62rm3sTjBWvqMBYwi7ZvCD4w7kw3ens9a6G3DyT66HQpmeMMa1DEXPIQOKroPnWGQZ9AQJtTjGsQ3ttkVXNR+vGKUpUZzmw/GsfHeGMeBYYEy+K8Oz8wcHz7UYUfKI0wzHMvhOvgukEifESUotSvEdC9+xWa3Nx63vwOiudz8r1GdiG1I8x6bdz0NeQZyP+gvsBN+xqYYJbnHBQafeD2CeY2HIH+xERESWhO7tRUTg+eefZ6eddqK7u5uvfvWr3H777TiOniFFRESWhJ41RKTVrPrv82txQtG16QpiKmGCY5t+bchvjK2DOWtVvmPj2Kb+u3qLWpiQZmCZjKJTJCPj0UkT+fVFZwAw7oBvssvBxxKlKUXPxs8suqoRYZxSSRM828KxDVYKBd+m7Lj4nsGzLDqKLnGa4ToGy+Sbr40x2MbCNoY232W91UrUopQsg3LBoVBfa1jc8NfC1h7afAffsagEecDLdywqYUKY5CP1bDukFiVQdEnSjLg+DtBkeRisrd51q73g4tgW1SjFmJhRHQWFokREViLLxX/xb7jhhlaXsMKaOHEiBx54IEmS32SVy2UefvhhPv/5z7e4sqUnqIdhavWuUb5jDXhUWGPWcxCn1OK8C08Qp5opvIzob+vatP67jTTN275We7r47pH789brrzBqzbU558pbaV9lNUpe3smp6NmUfJuCaxEl+ck9YUwUJ1SijM5KTDVMsDB0FF0cy1DwbIIwwbUshpc8Sp5DkmUkaUZXLca1LbI0Y2ZPhGdZfGyVUv45IIgSoiTDsS2IUnzHZmTZw7XzWuI070blWAbHtjAG2gsOUZJRqH89TvM54bUwD0aFcd59an7dzRb0AKZOaCIisiR0by8iAq+//jqjR49mxowZbLPNNkycOBHf1wOkiIjIktCzhogsK0p+HowqeDZhmhJEKZ3VmJKXUfTs+a5BpVneWarxO3nftZobvEu+jW1MsxOVbQxJmm+gdh2L5576b35y5gmkacq4vQ7k8G+fTRindAcxYRSRGWgrOHQHESl5GKnDd8F3sU3eZamt4FDyHNoLDq6xwIYwSugJElzLMLzksFpbgeHlfNRemkbYlqHdd/oV/krrY/HC+sbvzmpUX8NwqQQxw0veAtceXNtiWMkiTR2qUULRS5lZCahFhuEll57AUAkTLKBQcHBsC6/XWl+aQU8QU3Rt2osuvmMtcLKIiIismJaLYNQhhxzS6hJWSI888gj77rsvcZzP4C2VSkyePJntt9++xZUtXY2bn7SeilncWcKNMFTjOrqpWnb0t3VtY9dXlkFQq3LWsV/nX8//gxEjV+VH1/6GVdZaB8cY2osuBvrcqPcEEVlmKHs272UQxCE9YYSX5g855YKDb1u4Jp9vbRkwlsFg6KqFBFFKybWpRClJmubtYaOEWZWo+fBTixLS+rxu381v7H0nfzhyLIuuWgRAoR5i8myLkmczsxLhOzaRm5JmWT43PMsouDa+a1OLEkq9fhaLegATERFZErq3F5GV3bvvvsvo0aOZPn06m266KZMnT6atra3VZYmIiCz39KwhIssK17Yo+w49QUxHwaWTiCBKqYQJ1Sjv2OQ5+ebmLMunWYRJ3oEJ8t/Jd9THvZV9p7lu1exE5dmE1ZQgTvjH/3uaM44+hDiK2HGXPTj1B5dg2/nv8eM0o6sa8kF3SDVMCJIM205p81w6ig6ua2FhKLk2Zd8hSlOGF1ywDGGckqUZq7U7tBcdOgpeXo9nU3Bs2kc4dNXy9cWFhb+iJKUa5hu2kywPR1XDOY0KbMvQEyb4ToxlDCXfXuA6nWUZyr5DRkyb79Lmu3TWItr8/GeVkUGWr3EYDEmWEacpUZLhWhaOY4Eh7xwVJljGqGuUiMhKQv+1X4kdf/zxhGHYPLYsi8MPP3xA1zjxxBM58cQTB7u0papxo9n4c6Ddohoap819PWm9/rauNfWnkCSO+P5JR/D/nn6CtvYOrrj5btbcYKPmmETbyjuEuY6FZfJQ3CptHtUw4b3OWjOwlKZ5YKmtkI+ys4zBWPmYO6fXjf2awwoAfNhVY/rsGkA+tzvO6KxG2MZQ8Cwsy9BRcKnGCVGcNjtFGUMzFOW7VvN7Knn5+5Q8m0qYNB8OKmFCLUp4r7vGyKJPmqXY9Ta8/X0AExERERGRgZs1axZjx47l5ZdfZr311mPq1KmsssoqrS5LREREREQGWZvvkNS7JHUUXGp2HgiK04wgTpvTTHpzLEPRs5sblYue3Se40+hEVfTyP//2t+c4+9iDCWpVtv/KaC6+7FqM7VCL8t/zOxYMK3lgDDMrIUXXopbkUy7iNMVJDK5r01F0WKXNx7XzTdJd1QjXMhRdG8+xaC+4WAZGlDxWbfObG8YbnZgWFP6Kk5RqlJKREcUZPUFMLUkgzXAdG9c2dAURI4setm1RixNqcb6pfUGBpShJ6QnyQFZnLX9PyNdD+tONK4hSOonoKLj0BDG+Y2ndQ0RkJaBg1EqsMT6vobu7m+7u7gFdY8aMGYNZUksYA2Rzgk2L2+mpcVrjOouZr5Ih0p/WtZaBKE254PQTeeqPv8UvFLn0V7ez9oabANBRcmmvh4uGl9x5bpaLrk3JtekJ8t0PjmMxsuzRUXDoKHp9XmvMnI5OTnO3R4kkg/e7Agq2TcmziOIE2zakmcm7kRmI4hQyg+9YhHFGluU3/r5rNcNPva9b9h3SLKMWpbT5Llma8VFPRJZkBHFCnKZYpu/3sqgHMBERERERGZienh7Gjx/Ps88+yxprrMG0adNYa621Wl2WiIiIiIgMkWFFN++IFMQU3Pz37WGcUosT0jQjq69NWZah4OQhpIb5hYManagqQcz7/36N7x9zIJXuLjbdahvOvPRagtTCtbJ8g7cNPbU8DGQbQ8G1sTyHNT2bDHBtQxClZIBj5+saJc9gWxkFz6FtPmsEjU3UDQsLf33YExDWQ0thnBJECXGW4VgWvmvj2RZRklGwLKI0Y2ZPSNG1KXj5BJA0y+Z5P4BKkK9t1uohJ4COorPAEX6QN0Qo+w6ObeisxgRRSs1OKLg2lSBhWEnBKBGRFZ1WuWWlZxlDQpYn3JOMKEmbN3oDEdbT/Y2k/OJ2npKh0Z/WtUmacsHZ32Hqg/diOw7fvfiXbPSZzwLguVYzFFXy5t/KtRYl9fF4UPTzB4Y238kfOEzekarRYSr/XN9/Rxzb4hOrlsFAZyXGdwypa5EBlsnb3jp2/nFKBpkhyzIcy1Dw7OaNf7He9ra3fEdH3inLd23aCxlZfSRfluVBqIE8gImIiIiISP+FYchee+3FE088wfDhw5k6dSobbLBBq8sSEREREZEh1uY7+I5FJUgI4gTPsfr8/r03Qz4ub2Hj5Np8h1c/mM4399uD2TM/4pObfoZzLrsJHJ8gTqg3U8qvZ/LXO5ZhrRFFkjTvnFRw65MoqjFxllJ0LTIMbYV8w/VA1gjmF/6aVQkx5JvDO4OIOM6wbIsO12qur1jkkzJc2yKI03zsXxATpmk+OWM+o+7SNN/sDVCN8j9LvdZGFsV3bEpelq8L1X8OQZyQpk5zbU9ERFZMWuleib3++uutLmGZ4DtWHoZybIIob19azrIBBZvSLCNM8mBUoX4D5i/gxlZaZ1Gtay+/5EfcdfOvMcZw8vm/YKsvfoUkyehoc5s31gXXmid01BAmKbUooZYkeLbNyLJHe8FlZNnr979PljGsWvaxTT7/ut13cW1DyXN4t7NKHGfMSjPSFBw7f+joPZav5M0bimoo1x/AZlYyjDG4tqHNzx9aRpTn6mjFoh/ARERERERk0ZIk4eCDD+bRRx+lVCrx8MMPs/nmm7e6LBERERERWUpc22JYySJNHapRQhCnpFmvjlEmnxBRrG/ar0YJXbV4vq+Z/dEH7LX7eN57dzrrb/Qprrr5HpzyMOI0w5gM17JJ62tcxsrXrHqvIQwvukRJxkfdAY5tGF7w8R0b37HoKM7p0DSQNYLe4a/uICJKMtp8l64gytfMHJrdp2zLzDNNo9zPUXfVKCEjb1SQf7/5dQei6NlUo3xdKIxTPMeiGiULXFcREZEVg/4rLyu9opu35fQcC8cyxPXE/EBugqph0uy64zlW3jFoMbpOydBbUOvaq6/4Bdf+4hIATvn+RYzfcy+SBBzbkPeAWnjoCKAWpVTDfD627+YPC55tDbh7mOdYlDwHQ97yNknzPzsK+QMLFoRRiu9aOLY137F8C+LYFr5jM7yUH7u2wbbyGud+ANMOCRERERGRJZNlGcceeyx33XUXruty//33s91227W6LBERERERaQHLyke6lf15vxYlKV21mCDOwz99ZJCQ8cGHH7Hn+DG8/PLLrLvuJ7jz/ocYturqfNQTQJSSZWDbhrLr9FmXaKwhFNx8fF2YJAwv5ZulfdcizfJwk22ZxV4jaIa/6o0EOisRSZJPa+ko5JM1FjRNo7+j7oL65JZavWuU7wx8/cUyeTArqI809Jz84/n9byIiIisOBaNkpWdZBt+xqcUJRdemK8jHjTm26Vf7zSDOU+wwJ5nuOwqVLMvmbl17729u5cLvnwnAaWefy0FHHAVAdxARRilBnNDm2wvceZDWdzN0ViMAXCefj21hKA1wtwLkDykAtjVnh0ab7xDFKV1BTMl1SJKINIOil4eo+nvz33gosYxhWNHFcyzafEe7IUREREREhsCZZ57Jtddei2VZ3H777YwZM6bVJYmIiIiIyDKmO4jp6TUDL6yHdtJ0TseoarWHw/fZgxf++RyjVl+D39z/EB/72DoAtBUcPugK6KrFhHFKmKR4toXvWPhuvlk6TjI6azFZPXVV9G06Cvn6w8JG5Q1EmmZESUrJcwiiFLu+obu/6w+LGnWX1otP0/zPxZ120QhDNa7TuK6IiKy4tBIuApT8PBhV8GzCNM1bdVZjSl5G0Zs3vQ5zwjCNUJTv5kn3xvVk2dbYvXDvvZM45YRjADjuxJP59ndOoxol1KKE1dsLRElKmGSEScaMnhDPzud/GwNZRvMho/Fwkrd1NURJRsGzFtnBaX4a9+BzAlL5bomia/Nhd0BG/j5xmmEwA9oRoe5mIiIiIiJLx8UXX8xFF10EwLXXXsvXvva1FlckIiIiIiLLmtnViFqUrzPVwqQ55q23oFbjuEP35//99c8MGz6cm++ayHobbADknaZc22L1jgLDinmgqPf5cQJxkjSPHcs0x9pBvuF/MEJRMPSj7hprJ40/B9otqqFx2tzXExGRFZeCUSLkIZmy79ATxHQUXDqJCKI0T6VHyULDMJCHonon6xc3pS5L1+9+9zsOOGB/0jTl8MMP5/KfX4qp3xH3eRiJ5jxMBHHabNfam2MZ2gv5mL6uIKJgWYv970FYv36j61jj5l7dzURERERElg/XXXcdp512GgCXXHIJhx9+eIsrEhERERGRVknTjGqU5F2Ksl5doMKEOE0puDbdQT5CDnpvwrZIk4RTvnkET//PHymV27j6lntZe4NP01mL6Ci4fdYhCm4eeJpfxynLMhScfJxdw2B1imoY6lF3xgDZnGDT4nZ6mntz+mLmq0REZDmiYJRIXZvvkKQZtSiho+BSs/sXhhmqZL0Mraeffprdd9+dMAzZa6+9uOaaa5qhKIBhxTzk1BPE/X6YqAQxPWHCyKJHVP/3ppxlA7rxb4y6Ayg4jfDSnAcVdTcTEREREVm23XXXXRx1VD6e+4wzzuDUU09tcUUiIiIiIrIwCwouWcbgOxZFd/E2GEdJSiVICOK8k1Kfr8Ups6sRAO911iAzFFyLjqLb/F1/mqacdMKxTH34IXzf56Y77marbf6TSpjkawNEzU377QWHKM4I6mGi3gGo3gz1kXW+Peib/Id61J1lDAlZ/r9Fko/tKyzGRIwFbU4XEZEVlxIcIr0sThimYbCT9TJ0nnvuOXbeeWd6enoYPXo0t912G7Y9781zm+/gO1bzwWVRDxPDSx6+E2PbFjN7QuI0DyT1d342LHrUnbqbiYiIiIgsux599FEOOuggsizj6KOP5oILLmh1SSIiIiIisgALCy6RQUIevukJ4gGHibqDmJ4gbh7PvdbUHcTEaQrZnE5LnjMnqJNlGd87/VTuviNfv7j2xlvZ/r92AMCxDZ3VvMNUzU4ouDZRnDGs5JKmzpCEvPpjqEfd+Y6Vh6EcmyBKh2RzuoiIrJiU4hCZy0DDMEOVrJeh8dprrzFmzBhmzJjBtttuy3333Yfv+wt8vWtbDCtZ/X6YsIwZ8lF36m4mIiIiIrLseeKJJ5gwYQJRFLHffvtxxRVX9OlKKyIiIiIiy45FBZfm3iRfixNqcdKvTfKzqxG1KP9df62+qTlO50Sv0jSjEsRkQFc1AmMYVnTwHJtKffP0lZf+iF9fczXGGC775XWM3XmX5vm+Y1PysnzDdJgHo4I4IU0dLMtQ9h3KC172GDJDPequ6Nr0BDGeY+FYZkg2p4uIyIpJq+Ii8zHQMIwsH9555x123HFH3nnnHTbbbDMmT55MW1tbv87t78PE0hp1p+5mIiIiIiLLjr///e/svPPOVCoVxo0bx0033TTfrrQiIiIiMjT++c9/8uyzzzJ9+nRs22bttdfms5/9LOutt16rS5Nl0KKCS01JRhCl+cZj16bg5cGcNMuakxnm1h3EzWt31vKJD5D/vt53LFzbohYmlAsO1SAhyTIgI04zuoOINt/ll1f8nJ9dfCEAP7rkZ+y1z/7zvE/Rs5t1h3GK51hUo4GFhAbbUI+6s6x8E/pQb04XEZEVj1bGRRailcl6GVwzZ85k7NixvPrqq6y//vpMnTqVkSNHDvr7LM1Rd+puJiIiIiLSei+//DJjx45l9uzZfOELX+Cee+7B87xWlyUiIiIyaA499FBuuummAZ+36aab8txzzw1BRXPcc889nH/++Tz77LPz/frnP/95LrjgAnbYYYchrUOWH/0JLlnGkGZ5sCeIU+I0oyuICdOUjoJLNUywjJlnA3Jj7N7c1y55dp+N07UowXdswiSlo5ivB1jGEEQpD955PT85/3sAnP69cznsyKPm+31YxuBYhs5qRBAnlDyHzmrEiLLXss39S2PU3dLanC4iIisWBaNEZIXX09PD+PHj+cc//sGaa67JtGnTWHPNNYfs/ZbmqDt1NxMRERERaZ23336b0aNH895777HFFlvw0EMPUSqVWl2WiIiIyAovSRKOOOIIbrzxxoW+7oknnuCrX/0qZ511Fj/4wQ+WTnGyzOpvcKmh4NqUe4Vqgiilk4iOgktPEDeDVA2VYE4Xqsa1O4rOPN2MGs2psjQPDbUVHAyGB++/h4vOOgWAw445icOOPXmB30c1TOipd0zybAvfyS+apBkJWfN7XZobppfGqLuluTldRERWHApGicgKLQgCJkyYwJNPPsmIESOYOnUq66+//pC/79IedafuZiIiIiIiS9dHH33EmDFjeP3119loo4149NFHGT58eKvLEhERERlShUKBtddeu1+v/fjHPz5kdZx88sl9QlGlUokDDzyQLbfckjAMefrpp7n33nuJoog0TTn//PMZMWIEJ588/6CJrBz6G1zqzTL5794d29BZjQmilJqdUHBtKkHCsFL+u/00zQji/PrVekeqkmfP99qNkE7jTwvDU//9Oy747nFkWcZu+x7MyWeeS5RmpHN1XGqEoXKGOMmoxREZGQaDNde6Qy1OqMXJYq07DNTSGnW3NDeni4jIikH/xReRQZGm2TLXsShJEg466CCmTp1KuVzm4YcfZrPNNltq769RdyIiIiIiK6auri7GjRvH888/z9prr820adNYffXVW12WiIiIyJDbZptt+MMf/tDSGiZPnszll1/ePN5kk02YMmUKH/vYx/q87u9//zs777wz06dPB+DUU09lxx13ZPPNN1+q9cqyYSDBpfnxHZuSl+WdicI8GBXECWnqYFmGapSQkXcoitMMY+aEe+ZmDFBfQwF45s9P8O1vfp04ivjK+D056Zwfk6QZxhhqUT4mD/p2uQqihM5qRFcQ4VoWkZNhWxAlGSQZQZTmYSDXpuDlnZzSLGt2SxoqS2vU3dLenC4iIss3/VdfRJZIlKTN4E829xczWtayNcsyjj76aO655x48z2PixIlsu+22Q/6+c9OoOxERERGRFUutVmOPPfbgL3/5C6ussgrTpk1j3XXXbXVZIiIiIiuFNE0544wzmselUolJkybNE4oC2GKLLbj77rvZfvvtSdOUNE0588wzmTRp0tIsWZYRAwkuLUjRs6lGeWeiME7xHItqlHdjanQpqtXDV75jzTcEBGAZSABjGV569u+c/I39qdWqfOmrYznvJ1eRmLzTU5ttEcYpJS/vFNUIRXUFEWGUUo2S5vfRVnDwbIv2gkOU5F2T4jSjK4gJ05SOgks1TPLRfUMYClqao+60OV1ERPpLwSgRWWzdQdycxw0sMo2/NFu2nn766fzqV7/CsizuuOMOdtxxxyF9v0XRqDsRERERkeVfHMfsv//+PPbYY7S1tTFlyhQ23njjVpclIiIistL43e9+xz/+8Y/m8Yknnsj666+/wNd//vOfZ++99+bOO+8E4KGHHuLll19mww03HPJaZckN5qSKgQSXFsQyBs+2COprIZ6Tf1z2865HjZqBhYZvPNsiShKmv/Yy3zliP3q6u9h6m89z6S9vxLge3bWYrD4NLs3qG9Tr3ZQaoag0y7AtQ9FzGVHycGyLsm83uyeVe3VhCqKUTiI6Cm59E7s1pOGgpTnqTpvTRUSkPxSJFZHFMrsaNUNRtTBhZk/I7Gqe/I+SjDjNiOrtWmdXI2b2hNTqN+49QUxnLRqy2i666CIuvvhiAK677jomTJgwZO8lIiIiIiIrhzRNOfLII5k4cSK+7zNp0iQ++9nPtrosERERkZXK/fff3+f4iCOOWOQ5Rx55ZJ/jiRMnDmZJMgSiJGV2JeLD7oDuICZKUpI0I80ykjSfUtEdxHzYHTC7EhEl8wZt5jaQ4NLCNDoSNa7TuG6j41Hjz4WFrgquzfR/v8GxB+3F7Jkf8clNt+Dia2+jUCxiMHNdNw84QT4+L6x3jfLsfNycZ1s4dt6BqREqarx/2XfoKDr1c1Nq9RGClSBZrO99IIYVXcr1YFPBtRlR9hhWdPFdC9c2OJbBtQ2+azGs6DKi7DXrL/vOgEf+NTanjyx7rNrms1q7z6ptPiPLHmXfUShKRGQlp45RIjJg3UHcvIHuPdPaGJo7DSxjSLNsqbdsveaaa5qtlC+99FK+8Y1vDOr15zaYO1ZERERERGTZlGUZp5xyCjfeeCO2bXPXXXexww47tLosERERkZXO5MmTmx9vsMEGbLDBBos8Z/vtt6dQKFCr1YC8a9Spp546ZDXKkhmqSRUDCS4tTOO0ua9nDJDN+Xoj2DQ/H7z/Lkfuvwfvvzud9Tb8JBf/6g5sv0QY5+P+etfXGDcHNNdlbMsQ14NZhfo4QM+efwcs37EpeVk+yi5MKLg2QZyQpkMfFtKoOxERWVYoGCUiAxIlafOhpHcoquTZFD17nhvvpdmy9c477+SYY44B4KyzzuLb3/72oFx3fqIkbd7Mz/N4k0FC1vxZ6WZeRERERGT59sMf/pCf//znANxwww3sttturS1IREREZCU0a9Ys3nzzzebxtttu26/zPM9j66235k9/+hMAzz777JDUJ0tudjVqhn9qYUI1SpoBoD7q0yocy1B0bQqeTU8Qk2bZAjsNDSS4tDB9glC9/rSMISHLw0ZJvj7Qu4NTw8wZM9h3z1158/XXWPtjH+e6OyZSGrkaYZTSVYtJsgwDmPpyQhSnOI5FFKeESf5PIwTluxa+k79HyZv3vRqKnt38WYZxiudYVKOk2dFpKGnUnYiILAsUjBKRAWm0WK3VQ04AHUWnefM9P42WrY5t6KzGectWO9+ZUAkShpWWPDA0ZcoUDjroILIs45hjjuH8889f4msuyFDtWBERERERkWXPFVdcwTnnnAPAL37xCw4++OAWVyQiIiLSOq+99hpf+9rXeOaZZ3jvvfcwxjBy5Eg22GADvvSlL7HPPvuw2WabDcl7v/DCC32ON9xww36fu8EGGzSDUTNnzuTdd99ljTXWGNT6ZMkM9aSK/gaXFqXRvakR4mlsFvcdK7+mYxNEeX3lLOuzmbynu5sD996DF5//J6uvsQa33DOJ1dZcC4AuImphQlc1AgOOZQjshCTJSMiYUQmp1GJcx8Jy8lBUm5+HwEqejbOQjdmWMXi2RVBfy/Cc/OOyP+Bvf7E1Rt0tzfcUERFp0Aq9iPRbmmYEcf5gUq0/oJQ8e6GhqN6GqmXrn/70JyZMmEAcx+y///5cccUVmMVsg7soQ7ljRUREREREli233XYbJ5xwAgDnnnsuJ554YosrEhEREWmtN998s0/XJoBKpcJbb73FH//4R374wx+yyy67cPXVV7P22msP6nu/+uqrfY4//vGP9/vcuV/76quvKhi1DFkakyr6E1xalDTLCJO8tkJ9XcSvj4YruvkagOdYOPVRd9VwTlemWq3GoQfsw//7618YMWIkv7n/ITb+9Ceb32+775IkGbYxYAxpBj1BAmRkEYRhPr2i4Nq0FeZsVi+6dr86PzXCUGl9PWNxO2aJiIgsjxSMEpF+q0b5jXdY34lhTN6CdUHSNKMWJYRJSprlLWYzMjprEW6vwNCStGz929/+xvjx46lWq+y8887cdNNNWNbQjKwb6h0rIiIiIoNt5syZPP7447z99tvMnj2bNddckw033JDttttuyO6Z5ufNN9/kueee47XXXmP27Nn4vs+IESPYdNNN+Y//+A88z1tqtYj016RJkzjkkEMAOPHEE5tdo0RERERWdo7jsMoqq+D7PjNmzKC7u7v5tSzLmDRpEk8++SQPPvgg22233aC9b2dnZ5/jkSNH9vvcESNG9Dnu6uoalJpkcCyNSRWLCi71RzVMyLK8m5PnWJj6dSHviOQ7NrU4oejadAUxlTDBsQ02GUd/42Ae/+PvKbe1cdu9E9l4k03z77Pg0mNiZlUikjSjvejiOxaZAdcyRHEeYHIdm4JlGFH0cOthrJLXv1AUzBn518hDKRclIiIrE63Mi0i/BfUWsbV61yjfsea7myJKUqphQhinzO/e2sJQCRPe7awyst43dXGCUf/6178YO3Yss2fPZvvtt+fuu+/GdYemG9PS2LEiIiIiMlhef/11Tj31VCZNmkQYhvN8fa211uLYY4/ltNNOw3EG/7EwCAKmTJnCxIkT+d3vfse///3vBb62VCpx4IEH8p3vfIeNNtpo0GsRWRx//OMf2WeffUiShK9//ev87Gc/G7KutCIiIiLLg6222op9992XMWPGsMkmm/TZ3PDyyy9z77338tOf/pT3338fgA8//JDddtuNp556ig022GBQaugdwAIoFAr9PrdYLC70Wovj/fff54MPPhjQOS+//PISv++KZmlNqugdXPJti65aQGc1pOy7uLaFMWAZ8GyLgmvPM+UiiPPf9adpBpZhViWsn2fq5xosk38/Bc8mTFOCKGVWT8j3TzmOKZMfwvd9brrjHrba+nNzvv96QskyeVcny0C5PiJvRMmlsxaTpBkZGVGS/+k71iLH582tEYRqPNbo8UZERFYmCkaJSL81btAbrVbnF+zpqe+CaIjilFqSkKUZWZbfbEdpRpxkpHYetprRE1L2nQF1UXrrrbcYPXo077//PltuuSWTJk2iVCot4Xe4YEtjx4qIiIjIYJg4cSKHHHLIPLupe5s+fTpnn302DzzwAA899BCjRo0a1Bo22GAD3n777X69tlKpcN1113Hrrbfy05/+lKOPPnpQaxEZqGeeeYZdd92VWq3Gbrvtxq9//eul2mFNREREZH5efPHFIbv2qFGjFtp96ZJLLmG11VZb4Nc33HBDTjvtNA477DD22GMPnnzySSAPR5144olMnjx5UOqs1Wp9jgfSedb3/T7H1Wp1ieu56qqrOO+885b4Oiu7gU6qmJ9ifTJFnGaEcYrnWPOdVOE6hve7IsI4JcnyoNGsSkjRs/MwlDFESR6A8hyLomdjW4ZqmNBZjahGCZYBy8qDS22+la+bZJDUt4nX6nUUPZssyzj39NOYePcd2LbNL667mc9u90WCOO88FcYpYZLmXahsi1ULDm2eQy1KcGwL37Vx6ustnmvj2tBWcOgoDnyDeFjf+N4IfA1khKCIiMjyTsEoEem3uVuszn3j3LuTUhAlzQeAuYVxSk8YE8RzHi56gpg0y+goLPqG/sMPP2TMmDG88cYbfPKTn+TRRx9l2LBhS/bNLcTS2rEiIiIisqSeeOIJ9ttvP4IgaH5uhx12YKeddmLEiBG88sor3HLLLbzzzjsA/OUvf2H33Xfn97///YB2Wy/K3Luv1157bbbffns+85nPsNpqqxFFEf/3f//Hfffd1+wmVa1WOeaYY4iiiBNOOGHQahEZiBdffJGddtqJrq4uvvzlL3PnnXcOSVc1ERERkYHaeOONh+zaF154IaeffvoCv76wUFRvo0aNYtKkSWyxxRbNjRIPP/wwzzzzDFtvvfUS1zn3M8v8uuMuSO9nJJi3g5S0Tn8nVSyMZQyebRHEKbX6ukMQp5R75eG6g5ieIMa2DBng2zY9QUItjOmqRhgrDx+1ew5evbPUR90htgUZ+Rg937Uo+y5RnGLZ+TUbG8Ity1BwbEq+Q1ctYlYl4pc//RF33Hgdxhgu+Pkv+cJXxtJVi+ep37FMM5wFsEq731wrKbo23UFMm+8wuxoRJRlplg3oZ5RmGWGS/5wL9XUN39HmDxERWXnot3si0m/GANmcFqtpryHUPUHcDEV1BRFh/WNTb//q2hYWhpQs7yoV5QGr7iAmIWMVfKphgmXMQjtHdXZ2Mm7cOF544QXWWWcdpk2bNugdDua2NHesiIiIiCyuWq3WJxTleR433ngj+++/f5/XnXfeeRx00EHce++9ADz11FOcc845XHzxxYNaj+/7HHTQQRx22GF84QtfmO9rLrnkEi644II+u6xPOeUURo8ezac//elBrUdkUd58801Gjx7Nhx9+yGc/+1keeOCBQQ0MioiIiKwMVlllFc466yyOPfbY5ucmTZo0KMGotra2Psdzd5BamLk7RM19LWmd/kyq6I9GGKpxnd7rF7OrEbX6pmfbGGpRQk8Q41gGz7UJopQoSYmSmJ5ajGMMvmvjORY9Yf66Vdp8yGB2JcSxLcqOQ5T02hieZARRmoecXJtfX3cZV/40f86+8Cc/54ADDqAW56P45g5Teb1CSnNP1yi6+cZyz7FwLEOcZlTDga0tVMO8Q5VjGTzHwtSvKyIisrLQiryI9JtlDAlZ3uUoyYiSlIJrEyVpc3xe71BU7/azvUVx385QUZzRWYvoKLj0BDF+PUg1t1qtxp+GUxsAAQAASURBVO67785f//pXVl11VaZNm8bHP/7xIfyOc0trx4qIiIjIkrjiiiua3ZcAfvCDH8wTioJ8l/Xtt9/OZz/7Wf7xj38AcPnll3PSSSex9tprD0otRx11FCeccALrrLPOQl/nui7nnnsuYRhy4YUXAhBFERdffDHXX3/9oNQi0h/vv/8+o0eP5q233mLjjTfmkUceob29vdVliYiIiCyX9txzzz7BqMZovSXV0dHR53jmzJn9PnfWrFl9jgfjXu/YY49l7733HtA5L7/8MnvssccSv/eKZFGTKvqrcdrc1+sO4mYoqjH1ouDaZGQkaUZbwcHCECQJlSDJN0rXx9wFSULRdXAsw+xqhG3yzk5l32muY1jGkGb5eklQ31x9w/W/5qLzzgbglLPOZZ+vH47nWH0CUA1pllENY8BQcC2qYT6NwzIG37Eouvn0ilqcUHRtuoKYSpjg2KZfUy2COGmu3zQ2fPuOrWkWIiKyUlEwSkT6zXesPAzl5DsogjilnOW7EyAfn9cIRbUX8nazc2u0bLWMYVjRJc0ykhSCKKVm52PmKkHCsFLfB4Q4jtl33335wx/+QHt7O1OmTFlqXQSWxo4VERERkSWRZRk///nPm8frrLMOp5xyygJf73keF198MePGjQPyAPovf/lLzj///EGp58c//vGAXn/OOedw1VVXMXv2bAAeeuihQalDpD9mz57N2LFjeemll1h33XWZOnUqq666aqvLEhEREekjW45+l7jGGmswbNiw5v39+++/PyjXXW+99focv/nmm/0+94033uhzvP766y9xPaNGjRryaQYrg4VNqhiIxmmN6xgDUZLSE+Sj6xqhKICSZ7NKm0eaZlTChDBJcR2LNj9fs6hFCd21mM5aRM0kWAayFEa1+4xs8yl6824IL7g25Szj7rvu4genfwuAI48/me989zTSLMN3LOIkoxLGBHHeoaoWJWCg6DoUHIssq3//GSRkzfotyxAnKQXPJkxTgiilsxpT8rL51tL4OVbDOaEo37Wao/pKvrpFiYjIykUDZEWk34qujYFmy9Ysg55aTNjoqBTN2XUwv1BU4zVZluFYBse28F2bEeW8e1QzYFVvJ9uQpimHH344Dz74IL7vD1rr5f4a6h0rIiIiIkvqL3/5C2+//Xbz+LDDDsNxFr4PZsyYMX26b95///1DVt+iFAqFPuP2PvjgA7q6ulpWj6w8KpUKu+66K3/7298YNWoU06ZNW2SnMxERERFZtGKx2Py4UqkMyjU32WSTPscvv/xyv8995ZVXmh+PGDGCNdZYY1BqkiXX+H17o4NRlKSLdZ3GOkXjOpYxVIJ8zaEWJs1QVEfRoew7WCZfo+gouowse5R9G9c2uLZFm+/guwbHMiRJhmUMZd+h6M05d34em/Yopxx7BFmWsfdBh3HCaedQixKSNKOrGucBKdfGtgxpBp5j49k2QZTwXleN1z/s5s2PKnzQFdBZiwjjlAxI0owgzkNSHQUX382XdythwoyekM76qMAgzrtNdVYjZvSEfUJRjSkeZd9Z7M3fIiIiyyv9zSci/WZZc1qzNuZPz6yE+e6GeotYY2juOphbGKfN8FOh3rLVsy3KvoMxEKdZ80a/Wg9ZZVnGySefzM0334xt29x9993813/91xB/p3313mECg7tjRURERGQwTJ48uc/xmDFjFnmOZVl89atfbR7/85//5PXXXx/s0vqtra2tz3FPT0+LKpGVRRRF7L333jz++OMMGzaMRx99lI022qjVZYmIiIgs95Ik4aOPPmoeD1Y3zuHDh/fZ3NHfEX1hGPLMM880jzfffPNBqUcGh18fL1eorz0EcTrg38E3JlX0vo5rGYI4X2dorDeUPHu+4+csYyh5DsNLHiPLHiPKHsNLPqM6CljGEEVpcwxd703dvT35p//hiIP3J45j9vzaPlxwyc8wxvBRd8isSkRnEJFkGR91B7zXVWNWJeDND3t48Z3ZvPheJ2/PqvJhd8j7nVXenlXho+6A2dWImT0htTCh7DskWUZ3LQ9HtRec5gb2IE7pqsV0VmO6anlHqiwDxzK0F5xmKKro2bT5GiYkIiIrHwWjRFYgaZrRE8TM6An5sDvgg66AD7sDZvSE9ATxAm/YB6LRYrXg2fhuPlqvqxYxsxqSZhmeY82zWyLN8vawXbUIyHcnNB4+SvU2r159h0ItbnSNyh9ifvCDH3DZZZcBcOONN7Lrrrsu8fcwUEO5Y0VERERkMPz9739vfuw4Dp/97Gf7dd7nP//5PsfPPvvsoNY1EK+99lrzY8uyWG211VpWi6z40jTlkEMO4eGHH6ZYLDJ58mS23HLLVpclIiIiskJ4+umniaKoeTz3CLwlsfPOOzc/fuWVV3j11VcXec7jjz9OrVZrHu+yyy6DVo8suflNqmhssO6vapg0g0CeY9H4zXtG/nv5xqbuRrhpUfLJF/n1kiwlyTJsY8iYMzmjt7//7//j4H0nUKvV2HHsOC775a9oK3p0BxFdtYg4SamFCa+938O7s2vM7I7494wqH/QE9NS7WQVRvgHdGIOFYWZPyPudNWpRQleQj/XrKLgYAz1BTMG1GVH2GFbMO0i5dt7hyrUNvmsxrOgyouw1N7KX/TkBKRERkZWNglEiK4AoSZldifiwO6A7iImSlCTNSLOMJM3nUHcHMR92B8yuRIsd7AFw6x2eADoKLm59N0c1iOmsRgRxShAnhPU/u2sxsypR80HGd/M53ZCHopx6IMqrX6cR3kqzjMsuu4xzzz0XgMsvv5yDDjposeteEkO1Y6VxXREREZEl9cILLzQ/XnvttSkUCv06b4MNNuhz/Pzzzw9qXf315ptv9tnB/Z//+Z/Ydv9+YS0yUFmWcfzxx3PHHXfgui733Xdfn1GOIiIiIrJkGhtdG0aPHj1o195zzz37HF933XWLPGfu1+yxxx6DVo8suflNqqiESbPb06IEcdIcGdcIPvmOTVRfa2hsxvbns6l7QRqbnMMkxbEsXNsiTOd8rrf/e/EF9p+wG91dXWz3xe257qbbcF03XxPJ8vf7qCdkVjVk+uwKXUFEJYpwbIPvWPiOoeBaZClUopRZ1YhqFFPy8kkbs6sRlTAmiFI6axFl38FzLGxjmoGyjoLL8FKj05VHR8FtBsQKjs3IsqdOUSIislLTqrzIcq673iGqFifN3Q+dtYhZlZCZPSGzKmGfWdS1OJ853R3Ei/2ebb4zZ5eB59JWcDD13RJxnLdy7apFdNdigjghyzIcy9BWcJqhqKJrNwNWMGesXCNvdOftt3HSSScBedeo448/frHrXVJDtWOluICRgyIiIiID1XuXdO/REosy92v7s9t6KPzkJz8hTef8cnmfffZpSR2ycvje977H1VdfjTGGW265hZ122qnVJYmIiIgss6rV6oBef9ttt3HnnXc2j4cPH87uu+++0HM+8YlPYIxp/rMwO+64I5tttlnz+PLLL+/TfXZuTzzxBHfffXfzePz48RqfvAyae1IFQGc1zidhLGCTcprlEzQ6q/lah+9azXWLkm83z2tsxnbt/i+JNoZvpGk+JcO1LbLmpu45r3vj9dfZd4/xzJjxEVv8x1bcfMc9FItFoiSlEia4jqE7jKmFCTN7IjLyoFKWQRCl2Jah4Dr4jk3Rt3DsfCP8zErEu51V4sabZdAdRARRSi1KcO28plXbfNp8B9e2sC2DZQy2ZXBtizbfYdU2n2Eld0Dfu4iIyIpI8WCR5djsatRs21oLE6pRMudGubckI4hSHMtQdG0Knt18oFjc1qnDii62ZZjRE+I7NsNLLtUoxbHAsy3SLMMyBmPlN/pOrxvvktc3FAVzAlHGwKMPP8RJx34TgG9961ucffbZi1XjYGnsWKnFCUXXpiuIqYRJfUfHosNNC9qx0hipJyIiIrIkqtUqcTwn9D5y5Mh+nztixIg+x11dXYNWV3/9z//8D1deeWXzeK211uLII48c1Pd4//33+eCDDwZ0zssvvzyoNciy4dJLL+WCCy4A4Oqrr2bfffdtcUUiIiIiy7YJEyaw0UYb8c1vfrNPIGlulUqFSy65hPPPP7/P588++2yGDx8+aPVYlsWPfvQjdtttNwB6enrYddddeeSRR/jYxz7W57XPPvss++yzT3MThmVZzXtBWbY0JlX0BDEdBZdO8hBQpb7u4dlWvuHY5GsJYZwSJmlzXcF3reZaR7keFGp8rfFnf7tF5edkzXMNgGGe67337jvsu8d43n3nHT756Y25/d4HaO/oAOZsrA7r4/HCOMEyFr5jM7saUo1SfMfCc+x6yCkPNaVZRjXMp3DUopRZlXBOhyjLUAljHMtQcG2COKEdh7LvUPYX+0cvIiKyUlAwSmQ51R3EzVBUZy1/SIA8WOTXdzA0bqSjJCWoz9HuCmLCNKWjkLdytYxZ7Baqbb7DyLJHZzXCsvL51b1H5fVmTB6Y6j0+r7dGa9o/P/E43zz0IJIk4dBDD+XSSy9d5C6hpaHk58GogmcTpvm8785qTMnLKHr2fB+q8oeYOaGouXesiIiIiAyG7u7uPsf9HaMHUCwWF3qtofbOO++w77779ukWdeWVV9LW1jao73PVVVdx3nnnDeo1Zflz/fXXc+qppwJw4YUXctRRR7W4IhEREZFlX7Va5fLLL+fyyy/nk5/8JNtssw0bb7wxI0eOxPd9ZsyYwd/+9jcefvhhPvrooz7n7r///nz7298e9Jp23XVXjj32WK666ioA/vnPf7Lxxhtz4IEHsuWWWxJFEU899RT33HMPURQ1z/vxj3/MFltsMej1yOBo8x2SNKMWJXQUXGp2QjXMN4MHcb7GMTfHMhQ9u/l796JnN9c7jAGyOdMqFtR5an5MPYFlDGT0vY4xMHPGDPbdc1def+1VPr7uJ7jz/kmsssqq+fukWXO9oxYlJGlGlKaUPZuuWtTc3N5RdCm6c68tGLyih2NbdFbzdR/XzgNSaw4r0lmL8eyEME7xHItqlMyzCV1ERETmpb8tRZZDUZLSUx+F1zsUVfLs+YZ0Cq5NuVdIJ4hSOonoKLj0BHEzSLU4Gg8ZnmPxfmdAlKYYk++iMMZgmfxrhXlu8OdIs4wwSfnn3/+XY76+H0EQsMtuu3PddddhWctGi9eh2LEiIiIiK54XX3xxyK49atSo+XaDqtVqfY49z+v3NX2/77bSgY7JWBLd3d3suuuuTJ8+vfm5448/nj322GOp1SArj3vvvbfZiey73/0up59+eosrEhEREVn+vPTSS7z00kuLfJ1lWXznO9/h/PPPH7JNr5dddhldXV3ccsstQN456tprr53va40xnH766c2QvCy7GpMqeoKYgpsHnsI4pRYnpGmWd3Ay+ZSHgmPjOXN+z172nT6bwC1jSMjyyQ1JvoG8EaBaFMtAQv4+YZzm6x1Wfu1KTxdH7rcHLz7/T1ZfYw3ufuBh1lxr7ea5tSghA6I4pRolBHGKY+z6eL0Yz7EZUfIoewteoi26+evDKCVOMiBfE/LsPAxVixM8xyKIU3WLEhER6QcFo0SWQ5Vgzvi8Riiqo+gsdKybZQxl38GxDZ3VOJ9FbScUXJtKkDCstHhBnaJrNx9S2gsOcZpRdOcdlbcw1TDhlZf+j6MP2ouenm6++KUduPOOO3CcZes/UYO9Y0VERERWPBtvvPGQXfvCCy+cb5hj7g5RYRj2+5pBEPQ5nruD1FCp1WrsvvvuPPPMM83P7bzzzvzsZz9bKu8vK5dp06ZxwAEHkKYpRxxxBBdddFGrSxIRERFZbhx88MHYts3TTz9NT0/PQl9bLpfZe++9Oemkk9hyyy2HtC7btrn55pvZZZddOP/883nuuefm+7ptt92WCy64gK985StDWo8MnjbfwXcsKkFCUA8A9Q5A9WYA37Ep+fY8m5F9x8rDUI5NEOW/vy9nWb9G6nmORZTkG6LjNIUMPMsiqNU44RsH8r/P/JURI0Zy58TJrLveen3ODZN8naASxwRxgqlfryeIsY2F71gUFxHQsozBsSwyB5L67uvOWsyoDp+eWkKS5J8bSBcsERGRlZlW50WWM2maEcR5MKpaH6VX8uyFhqJ68x2bkpflnY7CpDmLOk2dfOfEAFmWwXfyMXNF16YriKmECY5t+lVTECe8/OprHLn/nsyaOYMtt9qaO+66l1Jp6SzKDdRg7lgRERERGQxzj52bu4PUwszdIWqwR9jNTxRF7L333jz22GPNz335y1/mnnvuGbJg/LHHHsvee+89oHNefvllda9aATz11FPsueeehGHI3nvvzS9/+ctlYlS3iIiIyPLi8MMP5/DDDydNU/71r3/x0ksv8dZbb9HZ2UkURbS3tzNy5Eg222wzPvOZz2Db/fs9dW+vv/76Yte3zz77sM8++/Dcc8/x7LPPMn36dGzbZq211uJzn/sc66+//mJfW1rHtS2GlSzS1Gl2XUqzXr9/N6YZMFrQukZjU7fnWDiWIU7zqRr92dRdcG0q9U3RtrGAjCAM+d6Jh/Pk43+k3NbG7fc+wKc33mSec+uT8qgFCWGc4blW/fMZrjNn8sSiePVgl2cZUgxxkhLHGRn5ZvMRZVAuSkREpH+0Qi+ynKnW27CGcUqc5jOui97AHjaLnk01ym/qB2MWdcnPg1EFzyZM03xUXzWm5GXzHe0H+UNANUx48+13+Ob+e/L+u9P55Kc35vZ7H2D1VYcvVh1Ly2DtWBEREREZDMViEcdxiON81PLMmTP7fe6sWbP6HLe3tw9mafOI45j99tuPhx56qPm5L37xi0yaNGlIu1WNGjWKUaNGDdn1Zdn03HPPsfPOO9PT08OYMWO45ZZbFmuhTkRERETy8Xif+tSn+NSnPtXqUuZrs802Y7PNNmt1GTLILCufhLE44+KWZFN3vqaRr2F4jkWWpZz7nRN47NGH8X2fm39zL/+x9Wfne26W5es31TAhSjLaCw5dQYRjWTiOwTKmX4Em0/zT4Fp556pakm+Wj9K8K5X2fIiIiPSPglEiy5nGuLZavWuU71j9av3am2UMnp3Pnx6MWdSubVH2HXqCmI6CSycRQZTmXamivN1sYxdE46EgTFJmz5rF0QdO4I3XXuFjH1+XO++fxMfWXH25CBANxo4VERERWfFkLdquud566/Gvf/0LgDfffLPf573xxht9jodyN3WSJBx00EHcd999zc9ts802TJ48mXK5PGTvKyunV199lTFjxjBz5ky222477rvvPnx/MR94RERERERkubQkm7qjOH++byvY/PS8s5j2YN7l+Ipf38J2X9x+vu+XZhnVKKa7FmMMuDa4jgU18FyDa1tkGXknqAVstm5o/HbBGHAdQxJCECX4jt0MRA10bUhERGRlpWCUyHKmMTM6rfdjXdwQUSMM1bjOks6ibvMdkjSjFiV0FFxqdj6qL04zgjhtBroaqtUKJxy6H//3/HOsNmp17po4mfU/8fHlbtTckuxYERERERksm2yySTMY9dZbb1Gr1SgUCos875VXXpnnOkMhTVMOPfRQ7rzzzubnttpqK6ZMmUJHR8eQvKesvKZPn86OO+7IO++8w+abb67wnYiIiIjISmpxN3VnGTi2xfCyy5WX/Ih7b7keYwwX/PyXbLvDGGb0hAs8N4jyTe0FzyGph6DKnkOcZXkHqyghSvKN1gsLNoWNNRXLYMg7WIVxiu/YePVOuP4iwlUiIiKS09+YIsuZRn6p8efi7ghonDb39ZbEsKLbHMdXcG1GlD2GFV1818K1DY5lcG2DyWJOO+ZQ/t9fnmLYsOHcef8kNtvkU3QU3CUvQkRERGQltMUWWzQ/juOYv/71r/0674knnuhzvPnmmw9qXZB30TriiCO49dZbm5/bYostmDZtGsOHDx/095OV24wZMxg7diyvvfYaG2ywAY8++igjRoxodVkiIiIiItIibb5Dwc2DRB0Fl/aCg2Pl4+yCOKWrFtNZjemqxQRxPRRlGdoLDvfecDXXXfYTAC669Bfsu99+izy36Dq0FRxGljwMYBnoKDkYwLYMjmWRwTybyXtLs4y4Pi6vYNtkZKRZPl7PsUweyAKKrkaFi4iI9IeCUSLLmUagqfHn4nZ6apw29/WWVJvvMLLsUXBsDHlnqo6Cy/CSx4iyR7tvc9ZJR/P7306lWCxy130P8MVttl7uOkWJiIiILEt23nnnPsdTp05d5DlpmvK73/2uebzJJpuw3nrrDWpdWZZx9NFHc8MNNzQ/t+mmm/Lb3/6WkSNHDup7iXR3dzN+/Hiee+451lxzTaZNm8aaa67Z6rJERERERKTF+rup23cthhVdRpQ97rntJs4/5ywAzvvhjzjk8CP7de4awwoUHBvXsWgvuBRdhyTNu1dFSdYcoVeLkjldoebSDGgZg2MbKkFCkmVgGQqejWXAd2wsS6P0RERE+kPBKJHlTKNDVOOGN0oWvKtgYRo33I3rDOYsate2GFZyWbXNp813cG0L28qbvZ556rd44L57cF2Xe++9jzFf+dJijwMUERERkdx//ud/stZaazWPb7jhBuI4Xug5U6dO5c0332we77nnnoNe10knncS1117bPN5444157LHHWHXVVQf9vWTlFgQBEyZM4KmnnmLkyJFMmzZt0IN+IiIiIiKy/FrUpu7hJY+OgovnWDxw791851vHA3D66adzzlln9Ptc2zJ0FFxGlFxW7/ABSLN8LSZKUlzb4Dl5p6eeMKYaJX02wEdJSq0+js91LXrCmJ4gxjKGDt+pj9KzKPnqFiUiItJfSiOILGcaM6ML9RvnIE4H3DUqzTLCeqCqcZ2hmEVtWYZy/WFj1Tafn1/0A266/lcYY7jtttsYN26nQX9PERERkZWRMYaTTjqpefzWW2/x05/+dIGvj6KI7373u83jQqHA0UcfvdD32GGHHTDGNP95/fXXF/r673znO1x++eXN40996lM89thjjBo1ahHfjcjAxHHMgQceyLRp0yiXyzzyyCNsuummrS5LRERERESWMQva1G0Zg20ZXNviT7+fxnHf/EazA/KPfvSjfp/b5jus2uazxvACjm0xvOzhuxaOZYiTjCzLqEYJZc9uhqNqUUJnNaKrFjG7GjGzEhLGaR6QCvOv+a5FyXMYUfYxwCptvjaci4iIDID+1hRZzhTdOTsSGrOsq2EyoGtUw6Q5J3tpzaK+5JJLuPDCCwG45ppr2HvvvYf0/URERERWNieccAJrr7128/h73/sev/nNb+Z5Xa1W44ADDuAf//hH83PHHXcc66yzzqDV8r3vfY+f/OQnzeONNtqIxx57jDXWWGPQ3kME8nGNRx11FPfeey+e5/HAAw/wn//5n60uS0RERERElmFzb+perd1n1Taf5555igP324c4jjnggAO48sorMXNN21jQuSPLHmXfwaqHpMq+g2UMq5R9PNdqjtBrhJ9cOx/Bl2QZ3UHCjErIzEpIJUyI0qw5es+xDB1Fl1XaPCAfC9hRdJf6z0xERGR55rS6ABEZGMsy+I5NLU4oujZdQUwlTHDs/POLEsQJlXqQqug1ukUN7SzqX/3qV82OBD/+8Y858sgjh+y9RERERFZWxWKR3/zmN+y4444EQUAYhuy///5ce+21jBs3juHDh/PKK69wyy23MH369OZ5n/vc5zj//PMHrY5///vf/PCHP+zzuVmzZvGlL31pQNe57bbb2GabbQatLlnxZFnGd77zHa6//nosy+I3v/kNX/3qV1tdloiIiIiILIf++te/sssuu1Cr1dhll1248cYbsazF7y/R5jskaUacpLTHLp5tQXf+tVqUUIuSfPSeMfiOIYwtLCsfn+dZFlGa4juGjmIerPIdm5Jns/qwwiB9xyIiIisPBaNElkMlPw9GFTybME0JopTOakzJyyh6NpaZN+SUZhnVcE4oynctCvUuUUM5i/qee+7hqKOOAuC0007rM7JFRERERAbXF7/4RW6//XYOOeQQurvz37j+/ve/5/e///18X7/11lszadIkisXioNWQJPN2M/3ggw/44IMPBnSdarU6WCXJCuqiiy7i0ksvBfLNGHvuuWeLKxIRERERkeXR888/z0477URXVxc77LADd911F6675F2ZhhVdbMsQxCkAaw0vMrMnoDOISeKUWpwABs+1KHs2jmOI4owoTSl5DkXXxnctVin7lDybYSVPI/REREQWg4JRIsuhRhvWniCmo+DSSUQQpVTChGqU4Nl5W1ZjIMsgjFPCJCXL8vN916KjkN/Ul+uzsIfC1KlTOeCAA0jTlG9+85vNUXoiIiIiMnQmTJjAf/zHf3DKKacwefJkwjCc5zVrrrkmxxxzDKeffvqg/LJXZGm7+uqrOfPMMwH46U9/ymGHHdbiikREREREZFmWphnVKCGIU9IsI8vAGPj3G68zfsxoPvroIz73uc/x4IMPDurmoTbfwR9Z4t3ZNTqrESPKPiXfoRYmxGlGmmWEcUqUpCQh2LbFsIJD0XPoKDoML3lYxlD0bNp8LeuKiIgsDv0NKrKcarRhrUUJHQWXmp1Qrd9IB3Ha3IHQm2PlN8+NTlFDeSP95JNPsueeexJFEfvssw9XXXXVPLO4RURERGRorLfeetx3333MmDGDxx9/nLfeeouuri5WX311NtxwQ77whS8MeCTAH/7wh3697hOf+ARZI5EvMgTuuOMOjjvuOAC+973vcfLJJ7e4IhERERERWVZFSUolSAjihLmfVN975x323GUc70yfzqc+vTF33vsghVJ50GtwbYuPjSzRWY34qDvAtQ0lz6lvak/IMnAti6JnY9uGgmPjOXOe2cu+o1CUiIjIEtDfoiLLsUYb1p4gpuDmgaew3n41TefseLCspXsj/eyzz7LzzjtTqVTYaaeduOWWW7DtoRvXJyIiIiLzN3LkSHbfffdWlyEyaB5++GG+/vWvk2UZxx13HOedd16rSxIRERERkWVUdxDTE8TN497rJzM+msEhe43njddf4+OfWI87Jz5EadhwZvSEQ7Z+0lF0KXr2AoNavRnAd2xKvq3xeSIiIktIwSiR5cCCWrxaxuA7FsOLLrUoJYgTPMfqE4DqbWncSL/yyiuMHTuWWbNm8fnPf5577rkHz/OG5L1ERERERGTl8fjjj7PXXnsRxzEHHHAAl112mbrSioiIiIgIMO86Smc1IohTLJN/LQPSehKpp7uLow76Gv/6vxcYtfqaXHP7/fgdq1ILEwqeTU8Qk2YZHYXBHz3v2hbDShZp6ix03afo2liWnndEREQGg4JRIsuwhbV4JYOEjChJm4GnYUW3OUqvFTfS06dPZ/To0bz77rt85jOf4aGHHqJcHvy2syIiIiIisnL53//9X3bZZRdqtRq77LILN95444DHQYqIiIiIyIpnfusoPUFMJUwAmBVEhFGKMQbPsSiamJOPOJB//O0ZRowcyY13P8DH1v0EcZrRFcSEaUpHwaUaJljGDNnkDcsylH2Hsj8klxcREZFeFIwSWUYtrMXr/Ebk1eKEWpxQ9h1Glpd+h6aPPvqI0aNH89prr7HhhhsydepURowYsdTrEBERERGRFctLL73E2LFj6ezs5Etf+hJ33XUXrjv4O7dFRERERGT5Mr91lJ4gZkZPQJZBT5QQJxm+Y9FesLFJ+dbRh/Hk//w3be3t3HHvg2y5xeakWUY1TKiECUGU0klER8GlJ4jxHUuj7ERERJZzCkaJLINmVyNqUb6boRYmVKOEOJ3PtOkkI4hSHMtQdO0hb/G6IN3d3ey88848//zzrLXWWkybNo3VV199qb2/iIiIiIismP79738zevRoPvjgA7baaisefPBBisViq8sSEREREZEWW9A6SlctIkoywjilEuahKc82BGHMhacfzx+mPoLvF7jm5rvYcqutgXzqRtl3cGxDZzUmiFJqdkLBtakECcNKCkaJiIgszxSMElnGdAdx82a+sxYRRCmQd4hq7EywjCHN8jF6QZwu9RavvQVBwB577MGf//xnRo4cybRp0/jEJz4x5O8rIiIiIiIrtg8++IAxY8bw5ptv8qlPfYopU6YwbNiwVpclIiIiIiIttqB1lCzL8rWRgkNXNaLs5WEnyxh++oPTeWTiPdiOw0+vvYnPfG47eoKYcq91FN+xKXkZlTChGubBqCBOiGOboL4ek2a9pnoYg+9YFF0byzIt+VmIiIjIoikYJbIMiZK02fa19818ybMpejaW6XtjXXBtyi1s8RrHMQcccAC/+93vaGtrY8qUKWyyySZD9n4iIiIiIrJy6OzsZNy4cbz44ot87GMfY+rUqay22mqtLktERERERFpsYesoWZZhjCGKU4wx+K5heMnj8h+fz8Tbb8AYw5kXXc5WX/wKAJUwwXcsnF7rKEXPbnafqgRx/mcYU/TmWlLNICFr1uM7NiXf1tg9ERGRZZCCUSLLkEowp+1r42a+o+jgO/YCz2lVi9c0TfnmN7/Jfffdh+/7PPjgg3zuc58bkvcSEREREZGVR7VaZbfdduOZZ55htdVWY9q0aXz84x9vdVkiIiIiIrIMWNg6yqxKmH8tyV/jORY3Xn0Zv7ripwCc8cNL+eouEwiiFNdO8B2bSpjQUZyzjmIZg2dbzKyEdAcRbb5LmhlsK6UWJ6Rpr45RlqHg2HiORS1OqMUJZd9ZKtM8REREpP/0N7PIMiJNM4I4v1mv1lvAljx7oaGo3hbU4jVNnSVu4ZqmGdUoabaJTdOM7595GjfccAO2bXPHHb/hy1/+8hK9h4iIiIiISBRF7Lvvvvzxj3+ko6ODKVOm8KlPfarVZYmIiIiIyDJgUesoaZa/Lqt/MOnOW/jZj74PwMlnnsf+h3yDShhTDRNqYR6MCpN83aP3xI4gztdZPNsiiBK6aylRks1bUJIRRCmOZSi6NgXPpieISbOMjoI7VD8GERERGSAFo0SWEdUoIQPCOCVOM4zJW7YORO8Wr2Gc4jkW1SjpMyN7IKIkpRIkBHFeW8PPL/kxv7zyMgB+esUv+cJXd2J2JVKbWBERERERWWxpmvKNb3yDSZMmUSgUmDRpEltttVWryxIRERERkWXEotZRsmzOn7+bfD8XnnUKAEcc/22+cexJABRcm1qUnx8nKY5tUYsSSvVReT1BTBjnF+oMIgqJjWUZjAHfsXBtC8sY0iwfoxfUa+kKYsI0paPgUg0TLGPUOUpERGQZob+RRZYRQZy3fK3Vdzv4jtVnh0J/NFq8BnHe0tVz8o/L/sDr6Q7i5pxuyB80anHCrddfy0U/PBeAs86/iD33OYCsXrfaxIqIiIiIyOLIsoxvfetb3HrrrTiOwz333MOXvvSlVpclIiIiIiLLkEWtoxgDZPDkH6bxo9OOJ8sy9v364Zx42vear5mzjpKvabTZFmGcUvLqm8XDhIyM7jCGFHDyrlQjy948azYF16acZVTDhEp9tF8nER0Fl54gbgapREREpLX0t7HIMiKtb2VI6y1eF/dm2XOsPtdpXHcgZlejZiiqFibM7AmZXY247647Of/M7wBw9Le+y36HHc3sasTMnpBamD+I9AQxnbVosWoXEREREZGV03nnncfll1+OMYabbrqJ8ePHt7okERERERFZxixqHcUy8Jcn/4ezTjicJI4Zs9tenPnDSzBzBZpcJz/O0sZ18z+r9XWO7lpMFKcYy9BeyDeDL2gju2UMZd+ho5hvGA+ilFp9zF8lSJbwOxYREZHBoGCUyDKid4tXYMDdohoap819vf7qDuLmTXtnLaIriInTjD/+dgpnfetosizj0COP4bSzvkfBtTCGZpvYRiCqGiZ09+o2JSIiIiIisiC/+MUvOO+88wC48sorOeCAA1pckYiIiIiILIsWtY7ywrP/y/GH7kcY1Pj8l8dw2o9+MWfRpBdD/rlG0CrLMtI0I4xT0iyjq77WMbzo4Dl2c0P6wviOTak+1q8RsAripBniEhERkdZRMEpkGdG4N2/8uTidnmDOA8Hc1+uPKEmbnaI6axFBlG+XeO6ZJzn16ENJkoSv7bs/P7r4JxQ9h/aCy8iy17zZD6K0GY7qCWKiJF2s70FERERERFYON910E9/61rcA+OEPf8gxxxzT2oJERERERGSZtbB1lBdfeJ5v7DeBSk83//n57Tn/sl9hO25zI3hvGfl5jWCVMYZKGFMJE6bPrDKzElINEuI0o7MWkWZZv9Zsip7d3EwexikZUJ3P+4uIiMjSpWCUyDKicQNuWfmfixsqCuszthvXGUjnqUZb11p9FjbAGy89xzcP3pdarcaYceP52ZXXYFlz/tOhNrEiIiIiIrI4Jk6cyOGHHw7At7/9bc4888wWVyQiIiIiIsuyBa2jvPHaa+y7x3hmzpzB5ltuxWXX386wtjKQd28K475rFVGch5yMBXGS0hNEvNcVMLsa8VElJM2g5FtkGRigGqbM6AnprEbEC1m7sYzBq4/3q8WNrlHaQC4iItJqCkaJLCP8eivWglPvvlRv2ToQaZYR1m/KG9fx+9HiFfKZ3EH9Rr2xg+HdN1/hkH32pKuzk+2+uD3X3HALrusuoH61iRURERERkf557LHH2HfffUmShMMOO4yf/OQnmMUcJy4iIiIiIiuH+a2jTJ/+NvvsMZ733n2XT2+yKbfdM5FyWzu+a+O5+eu7ajGVMG52fmqso2QpzK5GJFlGTxAzqxJQDSLCOCPO8vPSNCVOUrIsf7+Zlag5eWN+GmP3GmsjizsdRERERAaPglEiy4iia2PIb5ody5BlcwJG/VUNE7IMHMvgORamft1+nRslZOQdp+I0493p/+aQfXbnow8/4DNbbsXNd9xDsVhc+PegNrEiIiIiIrIIf/7zn9l9990Jw5AJEyZw7bXXKhQlIiIiIiKLNPc6yswZM9h3z1154/XXWPcT63Hn/ZMYtdpqzU3c7b7bDEdVw4RZlZAPuwKCOKG7FtEdxvVAVMT7swN6woQMg+cYshQc2xDXw1OzK2Fzc3klTOiuzT8c1Xi0aeShlIsSERFpPafVBYhIzrIMvmNTixOKrk1XkM+zduz884sSxAmVepCq6DW6RdnNlrKLPj/fIVGLEz768AO+uf+eTH/rLTb65Ke4/d6JtHd0LPp7qLeJDeKUWpzgOfnHZb9fJYiIiIiIyAru+eefZ9y4cXR3d/PVr36V22+/HcfRryZERERERGSONM2oRklzskaW5YEjyxjiNMMASVDhmIO+xr9efIHV11iTux54mNXXWBOAsu+QZBlBlNLuuwR2Qi3M11B6wphalGBbhijNiJMMxzZgoOQ6lNyUDMOIssvwkkeUZM0N5d21mMhNafNdqlGCMfl79dYIQjUCUtoDIiIi0nr67aPIMqTk58GogmcTpilBlNJZjSl5GUXPbs7P7i3NMqrhnFCU71oU6l2iSn7/ukU1rgMwe9YsjjloL1575WXW/tjH+M39k1h11dX6fZ1GGEptYkVEREREpLfXX3+d0aNHM2PGDLbZZhsmTpyI72sXhYiIiIjIYFpYqMh3LIpu/zdUL21RklIJEoI4n3DRRwYJGVmW8c5HnRx3yD489/f/x/ARI7nm9vtZdc11SLOsuY7SUXDpMfkGdNe2SJwMK0qxLINtDEXHphrFFFybkufS7jtYlqESJdjGUPYdfMfGdyD1MmpRQjVMCKIUiGjzXSphgu9YOPacAT1hfRN642c8v3UdERERWboUjBJZhri2Rdl36AliOgounUQEUUolTKhGCZ5t5SPyTL7rIIxTwvpsa8hDUR0FF8h3Kbh2/6dlZhlUq1WOOWR/XnjuWVZZdVXumjiZtdf52IC+B7WJFRERERGRub377ruMHj2a6dOns+mmmzJ58mTa2tpaXZaIiIiIyAqjP6GiKEnpCWJ8x6bk2wNaQ1iYwQhjdQf5WLuGsD6ZIk17Xc8y2FnKacd/g6efeJxyWztX3nwPG3zy0/NdR7Etg2VBdyUmjFMc21AyNsMKLkGc4tRray+4pFn+82nzHSphQhinpF4etLKMoeQ5OJZFVy1ft3HtBN+xqYQJHcX855hmGWGSB6MKTmOyx+D8jEVERGTxKRglsoxp8x2SNN990FFwqdn5LoQ4zQjitDnyrjfHMhQ9u9kpqujZtPkD+793HEcceciB/PWpP9HW3sFNdz3ABhtuNOD61SZWRERERER6mzVrFmPHjuXll19mvfXWY+rUqayyyiqtLktEREREZIXR31BRwbHxHItanFCLE8q+M+C1hN4GK4w1uxpRi/KpGLV6wClO5911HYcxp59wFL979BE8v8CFv7yFj39qMzprEUXHxrYNQTbvOkpbwcUCMDCrGpGmGbYxlDybsm8zvOji2RazqhFZ/ecX19dpSt6cn4/nWBQ9m2qYj+bzHZswSZudqqphQpblazaeY2GAotv/yR4iIiIyNBSMElkGDSu62JahJ8jbuBZce5EPMg2L8yCTpiknHn0kv330EQrFIlfedCef2nTzxapdbWJFRERERKShp6eH8ePH8+yzz7LGGmswbdo01lprrVaXJSIiIiKywuhvqIgkI4jSfKO1a1PwbHqCmDTLmpMoBmKwwljdQdysv7PejQny833HwrUt0jSjO4g4/8xTefTBe7Adh/N+8Ss23XpbkjQjSTMcy4CxiEnxbQvbsuapoRLGpBm4tiFKMoyBkWWvuY7hORZBnFJwbbqDmGqY1ENOc8JNBdemFuXBqThJcWyLWpRgW4ZKmH8fRa/RLWrZHVsoIiKyMlEwSmQZ1eY7+I7V3G3hOVafAFRvBha79W2WZZx44oncc9dvcByHX95wK1v953YEcUq51zzu/lCbWBERERERaQjDkL322osnnniC4cOHM3XqVDbYYINWlyUiIiIissLoT6jIMqY5Ji6od0LqCmLCNKWj4FINEyxjBrTherDCWI1uUnPXX/Jsip6NZfIN5JUw4bIf/5D7brsBYwxnXHQFm237ZSpBgmWBb+dBppElD9e2ychDTuVe35MBDIbhJZdqlECS4TtWnzWQomcTxCm+axOmKWGU0lWLKXoZBddujtXzbIugHvQqWYZZPRFufS3Ed63mdI+Sr25RIiIiywIFo0SWYa5tMaxkkabOEs/nXpDvf//7XHnllRhjuPyaX7HTuJ2Z2RMSpxnVMOnz4LAoahMrIiIiIiIASZJw8MEH8+ijj1IqlXj44YfZfPPF60orIiIiIiLz6k+oqLeCa1PO8t/7V8KEIErpJKKj4NZH3Vn92ng9mGGsJMnDVLV6PQAdRQe/vvG6qxZRi1J+feXP+dUVPwXg2+dezI677EmUpHQHMaT5WoqDoasW0V708B2LWpRimYSOottcR5lRCUnSrPlzm/v7dW2LkmdTCRPafZcuIsIozUfnRQmunW9gz0gJk5Qwzv+xjGG44+G7VrP7Vtl3BryRXURERIaGglEiywHLMpR9h7I/uNf92c9+xvnnnw/AVVddxf77HUAtTii6Nl31XRiObZoPIQsTxInaxIqIiIiICFmWceyxx3LXXXfhui4TJ05ku+22a3VZIiIiIiIrlEowp2PT/EJF82OZfK3BsQ2d1ZggSqnZCQXXphIkDCstPMgzmGGsrlpEmmY4tpV3cKpfp1F/TxBTi1LuuvUGfn7huQAc/Z1z2G2/Q/Aci7aCQ9HL687SDNuxybIMC3Bs0wwo9e4cldWbWjX+nN/EjLLvkGR5p6t23yWwE2ph3hGrEYQK45SeMMax8qCUbRnaC06zU1TRswfUgUtERESGlv5WFllJ3XDDDXz7298G4Ec/+hFHH300UZLPAC94eZvYIErprMaUvGy+DzWQj89rPNSA2sSKiIiIiKzszjjjDK699losy+L2229n9OjRrS5JRERERGSFkqYZQZz/Tn5+oaJF8R2bkpdRCROqYR6MCuKENHUWutl5MMNYaZYRJxkFF+I0w5g5m67jJKUSJjw88R5+eEa+jnHQUSdx2DEnNkfaQd7hKUnzKRtlz84DTXGCZZn5dsMyBqhP5IB8fWN+OgouPSbfPO47+c81ilNqSR7CSlODaxm8eoeogmc310XKvqNQlIiIyDJGfzOLrITuv/9+jjjiCABOPfVUTj/9dCB/iCj7Dj1BTEfBpZN8x0elPiPcq7eJNSbfURHGebvYxrOD2sSKiIiIiKzcfvzjH/PjH/8YgGuvvZavfe1rLa5IRERERGTFU40SMvLf0c8dKuqvomdTjeZ0QvKcvHNTeQGhnsEOYxkDcZKR1RcYfMdqBp4qYcIffzuFM791NFmWsccBh/Gt08/Bd/u+l2UMrm3laxVp3uGpcb35dcOyjCEhy8NfST7qr+DOv/6y7+Q/kzAhjFNcx8J18jWPbhNjWQbfzT9nGyg4NiXf1rqIiIjIMkjBKJGVzO9+9zv2228/0jTl8MMP5+KLL8b06gTV5jskaUYtSugouNTs/CElTjOCOJ8HPjfHMhR77YhQm1gRERERkZXPdddd19x0cckll3D44Ye3uCIRERERkRVT4/f0tXpQqXeoqL8sY/BsiyDOJ0l4Tv5x2Z//6wc7jJWmeUCpEiQ49Y5OkHdx+p/H/8gpRx1KEseM3u1rnPaDH88TimrwnDwYlaV5IMqxLXzHmm83LN+x8jCUYxNE+XpHOcsW+LNzbQu3aJHW10zCJP/e4zTDtgxtvkvZs1m1zae96A7oZyEiIiJLj5ILIiuRp59+mt13350wDNlrr7245ppr+oSiGoYVXWzL0BPEFNw88BTWH47SeltaY8CyDAXHxnPm7IBQm1gRERERkZXPXXfdxVFHHQXko/ROPfXUFlckIiIiIrLiaoyAS+thoMXtUtQIQzWus6DRcjA0YayS5xAkKU6vaz395z9z/KH7EwQ1vvCVsZz+o19Q8hccOmpU0Cg9yxbcDavo2vQEMZ5j4ViGOM2ohgvuktWs2zKUfIcS0BPEZKV8w/iIsoeBRZ4vIiIiraW/qUVWEs899xw777wzPT09jB49mttuuw3bXvBujjY/3z1RCRKC+m6R3gGo3gz1NrhqEysiIiIistJ59NFHOeigg8iyjKOPPpoLLrig1SWJiIiIiKzQeoeAgAEHlBoap819vfkZ7DBWY+RdxpxQ1osvPM+h++5Jpaebrbf9Iuf87FpKRX+h31+j5MZLjFlYNywH37GpxXlIqiuIqYQJjm36NRIwiBMqYR4Ma3TL8h07H80nIiIiyywFo0RWAq+99hpjxoxhxowZbLvtttx33334/gL64fbi2hbDShZp6lCNknznSNarY5Qx+I5F0dWNv4iIiIjIyuiJJ55gwoQJRFHEfvvtxxVXXDHfrrQiIiIiIjJ4jAGyOWGghXV6WpjGab1DRYt67WCFsRq9nhrXeeWVVzhgj/HMnjmTzbfcmguvvhnPL+DaC3+fsN7JyliN6+WfX1A3rJKfB6MKnk2YpgRRSmc1puRlFD17vt9XmuWdpRqhKN+1KNRH+5X8gY0TFBERkaVPwSiRFdw777zDjjvuyDvvvMNmm23G5MmTaWtrG9A1LMtQ9p0FzhYXEREREZGVz9///nd23nlnKpUK48aN46abblpoV1oRERERERkcljEkZPmG5SQjStJmUGcgGqEiy+obUpqfwQ5j+fUJFQXX5v133+GQvXfjvXffZaNPb8LVt9wDfpk4zRZaU5rl3ztAof4s4tU7WS2oG5ZrW5R9h54gpqPg0klEEKVUwoRqlODZ+fQMY/JzwjglTNI5dbsWHYV8tF/ZdzRFQ0REZDmgv61FVmAzZ85k7NixvPrqq6y//vpMnTqVkSNHtrosERERERFZzr388suMHTuW2bNn84UvfIF77rkHz/NaXZaIiIiIyEqhGSqqj39rTHsYiDTLCBuhIqcxFm7By4aNgFIjRNUIJA1UI4xV9G2MgUrnLL55wJ689eYbfPwT6/OrO+5n2IgR/Qpg1aKELAPHMriOhYFmQGxh3bDafKf5uo6CS3vBwbEMWZb/LLtqMZ3VmK5aXB/7l79He8FphqKKnk2br/4TIiIiywMFo0RWUD09PYwfP55//OMfrLnmmkybNo0111yz1WWJiIiIiMhy7u2332b06NG89957bLnlljz00EOUSqVWlyUiIiIistIoujaGfFxcI9BTrY95669qOCdU5NVDRcWFdJ0a7DBWyXUIK91888C9eOWlFxm1xlpce8f9DF91NaB3AGv+7xHGSfN7Lnj1blGO1TxvUd2whhVdyvVgU8G1GVH2GFZ08V0L1zZ52Mo2+K7FsKLLiLLXDFOV/TkBKREREVn2KcossgIKgoAJEybw5JNPMmLECKZOncr666/f6rJERERERGQ599FHHzFmzBhef/11NtpoI6ZMmcLw4cNbXZaIiIiIyErFsgy+Y1OLE4quTVcQUwkTHDv//KIEcUKlHioqeo1uUXYzRDQ/RdemJ4ibYaw4zaiGSTNc1B+9w1hJFHDcofvzj7/9P0aOXIUb736AtT+2bv4aYjzbIohSwjgl9eaM1EuzjFo0JxTluVbze258L/3thtXmO/iORSVICOIEz8nH6M2Pqf+MSr6t8XkiIiLLGQWjRFYwSZJw0EEHMXXqVMrlMg8//DCbbbZZq8sSEREREZHlXFdXF+PGjeP5559n7bXXZtq0aay++uqtLktEREREZKVU8vNgVMGzCdOUIErprMaUvIyiZ8/TIQnywFA1nBOK8l2r2QWp5C88UDWYYSzHpHzz0IN48k+P097ezh33PcgWn9mMzlpEmmXMqkRAHoCyLENXNe8KFcYpUZI2x+R5rkW7n3duKnlzAksD6Ybl2hbDShZp6lCNkmYnrCzLx+9ZxuA7FkV34cExERERWXYpGCWyAsmyjKOPPpp77rkHz/OYOHEi2267bavLEhERERGR5VytVmOPPfbgL3/5C6ussgrTpk1j3XXXbXVZIiIiIiIrLde2KPsOPUFMR8Glk4ggSqmECdUowbPz7kfGQJblo+XCXqEi37Wa4+DKvtOvLkiDEcZyrIzvnnAU06Y8TKFQ4KGHHmKLz32OWpTQUXDrnaLy1xtj6AlieoKYsuc0uzk5lqHg2c1AVsG1mp2rFqcbFuTBr7LvUPYX+WMQERGR5YyCUSIrkNNPP51f/epXWJbFHXfcwY477tjqkkREREREZDkXxzH7778/jz32GG1tbUyZMoWNN9641WWJiIiIiKz02nyHJM2aoaKanY+Yi9OMIE4J4nSecxzLUPTsZqeoomfT1s9xeEsaxvIcwwVnfof777kLx3G49957+dKXvgSAbeUhqIJrs9bwIu93BtSSBAMEUUIYJ9i2YVjBxe/V/ank2ZR9Z4m6YYmIiMiKTcEokRXERRddxMUXXwzAddddx4QJE1pckYiIiIiILO/SNOXII49k4sSJ+L7PpEmT+OxnP9vqskREREREpG5Y0e0TKiq4+ci5WpyQpr1GwlmGgmM3uy5B3imqv6GohiUJY116wbncfP11GGO49dZb2Xnnnftc13csKkFCAAwrubhhPiqvO8gDWAA9YUKUZLQVbIqejW0ZOqvREnfDEhERkRWXglEiK4BrrrmGM844A4BLL72Ub3zjGy2uSERERERElndZlnHKKadw4403Yts2d911FzvssEOryxIRERERkbn0CRXFCZ5j9QlA9WbIR8uVfHuxA0OLE8a6/KeXcPnPfgLkaxr77rvvPNd1bYthJYs0dSj7Dh92B1TChI6CR+gkBHGKZaiP0DNUwxSYE8Rakm5YIiIisuLS3YDIcu7OO+/kmGOOAeCss87i29/+dosrEhERERGRFcEPf/hDfv7znwNwww03sNtuu7W2IBERERERWaDeoaJqlIeI0qxXSMkYfMei6NpYllni9xtIGOvmX1/HBeedA8All1zCkUceudBrW5ah7OfhqO4gpieIm18bym5YIiIismLSHYHIcmzKlCkcdNBBZFnGMcccw/nnn9/qkkREREREZAVwxRVXcM45+cLFL37xCw4++OAWVyQiIiIiIv0xJ1Q09O/VnzDWA/fcyWmnnATkm7tPPfXUAb3H0u6GJSIiIiseBaNEllN/+tOfmDBhAnEcs//++3PFFVdgzJLv8hARERERkZXbbbfdxgknnADAueeey4knntjiikREREREZFm2oDDWpEmTOPLww8iyjOOOO26xN3cv7W5YIiIismJRMEpkOfS3v/2N8ePHU61WGT9+PDfddBOWpd0PIiIiIiKyZCZNmsQhhxwCwEknndTsGiUiIiIiIjIQv//979l7771JkoSDDjqIyy67bIk3dy/NblgiIiKy4lCSQmQ5869//YuxY8cye/Zstt9+e+666y5c1211WSIiIiIispz7wx/+0Fy4+PrXv85Pf/pTdaUVEREREZEB+/Of/8xuu+1GEATsvvvu3HDDDdrcLSIiIi2juxCR5chbb73F6NGjef/999lyyy2ZNGkSpVKp1WWJiIiIiMhy7plnnmkuXOy22278+te/1sKFiIiIiIgM2HPPPce4cePo7u7mK1/5Cr/5zW9wHA2wERERkdbRbzlFlhMffvghY8aM4Y033uCTn/wkjz76KMOGDWt1WSIiIiIispx78cUX2Wmnnejq6uLLX/4yd955pxYuRERERERkwF555RXGjBnDjBkz2GabbXjggQcoFAqtLktERERWcgpGySKlacp2222HMabPP6+//nqrS1tpdHV1MW7cOF544QXWWWcdpk2bxqhRo1pdloiIiIiILOfefPNNRo8ezYcffshnP/tZLVyIiIiISB/nnnvuPGsDi/PPYK4n7LDDDotVwy677DJoNci83n77bUaPHs0777zD5ptvzsMPP0xbW1uryxIRERFRMEoW7fLLL+epp55qdRkrrVqtxu67785f//pXVl11VaZNm8bHP/7xVpclIiIiIiLLuffff5/Ro0fz1ltvsfHGG/PII4/Q3t7e6rJEREREZAVjWZbuM1dwjYkXr732GhtssAFTp05l5MiRrS5LREREBAD1xpeFeuONNzjrrLNaXcZKK45j9t13X37/+9/T3t7OlClT+PSnP93qskREREREZDk3e/Zsxo4dy0svvcS6667L1KlTWXXVVVtdloiIiIgsY0aOHMkGG2wwoHO6u7t57733msdjxoxhlVVWGezSAGhvb+/3dIW11lprSGpY2XV2djJu3Dief/551l57bX7729+yxhprtLosERERkSYFo2ShjjrqKHp6egDYeOONeeGFF1pc0cojTVMOP/xwHnzwQXzfZ9KkSWy99datLktERERERJZzlUqFXXfdlb/97W+MGjWKadOmsc4667S6LBERERFZBp144omceOKJAzrn+OOP58orr2weH3HEEYNdVtOECRO48cYbh+z6snDVapXddtutz8SLT3ziE60uS0RERKQPjdKTBbrlllt49NFHAdhxxx3ZZ599WlzRyiPLMk4++WRuvvlmbNvm7rvv5r/+679aXZaIiIiIiCznoihi77335vHHH2fYsGFMnTqVjTbaqNVliYiIiMgKolarcdtttzWPV1ttNXbbbbcWViRDpfFs8cc//pGOjg4effRRNt5441aXJSIiIjIPBaNkvj744ANOPvlkAAqFAldffXWLK1q5/OAHP+Cyyy4D4KabbmLXXXdtcUUiIiIiIrK8S5KEQw45hIcffphiscjkyZPZYostWl2WiIiIiKxA7r33XmbNmtU8/vrXv47ruq0rSIZEkiR8/etfZ/LkyRQKBR566CG22mqrVpclIiIiMl8KRsl8nXTSSXz00UcAnH322Wy44YYtrmjlcdlll3HuuecCcPnll3PggQe2tiAREREREVnuZVnGCSecwB133IHrutx333184QtfaHVZIiIiIrKC+fWvf93neCjH6ElrZFnGcccdx29+8xscx+G+++5j++23b3VZIiIiIgukYJTMY/Lkydxxxx0AbLrppnz3u99tcUUrj1tuuYWTTjoJyLtGHX/88S2uSEREREREVgTf+973uPrqqzHGcMstt7DTTju1uiQRERERWcG88sor/OEPf2gef+ELX+DTn/506wqSIXHGGWdwzTXXYIzhtttuY9y4ca0uSURERGShFIySPrq6ujjmmGMAMMZwzTXXqM3tUvLggw9y2GGHAfCtb32Ls88+u8UViYiIiIjIiuDSSy/lggsuAODqq69m3333bXFFIiIiIrIiuv7668myrHl8+OGHt7AaGQoXXXQRP/7xjwG49tpr2WeffVpckYiIiMiiKRglfZxxxhn8+9//BvIWtxqtsHT84Q9/YJ999iFJEg499FAuvfRSjDGtLktERERERJZz119/PaeeeioAF154IUcddVSLKxIRERGRFVGSJNx4443N4/b29qUSmvnrX//KLrvswjrrrEOhUKC9vZ11112XsWPH8qMf/YjXX399yGtYWVx99dWcccYZAPzkJz/RmEQRERFZbjitLkCWHU888QRXXXUVAKuvvnoz9S9D669//Su77rorQRCwxx57cN1112FZyiyKiIiIiMiSuffeeznyyCMB+O53v8vpp5/e4opEREREZEX1yCOPMH369Obx/vvvT7lcHvL3/ec//8k///nP5nEQBHR3d/Pmm28ydepUzjnnHA466CB+/vOfM3z48EF97/fff58PPvhgQOe8/PLLg1rD0nLrrbdy3HHHAXD22WdzyimnDPgaaZpRjRKCOCXNMrIMjAHLGHzHoujaWJY2jIuIiMjgUzBKAAjDkCOOOKLZ5vZnP/sZI0aMWKo1rEwPEQ0vvPACO+20E93d3XzlK1/hjjvuwHH0f0sREREREVky06ZN44ADDiBNU4444gguuuiiVpckIiIiIiuwX//6132Ol2Y3Ic/zWGWVVXAchw8//JBqtdr8WpIk3HTTTfz3f/83jz76KBtttNGgve9VV13FeeedN2jXW1Y9+OCDHHrooWRZxvHHH88PfvCDAZ0fJSmVICGIE7K5v5hBQkaUpPQEMb5jU/JtXFubx0VERGTwKIEhAPzwhz/khRdeAGDs2LHsv//+S72GleUhouGNN95g9OjRfPTRR3zuc59j4sSJFAqFVpclIiIiIiLLuaeeeoo999yTMAzZe++9+eUvf6lR3SIiIiIyZN577z0eeuih5vHmm2/O5z73uSF7P2MM//Vf/8XXvvY1vvrVr/LJT34S27YByLKM559/nttvv53LL7+crq4uAF577TV23nlnnnrqKVZZZZUhq21F89hjj7HPPvuQJAkHH3wwv/jFLwb0bNEdxPQEcfM4jFNqcUKa9uoYZRkKjo3nWNTihFqcUPYd2nwtYYqIiMjg0F3FMuLFF18csmuPGjWKkSNHLvDrzz33XHP3cLFY5Oqrrx6yWiT33nvvMXr0aN5++2022WQTHnnkEdrb21tdloiIiIiILOeee+45dt55Z3p6ehgzZgy33HJLc5FIRERERJZfrVxDWJSbbrqJOJ4TfhnqblF33XUXq6222ny/Zoxh00035YILLuCwww5j/PjxvPTSS0A+geKcc87hyiuvHNL6VhRPP/00u+22G0EQsMcee3D99ddjWf3v5DS7GlGLEgBqYUI1SojTeXpGQZIRRCmOZSi6NgXPpieISbOMjoI7WN+OiIiIrMQUjFpGbLzxxkN27QsvvJDTTz99vl9rjFWIogiA73//+6y33npDVovArFmzGDt2LP/617/4xCc+wdSpU7VDRUREREREltirr77KmDFjmDlzJttttx333Xcfvu+3uiwRERERGQStWkPoj+uvv775se/7HHTQQYNR1gItKBQ1tw033JBHHnmEz3zmM/T09ABw3XXX8b3vfY811lhjies49thj2XvvvQd0zssvv8wee+yxxO891J577jnGjRtHT08PX/3qV7njjjtwnP4vKXYHcTMU1VmLCKIUyDtE+Y6Fa1tYxpBm+Ri9IE6J04yuICZMUzoKLtUwwTJGnaNERERkieluYiV32WWX8fTTTwN5e9tTTjmlZbWsyA8RDZVKhV122YW///3vrL766kybNo2111671WWJiIiIiMhybvr06ey444688847bL755kyePJlyudzqskRERERkBff444/zf//3f83jCRMmLFH3qcG2/vrrc9xxx3HxxRcDEEURU6ZM4dBDD13ia48aNYpRo0Yt8XWWNa+88gqjR49m5syZbLvttkycOJFCodDv86MkbY7P6x2KKnk2Rc/GmmsUX8G1KWcZ1TChEiYEUUonER0Fl54gbgapRERERBaXglErsTfeeIOzzz4bAMuyuPbaaweU+B9sK+pDREMYhnzta1/jT3/6E8OHD2fq1KlsuOGGrS5LRERERESWczNmzGDs2LG89tprbLDBBjz66KOMGDGi1WWJiIiIyErg17/+dZ/jww8/vEWVLNiECROawSiAJ598clCCUSuit99+mx133JF3332XzTffnIcffpi2trYBXaMSzBmf1whFdRQdfGfBI74tYyj7Do5t6KzGBFFKzU4ouDaVIGFYScEoERERWXwKRi0jsmw+c5WH2Mknn9xsH3vUUUex7bbbLvUaVhZJkvD1r3+dRx55hGKxyOTJk/nMZz7T6rJERERERGQ5193dzfjx43nuuedYc801mTZtGmuuuWaryxIRERGRQdaKNYRF6ezs5O67724er7/++nzlK19pYUXz96lPfarP8fvvv9+iSpZtH374IaNHj+b1119nww03ZOrUqQPecJGmGUGcB6Oq9VF6Jc9eaCiqN9+xKXkZlTChGubBqCBOSFMHyzKLvoCIiIjIfCgYtRJ79dVXmx8/+OCDTJ06daGvnzFjRp/jHXbYoU+Hqf/93/+lvb19cItcAWRZxvHHH8+dd96J67rcf//9fP7zn291WSIiIiIispwLgoAJEybw1FNPMXLkSKZNm8Z6663X6rJEREREZCVxxx13UKlUmsff+MY3MGbZC68Ui8U+x71rllxnZyc77bQTL7zwAuussw6//e1vWWONNQZ8nWqUkAFhnBKnGcZA0etfKKqh6NlUo4Q4zQjjFM+xqEYJZV9LmiIiIrJ4dBchQN4edaDeeOONPsdJkgxWOSuUs846i1/+8pcYY7jtttsYO3Zsq0sSEREREZHlXBzHHHjggUybNo1yucwjjzzCpptu2uqyRERERGQl8qtf/ar5sW3bHHbYYS2sZsHee++9PserrrpqiypZNlWrVXbddVeeeeYZVl11VaZNm8a66667WNcK4nx0Xq3eNcp3LKwBhuUsY/BsiyBOqcUJnpN/XPYXqyQR+f/s3Xd4FNX+x/HPpmwKJYQOoReRJkqTXhSRIgICgqiAClhQUVC5dtB7FcSC3mtDEbwCFqqKiCC9SFVaQCnSew8EUnd+f3CZ306STXaTTXazeb+eh4c9kzNnvrs7OzNn9zvnAADEpLxALho/frzefPNNSdKnn36qPn36+DgiAAAAAPmdYRh6+OGHNWvWLNntdn3//fdq2rSpr8MCAABAAbJ161Zt3LjRLHfq1Enly5f3YUSurVq1ylJmlNX/l5SUpN69e2vFihUqWrSofvnlF11//fXZbs/xvykfHY6r/4cGZ+9nSHtIkKUdhx9OJQkAAPIPEqMKsM2bN8swDLf/vfrqq5b19+3bZ/l7sWLFfPNE/NTnn3+u5557TpI0btw4DRkyxMcRAQAAAMjvDMPQs88+qy+++EJBQUH65ptvdOutt/o6LAAAABQwkyZNspQHDx7so0iy9u9//9tSvu2223wUiX9JTU3VgAEDNH/+fEVERGjevHlq2LBhjtq8lr907X9PR4u65tpqadsDAADIDhKjgFwwc+ZMPfzww5KkUaNGmQlSAAAAAJATY8eO1TvvvCPp6o9RPXv29HFEAAAAKGgSExM1depUs1y2bFndcccd2W5v0KBBstls5r9ly5a5rHvlyhWP2v7Xv/6ltWvXmuUaNWqoZcuW2Q01YBiGoccee0zffvutQkNDNXv2bLVu3TrH7V5LaLr2f3ZHerq2Wtr2AAAAsoPEKMDLFi5cqP79+8vhcGjo0KHmVHoAAAAAkBMff/yxXnjhBUnSe++9p0GDBvk2IAAAABRIc+bM0dmzZ83ywIEDFRISkifbbt68uV5++WXt27cv03rnzp3TsGHD9NJLL1mWjx07Ns9i9VeGYWjUqFGaOHGigoKCNG3aNHXq1MkrbV8bISoo6Or/yamObLWTlOKwtJPdkacAAAAkqWBf/QFe9ttvv6lnz55KTk7W3XffrY8++kg2LtgBAAAA5NDXX3+tYcOGSZJefvllPfXUU74NCAAAAAXW559/bik/9NBDebbt8+fP65///Kf++c9/qkGDBmrcuLGuu+46RUdHKyQkRKdPn9aGDRv0888/69KlS5Z1//GPf6hXr155Fqu/Gjt2rMaPHy9Jmjhxovr06eO1tkODbLpwOUWJyQ6dv5wkyabEFIdCgmyyBwcpPDTYTHZyxWEYSvpfQlV4SLAkKSyEcR4AAED2kRgFeMnWrVvVpUsXXb58WZ06ddJXX32l4OBgX4cFAAAAIJ+bP3++BgwYIMMwNGzYMI0ZM8bXIQEAAKCA2rdvn5YsWWKW27Rpo5o1a/okli1btmjLli1Z1gsLC9Obb77JzQWSPvroI3MU2nfeecdrSW3JqQ5dTkzVleQUXU5OlSTZJKU4HIpPTFGkPUTJqam6nJQqe0iQIuzBCg3OONnpSlKqDENXk6lCgmSTFBHKby0AACD7SLEGvGDv3r26/fbbdf78ebVo0UIzZ86U3W73dVgAAAAA8rmVK1eqV69eSklJUf/+/fXBBx8wKi0AAAB8ZvLkyTIMwywPHjw4T7f/6KOPqmXLlgoLC8uybvHixfXkk08qNjZWTz/9dIG/jp46daplFNoRI0Z4pd1LiSk6G5+khJRU2Ww22SRdTExWYqpDF68k61Rcgs7EJyo5xSFDUmKKQ+cvJys+MSVdW4kpV5OnJCnCfm20qKxHmQIAAMiMzXC+ggXymdjYWNWrV88sb9++XXXr1s3TGI4ePapWrVpp3759uuGGG7Rs2TJFR0fnaQwAAAAAvMsf+hp//PGH2rVrp7i4ON1xxx2aPXu2QkND8zQGAAAAwB+lpKRo586d2rt3r44cOaK4uDg5HA4VLVpUJUqU0I033qjatWv7XTKUr/oZ33//vXr16qXU1FQ98cQTev/9973y2ly4kqyE/40QlZCUqivJqUpITtWFK8mSpPikVCWlXP17eGiwCtmDFWkPUdj/RoAKDw1SkfBQOQxDV5L+PykqLDRIRcOv9n2KF7K7HF0KAADAHUylB+TAmTNn1LFjR+3bt081atTQwoULSYoCAAAAkGO7du3S7bffrri4OLVp00bfffcdSVEAAADA/4SEhKh+/fqqX7++r0Pxe4sXL9bdd9+t1NRUDRgwQBMmTPBKUtSlxBQzKSouIVmJyQ5JUmhIkKILhSo51VDR8FDFJSQpPilViSmpSkxO1cWEFBUKD1GRsFAlpqQqPjFFIcFBujaMg3NSVKGwEJKiAABAjpEYBWTTpUuX1KVLF8XGxqp8+fJatGiRypQp4+uwAAAAAORzhw4d0m233aZTp06pYcOG+uGHHxQREeHrsAAAAADkM+vWrVP37t2VlJSkHj16aNKkSQoKynmiUXKqw5wKzzkpKtIerAh7sIJsNl1MSFZCskMlCoercEqqLielKD7x6ohSSfFJupSYosL2qz9TRkWEKjz06rrh/xtNKsIerMJh/IwJAAByjisKIBsSExPVo0cPrV+/XsWLF9eiRYtUpUoVX4cFAAAAIJ87deqUOnbsqIMHD6pWrVpasGCBoqKifB0WAAAAgHxm27Zt6ty5s+Lj49WhQwd98803Cgnxzs+ClxP/f/q8a0lRRSNCFBYSbNYpEh6qIFuKLielKiwkWGEhwSoS5lBcQpIuXkmV4ZAchqEI+9W/RReym+sWCgshKQoAAHgNVxWAh1JSUtS/f38tXrxYhQsX1oIFC1SnTh1fhwUAAAAgn4uLi1Pnzp31559/qmLFilq4cKFKlSrl67AAAAAA5EOrVq3SuXPn1Lx5c82dO1dhYWFeadfhMJSYcjUx6sr/ptKL/F9yU1qFwkIUFhKky0mpSkp1KCQ4SMULhSs8NEVXklIVEmRT4bBQOQxDhsNQhD1EkWHBTJ8HAAC8isQowAMOh0NDhw7V7NmzFRYWph9++EFNmjTxdVgAAAAA8rkrV67ozjvv1KZNm1SqVCktWrRIlSpV8nVYAAAAAPKpRx99VCVKlNBtt92mQoUKea3dK8mpMiQlpTiU4jBks12d9s6VkOAgFY0IksMwrk6jl+JQobAQJaU6ZBiSYRgqFB6iQmEhKhIR6rU4AQAAriExCnCTYRh65plnNHnyZAUHB+vbb79V+/btfR0WAAAAgHwuOTlZffv21fLly1W0aFEtWLBAtWrV8nVYAAAAAPK5u+++2+ttJqZcnTov4X+jRoWFBCnIZstyvSCbTZH2EEX+b8Y8e3CQElMcCgsNUqQ9RMkOw+uxAgAASBJjUQJueuONN/Tee+9JkiZNmqTu3bv7OCIAAAAA+Z3D4dCDDz6oH3/8UeHh4frxxx/VsGFDX4cFAAAAABlyGFcTmBz/S2TK7rR39pAgSzvX2gUAAPA2RowC3LBp0ya99NJLkqQJEyZo4MCBPo4IAAAAcM+5c+e0cuVKHTlyRBcuXFC5cuVUo0YNNW/eXEFB3Cvja19//bWmTp2qkJAQzZw5U23atPF1SAAAAADg0rX8pWv/uzNaVEaurZa2PQAAAG8jMQpwQ6NGjfThhx/q5MmTGj58uK/DAQAAALK0f/9+PfPMM/rxxx+VlJSU7u/ly5fXY489plGjRikkxDddw6NHj6pOnTq6cOGCuaxy5crav3+/T+LxhXvuuUcbN25UkyZN1LVrV1+HAwAAAACZstkkGf+f2JTdkZ6urXatnWzmVwEAAGSJxCjATY899pivQwAAAADcMnfuXA0cOFBxcXEu6xw9elQvvfSSvv/+e82bN0+lS5fOwwivGjZsmCUpqiAKCgoyp+wGAAAAAH8XZLMpVYaCgmxSqqHkVIfCQ4M9bicpxXG1vSCb2S4AAEBuIDEKAAAAAALImjVr1K9fPyUmJprL2rVrp06dOik6Olp79+7VV199pWPHjkmSNmzYoO7du2vp0qUKDw/PszhnzpypuXPn5tn2AAAAAAA5FxYSdDUZKiRYickOJaY4VMgwPEpschiGklKvJkaFhwSb7QIAAOQGrjIAAAAAIEAkJCRYkqLsdrumT5+upUuXatSoURo6dKjGjRunv//+W7169TLXW7t2rV555ZU8i/P8+fN64oknJEnh4eGqWrVqnm0bAAAAAJB9EaHBskmyhwQpJMgmw5CuJKV61MaVpFQZhhQSZJM9JEi2/7ULAACQG0iMAgAAAIAA8Z///EeHDh0yy6+99pruueeedPXCw8M1ffp01a9f31z273//W0eOHMmTOEeOHKnjx49Lkl588UVVqlQpT7YLAAAAAMiZoCCbwv43ytO1ZKbLSalKTHEvOSoxJVWX/5dIFWG/NlpUsDmlHgAAgLeRGAUAAAAAAcAwDE2YMMEsV6hQQSNHjnRZ326366233jLLCQkJ+uSTT3IzREnSkiVL9MUXX0iS6tSpo+eeey7XtwkAAAAA8J7IsKsJTeH2YIWFXv2pMe5KiuITU+QwjAzXcRiG4hNTFHclRZIUFhqk8P8lVl1rDwAAIDeQGAUAAAAAAWDDhg2WEZ8eeOABhYSEZLpOx44dLaM1zZkzJ9fik6QrV65o6NChkiSbzaZPP/1Udrs9V7cJAAAAAPCu0OAgFQq72t8sGh5qJkddTkrV2fgkxV1JVkLy1VGkEpJTFXclWWfjk8yRosJCg1Q0PFSSVCgsRKHB/FwJAAByD1caAAAAABAAfvrpJ0u5Y8eOWa4TFBSkW2+91SzHxsZq//793g7N9Morr2jv3r2SpMGDB6tVq1a5ti0AAAAAQO4pHBZijvhUNDxURcJDFBJkk2FIiSkOXUy4OjrUxYQUJaY4ZBhSSJBNRcJDzKSoCHuwCodlfkMPAABATpEYBQAAAAABYMuWLebjkJAQNW7c2K31WrRoYSlv3brVq3Fds2nTJr333nuSpDJlymjcuHG5sh0AAAAAQN6Iigg1R44KDw1WdCG7oiKujiAVGmxTSJBNocE2hYUGKSoiVNGF7GYyVaGw/0+QAgAAyE0kRgEAAABAANi5c6f5OCYmRuHh4W6tV716dUt5x44dXo1LklJSUjR48GClpl6dNuHdd99VdHS017cDAAAAAMhbhcNCVLyQXeEhwbJJsodcnSavWKRd0YXsKhZpV9HwUNlDgmSTFB4SrOKF7IwUBQAA8gxXHQAAAAAQAP7++2/zcaVKldxeL21d53a8Zfz48dq8ebOkq1P89e/f3+vbAAAAAAD4RmhwkKIig+RwhOhKcqoSUxxyGIYMQ7LZpCCbTWEhQYoIDVZQkM3X4QIAgAKGxCgAAAAAyOeuXLmilJQUs1y8eHG31007ctPFixe9Fpck7d69W6+99pokKSIiQh9//LFX23fHyZMnderUKY/W2bNnTy5FAwAAAACBKSjIpkJhISoU5utIAAAA/h+JUQAAAACQz126dMlSdncaPelqslJmbeWEYRgaPHiwEhISJEmvvPKKqlWr5rX23fXRRx9pzJgxeb5dAAAAAAAAAIBvkRgFAAAAAF70559/5lrbpUuXznA0qGuJR9fY7Xa32wwLs97Ke+XKlewFl4GJEydqxYoVkqR69epp5MiRXmsbAAAAAAAAAICskBgFAAAAAF5Uu3btXGv7zTff1D/+8Y90y9OOEJWUlOR2m4mJiZZy2hGksuvo0aMaNWqUJMlms2nixIkKDQ31StsAAAAAAAAAALiDxCgAAAAAyOcKFy5sKacdQSozaUeISttWdg0bNkwXLlyQJD388MNq3ry5V9rNjscee0x9+vTxaJ09e/aoR48euRMQAAAAAAAAACBPkBgFAAAAAPlcRESEQkJClJKSIkk6d+6c2+ueP3/eUi5SpEiO45k5c6bmzp0rSSpXrpzGjh2b4zZzonTp0ipdurRPYwAAAAAAAAAA5D0SowAAAADAiwzD8Ml2q1atqt27d0uSDh486PZ6Bw4csJSrVauWoziSkpL0xBNPmOUJEyYoKioqR20CAAAAAAAAAJAdJEYBAAAAQACoU6eOmRh1+PBhJSQkKDw8PMv19u7dm66dnLh8+bKOHz9ull944QW98MILma5z5MgRy+MaNWpY4vnhhx9yFBMAAAAAAAAAoGAiMQoAAAAAAkCDBg30/fffS5JSUlK0ceNGtWrVKsv11qxZYynXr1/fq3GlTbzKSkpKimWdwoULezUeAAAAAAAAAEDBEeTrAAAAAAAAOdelSxdLeeHChVmu43A4tHjxYrNcp04dVa1a1euxAQAAAAAAAADgCyRGAQAAAEAAaNq0qcqXL2+WJ0+erJSUlEzXWbhwoQ4ePGiWe/bsmeM4ihUrJsMwPPrXtm1bc/3KlStb/rZ58+YcxwQAAAAAAAAAKJhIjAIAAACAAGCz2TR8+HCzfPjwYb377rsu6ycnJ+u5554zy+Hh4XrkkUcy3Ua7du1ks9nMf/v3789x3AAAAAAAAAAA5BYSowAAAAAgQDzxxBOKiYkxyy+//LK++eabdPUSEhLUv39/bdu2zVw2bNgwVahQIU/iBAAAAAAAAAAgL4T4OgAAAAAAgHdERETom2++UYcOHZSYmKikpCTdc889mjhxojp37qxixYpp7969+uqrr3T06FFzvSZNmuj111/3YeQAAAAAAAAAAHgfiVEAAAAAEEBatWql6dOna+DAgbp06ZIkaenSpVq6dGmG9Rs1aqQff/xREREReRkmAAAAAAAAAAC5jsQo5GuJiYmW8p49e3wUCQAAgO9Ur15d4eHhvg4DfuSuu+7STTfdpJEjR+qnn35SUlJSujrlypXTo48+qn/84x8KDQ31QZT+jb4GAAAAfQ3A2+hnAAAA5H0/w2YYhpFnWwO87Pvvv1ePHj18HQYAAIBPbd++XXXr1vV1GPBTZ8+e1cqVK3X48GFdvHhRZcqUUY0aNdSyZUsFBQX5Ojy/RV8DAACAvgbgbfQzAAAA8r6fwYhRAAAAABDAihcvru7du/s6DAAAAAAAAAAA8hy3BwMAAAAAAAAAAAAAAAAIOEylh3zt/PnzWr58uVmuWLGiwsLCfBgRfG3Pnj2WoYjnzp2rGjVq+C4g5BvsO8gO9htkl7f3nbyejxsoCOhr5A3OpWAfAPtAwcb77//oawDeRT+jYOE8B19i/4Mvsf8hK3ndz2AqPeRrxYoVY1oQZKpGjRp5Oj8pAgf7DrKD/QbZxb4D+B/6Gr7B8RDsA2AfKNh4/wEEOvoZBRvnOfgS+x98if0PvsZUegAAAAAAAAAAAAAAAAACDolRAAAAAAAAAAAAAAAAAAIOiVEAAAAAAAAAAAAAAAAAAg6JUQAAAAAAAAAAAAAAAAACDolRAAAAAAAAAAAAAAAAAAIOiVEAAAAAAAAAAAAAAAAAAg6JUQAAAAAAAAAAAAAAAAACDolRAAAAAAAAAAAAAAAAAAIOiVEAAAAAAAAAAAAAAAAAAg6JUQAAAAAAAAAAAAAAAAACDolRAAAAAAAAAAAAAAAAAAJOiK8DAABvKlWqlF599VVLGXAH+w6yg/0G2cW+AwBXcTwE+wDYBwo23n8AQCDjPAdfYv+DL7H/wd/YDMMwfB0EAAAAAAAAAAAAAAAAAHgTU+kBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCG+DgAAsuPs2bPatm2bdu3apbNnz0qSihUrpmrVqqlp06aKiorycYTIC7Gxsdq6dauOHj2q4OBgxcTEqHHjxqpatWqexuFwOLRmzRrt3btXx44dU1RUlGJiYtS6dWtFR0fnaSxwzTAM7d27V9u3b9ehQ4cUFxenyMhIFS9eXA0aNFD9+vUVHBzs6zABtyQlJWnlypXav3+/Tp06peLFi6tixYpq27atIiMjfR0egALm3LlzWrlypY4cOaILFy6oXLlyqlGjhpo3b66goLy7H+vgwYPavn279u3bpwsXLigsLEzR0dGqW7eubrrpJtnt9jyLJT8qKNfWnEMz5uv3PykpSTt37tSOHTt0/PhxXb58WUWLFlWZMmXUuHFjVatWLU/iKMh8vQ/klfj4eK1YsUKHDh3S2bNnVapUKVWpUkVt2rRRaGior8MDAADwmoJyfQcAbjEAIB9wOBzG6tWrjREjRhj169c3bDabISnDf0FBQUaXLl2MJUuW5GpMlStXdhlDZv+GDRuWq3EVBDNmzDBuuOEGl69xixYtjKVLl+Z6HMnJycY///lPo3z58hnGYbfbjV69ehn79u3L9ViQsbi4OGPatGlG3759jVKlSmX62YyOjjZGjBhhHD16NFdiWbp0abaOGZKMDRs25EpMyFx236/x48fnWkyXLl0yRowYYRQvXjzDbRcuXNh48MEHjVOnTuVaDABwzb59+4xevXoZdrs9w2NS+fLljX/+859GcnJyrmw/ISHBmDt3rjFo0CCjYsWKmR6bIyMjjSFDhhi7du3yaBv+eC7wtoJybc05NGO+fP8PHz5sTJgwwejYsaMRGRmZ6WeqRo0axrvvvmskJCS43f7kyZOz/RkuSPuBL/eBvOwjnTp1ynjwwQeNQoUKZdhe8eLFjREjRhjx8fG58lwBAADyir/08QDAn5AYBSBfuPfee7P1RdnQoUONpKSkXImJxKi8l5KSYgwaNMit1zkoKMh4+eWXcy2W48ePG40bN3YrlqJFixpz587NtViQsbi4OCM8PNzjz2jx4sWN2bNnez0eEqPyn+y+X7n1Y/iff/5p1KxZ060YypYta6xZsyZX4gAAwzCMOXPmGEWLFnXrmNSkSRPjxIkTXo8hJibG42N0RESE8fHHH7u9DX87F3hTQbq25hyanq/f/19++SXTG55c/atbt64RGxvr1jZIjMqcr/cBw8i7PtLq1auNsmXLutVuzZo1jb/++svrzxUAgMwMHDgwW+fDunXr+jp0+BF/uL5DwZTda/r88N0JAgdT6QHIFy5dumQpFy1aVC1atFDTpk1VpkwZ2e12HTx4UPPnz9emTZvMehMnTtTZs2f13XffyWaz5Vp80dHRKl68uFt1S5UqlWtxBLqnn35aU6ZMMcuRkZG69957deONNyopKUnr1q3TrFmzlJycLIfDoddff13R0dF6+umnvRrHlStX1L17d23cuNFcFhMTo/vuu0/Vq1fXmTNn9PPPP2vFihWSpLi4OPXr109LlixR8+bNvRoLXEtNTVVCQoJlWbVq1dS2bVvVqlVLJUuWVEJCgrZt26ZZs2bp9OnTkq5O1dmnTx/NmDFDPXv2zLX4KleurJAQ9y7FwsPDcy0OuKd06dIqUqSIW3VzYwrNU6dOqUuXLvr777/NZTVr1tQ999yjihUr6vjx45o1a5Y2b94sSTp+/Li6deumtWvXqkaNGl6PB0DBtmbNGvXr10+JiYnmsnbt2qlTp06Kjo7W3r179dVXX+nYsWOSpA0bNqh79+5aunSpV89pafsI16Zbu+GGG1SqVCklJyfrr7/+0uzZs3Xo0CFJV6/jHn30USUnJ+uJJ57waHu+Phd4W0G5tuYcmjFfv/+XL1+WYRhmOSgoSA0aNFDr1q1VuXJlRUdH69y5c1q7dq2+//57JSUlSbo6Hcgtt9yiVatWefz+VK9e3e26BWGKbV/vAxnJjT7S7t27deedd+rMmTPmsoYNG+quu+5SmTJldPDgQX399dfas2ePWb9Lly5au3atSpYs6fmTAAAA8BF/vL4DAL/h68wsAHBH9+7dDUlGp06djJkzZxqJiYku686cOdMoUqSIJev4888/93pMziNGvfrqq15vH1bz5s2zvKd16tQxDh48mK7e5s2bLdNvBAUFGVu3bvVqLM8884wllt69e2c4pcO0adOM0NBQs17FihWNK1eueDUWuHbu3DlDujqqwFNPPWVs2bLFZd34+HhjyJAhlvc1Ojraq3eKp70bmikW/Z/z+zV58mSfxtK7d29LPMOHDzdSU1PT1Xvrrbcsoy80bdrUB9ECCGRXrlyxTFtnt9uN6dOnZ1ivV69elmPXs88+69VYoqKijLCwMOOhhx4yVq1a5bJeUlKS8eqrr1piCQ0NNXbu3JnlNvzpXOBNBenamnNoev7w/s+ZM8eQZFStWtUYO3ZsptNZHzhwwGjevLkl5tatW2e5jbQjRuH/+cM+YBh500dq0qSJ2b7NZjPefvvtdHVSU1ONJ5980hJLnz59vB4LAACuOI8YFR4eblSvXt2tf507d/Z16PAT/nJ9h4LJed8rXbq028ew3PjtFnCFbwUA5AvvvfeesX79erfr//LLL5YTcdWqVb0eE4lReSc1NdWoX7+++XpHRkYae/fudVl/9erVRlBQkFn/jjvu8Foshw4dskzPdsMNN2Q6XeObb75p2Rcz+hIWuePixYvG888/b5w5c8btdfr37295v8aMGeO1eEiMyn/85cfw9evXW2LJ6kuvhx9+2FJ/5syZeRQpgIJg/PjxlmPM2LFjXdZNTEy0XMOFh4cbhw8f9loszz33nHHo0CG36z///POW2B944IEs1/GXc4E3FaRra86h6fnL+7969Wrj008/zfT9dhYXF2fUqlXL8v4sX74803VIjMqYv+wDhpH7faQZM2ZY2n/kkUcyrX/77bdbkqiY0hwAkFecE6Patm3r63CQz/jT9R0KpkD87gSBJ0gAkA889dRTatKkidv1O3bsqI4dO5rlffv2aceOHbkRGvLA4sWLtW3bNrP85JNPqlq1ai7rt2jRQn369DHL8+bNM4fFz6mPP/7YMj3bW2+9pdDQUJf1n3nmGcXExJjl999/3ytxIGuFCxfWG2+84fY0l5I0fvx4y7Sb8+bNy43QAI9MmDDBUn733Xczrf/mm28qIiLC5foAkF2GYViOKRUqVNDIkSNd1rfb7XrrrbfMckJCgj755BOvxTNu3DhVqFDB7fqvvPKKoqKizHJBPc8XpGtrzqHp+cv736JFCw0dOjTT99tZkSJF9Oqrr1qWFdTPcE75yz6QF9577z3zcUREhN544w236xuGQf8dAADkCwXp+g4AsovEKAABq0OHDpby3r17fRQJcmrOnDmW8uDBg7NcZ8iQIZby3LlzvR5L5cqVLQl4GQkJCdEDDzxglg8dOqSNGzd6JRZ4X/ny5VW7dm2zzHEDvpacnKyffvrJLLdu3VrXX399putER0erV69eZnnNmjU6efJkrsUIoODYsGGDjhw5YpYfeOABhYSEZLpOx44dValSJbOc9rouL4WHh6tly5Zm+dSpU7p48aLP4vGVgnJtzTk0Y/70/nuKPr535Od9wBPHjx/X2rVrzXLv3r0VHR2d6Tq1a9dWq1atzPK8efOUnJycazECAAB4Q0G5vgOAnCAxCkDAKly4sKUcHx/vo0iQU84/aFSvXl3Vq1fPcp3WrVsrPDzcLHvjbuJ9+/Zp586dZrlDhw6W0YVcue222yxl7mz2b87HDo4b8LVVq1bpwoULZjmrH4yvcT7uOBwOzZ8/3+uxASh4nK/JJPeOSUFBQbr11lvNcmxsrPbv3+/t0NxGH6HgXFtzDs2Yv7z/2cHn1zvy8z7giZ9//lkOh8MsZ+cYcP78ea1evdrrsQEAAHhTQbm+A4CcIDEKQMDat2+fpVy2bFkfRYKcOH/+vA4ePGiWmzVr5tZ6drtdjRo1Mstbt27NcSxbtmyxlN2NpWnTppbRFLwRC3KP84+1HDfga9k97rRo0cJS5rgDwBucj0khISFq3LixW+v50zHJuY8QFBSkUqVK+SwWXyhI19acQ9Pzp/c/O+jj51x+3wc8wTEAAAAUBAXp+g4AcoLEKAABy3n4ULvdroYNG+batn755RfddtttKleunMLCwhQVFaVq1aqpe/fuevfddwNu+oW85HwXuSTVqFHD7XWd74w4d+6cjh8/7pNYwsPDVb58ebO8Y8eOHMWB3LNq1SrL57V58+a5tq0XXnhBN954o6Kjo2W321W6dGndcMMNevjhhzV79mylpqbm2rbhuWnTpqlNmzYqXbq07Ha7ihcvruuuu059+/bVJ598ori4uFzZbnaPO1WqVFFwcLBZ5rgDwBucj0kxMTGWu0szk/ZuVV8dkw4ePKhNmzaZ5aZNm1qOlVnx1bnAmwrStTXn0PT86f3PjtmzZ1vKnl6rP/TQQ6pTp46ioqIUFhamsmXLqlGjRnryySe1cOFCb4bqt/x9H/BmH8n5uQYHB6tq1apurecv5ywAAAB3+Pv1HQD4CxKjAASk2bNna8+ePWa5U6dOKlq0aK5tb+3atfr11191/PhxJSUlKS4uTvv27dMPP/ygkSNHqnLlyho5cqQSExNzLYZA9ffff1vKlSpVcnvdtHXTtuWrWHIaB3LPW2+9ZSnffffdubatr7/+Wlu2bNH58+eVnJysU6dOadu2bZo4caJ69eql6667Tt9//32ubR+e+fXXX7Vy5UqdOnVKycnJOnfunHbv3q3vvvtOjz76qCpVqqQ333zTMl2HNzgfL4KCglShQgW31gsJCVG5cuUybAcAssv5WOLLa7Lsevvtty3HaU/P8746F3hTQbq25hyanj+9/566dOmSPvroI7Nst9vVvXt3j9r44osvtHPnTsXFxSkpKUknTpzQ77//rn//+9+6/fbb1aBBg4CfNs3f9wFv9pGc4ytfvrzbibAVKlRQUND/f2UeSMcAAED+sG/fPvXu3VtVq1ZVZGSkChUqpIoVK6pdu3Z65ZVXtH37dl+HCD/i79d3KHgC4aYyBCYSowAEnDNnzujxxx83y0FBQXr55ZdzfbsRERGKiYlRTEyMwsLCLH9LSEjQu+++q+bNm+vUqVO5HksgSXuRVLx4cbfXjY6OtpQvXrzoF7EkJyeTJOeHvv76a/34449m+cYbb/T4xxZPRUdHq3LlyipZsqTly3fpake0R48eevHFF3M1Brjv2hdRZcuWVWhoqOVvFy5c0AsvvKBOnTrpypUrXtum83GnSJEilqmDsuJ83Mnp8Q8Arly5opSUFLPsy2uy7Fi1apU+/PBDs1y+fHkNGTLE43Z8cS7wpoJ0bc05ND1/ev89NXLkSB07dswsP/LIIx5PpWez2VSiRAlVrlw53fORrk4f0q5dO33yySc5jtdf5Yd9wFt9JOfn6snzDA0NVaFChcxyIB0DAAD5w8GDBzVr1izt379fV65c0eXLl3X48GEtX75cr7/+um644QbdeeedOnLkiK9DhR/ID9d3KFgC4aYyBCYSowAElJSUFN1zzz2WL0yffPJJNW7c2OvbCg4OVteuXfX5559rz549io+P1+HDh3X48GHFx8dr48aNGjZsmOx2u7nOH3/8oe7du5MU44FLly5Zyu5O2SJdTVbLrK38HAu8KzY2VkOHDjXLISEh+uyzz9J9EZ9TJUqU0BNPPKEFCxbozJkzOnv2rPbv369Tp07p7Nmzmj17tlq2bGlZ54033tAHH3zg1TjgHrvdrrvvvltff/21Dh48qEuXLungwYM6duyYLl26pJUrV+q+++6TzWYz11m0aJHuu+8+GYbhlRicjxWeHHMk63GHYw6AnMrP10HHjh1T3759LV+6ffjhhypcuHCW6/rDucCb/Ol9zO1YOIem50/vvyf++9//auLEiWa5UqVKev31191at0KFCho1apSWLVumCxcu6PTp09q/f7/Onj2rU6dO6b///a/q169v1k9JSdGwYcM0d+5cbz8Nv+CP+0Bu9ZE4BgAA8rOQkBCVKVNGlSpVStdvMQxDP/74o2688Ub99ttvPooQ/sIfr++A/H5TGQKT+7fLAYCkP//8M9faLl26tEfZ7Bl5/PHHtWjRIrPcqFEjjR07NqehZWjt2rUqVapUhn8LDg5Wo0aN1KhRIw0aNEhdu3bVyZMnJUm//fabPvjgAz377LO5ElegSUhIsJSdE82yknbkrpxeZPlTLPCeY8eOqWvXrpaO39ixY72eUNmoUSMdPnzYZec0KipKPXv2VI8ePfSvf/3LMtLdc889p549e6pixYpejQmZO3z4sMvjvN1uV6tWrdSqVSvde++96tWrly5fvizp6nSuM2fOVJ8+fXIcg/Nxx5NjjmQ97nDMAQKLL67J8+t10KVLl9StWzcdPXrUXPb444+rR48ebq3vD+cCb/Kn9zG3Y+Ecmp4/vf/uWr58uWV0t9DQUH3zzTcqWrRoluveeeeduv/++11OoVayZEndf//96tevn5544gl9+umnkiSHw6GHH35YHTp0cCuBMj/xt30gN/tIHAMAAPlNw4YN1bdvX3Xs2FF16tSxnL/27NmjWbNm6d133zV/Zzh9+rTuvPNOrV27VtWrV/dV2PAxf7u+Q8Fkt9vVo0cP9ezZUy1btrRcoyclJWn9+vX69NNPNW3aNPMmsms3lc2cOdNysxmQW0iMAuCR2rVr51rbb775pv7xj39ke/0XX3zR/CJTkqpUqaIffvgh3cWdt7j6gSStxo0ba+7cuWrZsqV5wh87dqyeeuqpdJnSSC/tF6RJSUlur5t2ZK60d0B4IxZ378DwdizwjrNnz+r222/XgQMHzGVDhw7VyJEjvb6tIkWKuFXPZrPppZde0pEjR8xpPBITE/XWW2/p3//+t9fjgmvuHuc7deqkL774Qv369TOXvfbaa175Mdz5GOPJ8U+yHnc45gCBxRfX5P50TeauhIQEde/eXZs2bTKXdenSRe+9957bbfjDucCb/Ol9zO1ra86h6fnT+++OTZs26c477zTjtNls+uKLL9S8eXO31nf3xqvQ0FB9/PHHOnTokObPny9JOnnypD799NNc6Rf4kr/tA7nZRwoPDzeTVTkGAADc4cubwsePH59p36NGjRoaNWqUHnjgAfXo0cMcKer06dN68skn9dNPP3k9ZuQP/nZ9h4Ip0G4qQ2BiKj0AAeHNN9/UG2+8YZZjYmK0ePFilS9f3odR/b/mzZtbTuxnz57V6tWrfRhR/pH2Dt20d0BkJu0dDjm929efYkHOxcXFqVOnTtq2bZu57N5779XHH3/sw6j+3z//+U9LZ/THH3/0YTTISt++fdW0aVOzvH37du3fvz/H7TofKzw55kjW4w7HHAA5ld+ug5KTk9WnTx8tWbLEXNa+fXvNnDlTISG5c49Ybp0LvMmf3sfcjoVzaHr+9P5nZdu2bbr99tsVFxdnLvvoo49033335cr2bDabxo8fb1kWiNff+WkfyIgnfSSOAQAAT9WuXTvX/jlPC5wRd2/IKF26tH788UfFxMSYy+bPn2+5GQQFS36/vkNg8PSmMmevvfZaboQEpENiFIB877333tMLL7xglsuUKaPFixerWrVqPowqvbvuustSZv5v96SdIuHcuXNur3v+/HlL2d27UXM7ltDQ0FwbyQzuuXTpkjp37qwNGzaYy3r37q0vv/xSQUH+cXlUokQJtW3b1iwfOHBAx44d82FEyEpuHOedjzuXLl1SSkqK2+s6H3dyevwDgIiICEtCkS+vybKSkpKifv36ad68eeayVq1a6ccff8z1O2D9/Zq/IF1bcw5Nz5/e/8z8+eef6tChg86cOWMumzBhgh555JFc26Yk1alTR9dff71ZXrt2ba5uzxfyyz7giid9JOfn6snzTE5OVnx8vFkOpGMAACAwlChRQi+++KJlWSAmdMM9+f36DgVPfripDIHJP375A5BvGIaRa/+yM43ef/7zH40YMcIslyxZUosXL1atWrW8+bS9Im1M1+YCR+aqVq1qKR88eNDtdZ2nR5OU42Q5b8Xib0l7Bc3ly5fVtWtXrVmzxlx25513avr06QoODvZhZOlx3MhfcuP9cj7upKam6siRI26tl5KSoqNHj5pljjtAYPHVNbnzMcmX12SZSU1N1X333afZs2eby26++Wb99NNPKlSoUK5t9xp/P3cXpGtrzqHp+dP778ru3bt1yy23WD4748aN0/Dhw3Nle2k5f4YTExN14cKFPNluXskP+0BW3D3OOj/Xo0ePKjU11a32Dx8+LIfDYZYD6RgAAAgcPXv2tJT97YYM5J1AuL5DwePvN5UhMJEYBSDf+vTTT/XEE0+Y5eLFi+vXX39V3bp1fRiVa2nvTr82hy4yV6dOHUt5z549bq+7d+9e83F0dLTKli3rk1gSEhIsP66kbQd558qVK+rWrZtWrFhhLuvcubNmzJih0NBQH0aWMY4b+UtuvF/ZPe7s37/f8uMPxx0A3uB8LDl8+LDbQ/Q7X5OlbcebHA6HBg0apG+//dZc1rBhQy1YsCDdXbS5xd/P3QXp2ppzaHr+9P5n5O+//9Ytt9xiGQHotdde03PPPef1bbni75/hnPL3fcAd7r5Hzs81JSXF7bvQ8+qcBQDwP/52U3hmypYtq6ioKLPsbzdkIO8EwvUdCh5/v6kMgYnEKAD50hdffKFHH33ULBcrVkwLFy5UgwYNfBhV5k6cOGEplyxZ0keR5C/FihVTpUqVzLK7meNJSUmWudXr16+f41jS7l/uxrJ+/XrL1B3eiAWeS0xMVI8ePbRkyRJz2W233abZs2fLbrf7MDLXOG7kL7nxfmX3uOM8IprEcQeAdzgfk1JSUrRx40a31suLY5JhGBo8eLCmTp1qLmvQoIEWLVqkYsWKeX17rvj7ubsgXVtzDk3Pn97/tA4cOKD27dvr8OHD5rKXXnpJL7/8ste3lRl//wznlD/vA+5y9z3iGAAACHTOycKBlswN9wXC9R0KnkC/IQX+icQoAPnO1KlTNWTIEBmGIenqHMoLFixQo0aNfBxZ5latWmUppx3iFK516dLFfLx37179/fffWa6zcuVKyygGd9xxR47jqFq1qq6//nqz/Ouvv5r7YWYWLVpkKXsjFngmKSlJvXr10sKFC81l7du31/fff6/w8HAfRpY55+NGaGioYmJifBgNspIbx/mWLVtaRjlx3ocz43zcCQoKshxHASC70h5L3DkmORwOLV682CzXqVPH69fBhmHokUce0eTJk81ldevW1a+//qrixYt7dVtZyQ/X/AXl2ppzaMb85f13dvjwYd1yyy2WaT9GjRql119/3avbyUpSUpI2bNhglmNiYvxyVNmc8sd9wBPu9pE6d+4sm81mlrNzDChWrJhatWqVzUgBAMg9qampOnPmjFkOtGRueCa/X9+h4An0G1Lgn0iMApCvfPfddxo0aJAcDockqXDhwvr555918803+ziyzCUlJenTTz+1LLvtttt8FE3+k3bO9M8++yzLddLW6dGjh9djOXDgQJZfrqakpFh+pKtQoYIaN27slVjgnpSUFPXr108//fSTuax169b68ccf092Z4E8WLFig3bt3m+WWLVsqMjLShxEhM6dOndI333xjliMiIrzyI4rdblfXrl3N8sqVK/Xnn39mus65c+c0a9Yss9y8eXOVKVMmx7EAQNOmTVW+fHmzPHnyZMvIPRlZuHChJdkh7XWdNwwfPlwTJ040y7Vr19aSJUvy/Iu13DoXeFtBubbmHJoxf3r/JenYsWO65ZZbLD/ejBgxQmPHjvXaNtz1xRdf6NKlS2Y5UPvs/rYPeMKTPlLZsmXVrFkzszxz5kydO3cu0/b//PNPS+JV165dAzI5DgCQ/61bt07Jyclm2R9vyEDeyc/XdyiY8sNNZQhABgDkE3PmzDFCQkIMSYYko1ChQsaKFSu81n7btm3NtiUZ+/btc1n38uXLHrU9ZMgQS9vt2rXLYbQFS2pqqlGvXj3Le//333+7rL969WojKCjIrN+1a1eXdfft22d5b9q2bZtpLAcPHjTCwsLM+jfccIORlJTksv6bb75paX/8+PFZPl94T0pKitG3b1/Le9CyZUvj4sWLOW7bk33H02PG0aNHjUqVKlnanzJlSg4jhruSkpKM5ORkt+snJycbnTt3trxfgwYNcll/6dKllroDBw7MtP1169ZZ6nfu3DnT+g8//LCl/owZM9x+LgCQlXHjxlmOMePGjXNZNykpyahfv75ZNzw83Dh06FCm7XtyTW4YhvHMM89Y6teqVcs4duxYdp5authz81zgSwXp2ppzaHr+9P6fPHnSqF27tmWdJ598MrtPzcLT6+/t27cbUVFRlliWLVvmlVj8jb/sA3nRR/r2228t9R999NFM63fq1MlSf/369R7FCABAXkn7fSffGxZsuXl9B3jbyZMnjSJFipj7X0REhHHlyhVfh4UCgMQoAPnC/PnzDbvdbp4oIyMjvf4lpSc/wpQtW9Z46623jKNHj2ba5pEjR4xevXpZ2g0ODjbWrVvn1dgLgh9++MHyOtatW9c4ePBgunpbtmwxYmJizHpBQUHG5s2bXbbr6Zf3hmEYI0aMsKzTp08fIyEhIV296dOnW/bbmJgYLvDykMPhMAYMGGB5r5o1a2bExcV5pX1P9p3Jkycbbdq0Mb7//nsjMTEx03YXLVpkVKxY0dJ2gwYNjNTUVK/Ejazt27fPqF69uvHJJ58YZ8+ezbTurl27jDZt2ljer8jISOPAgQMu1/E0McowDOOuu+6yrPPUU09luE+MHz/esNlsZr1GjRoZDocjy/YBwF2XL1+2XGvZ7Xbj66+/TlfvypUrRu/evS3HrpEjR2bZvifX5C+99JKlbs2aNY0jR47k5OmZcvtc4GsF6dqac2h6/vD+nz171mjQoIGl/rBhw7zx9AzDMIzRo0cbd955p7F48WIjJSXFZT2Hw2F8++23RnR0tCWWO+64w2ux+CN/2Afyoo/kcDiMRo0amevYbDbjnXfeSVcvNTXVGD58uKX9Xr16Zdo2AADe4mmy8NSpUy3nrGLFihnnzp3LneCQb+TW9R2QmUC+qQyBx2YYhiEA8HPVq1e3DK1fuHBhj6c0ePLJJ/Xkk0+6/Hu7du20fPlys7xv3z5VqVIlw7o2m02SFBQUpCZNmuimm25SjRo1VKxYMUlX58ddu3atfvnlFyUlJVnW/eSTT/Twww97FDuuGjZsmD766COzXKhQId1777268cYblZycrLVr12rmzJmWYYTHjx+vZ555xmWb+/fvtwzT2bZtWy1btizTOC5fvqy2bdtq48aN5rKYmBjdf//9qlatms6dO6f58+db9qewsDAtXrxYLVu29OQpIwdWrlypNm3aWJaVL1/e4+nzli9frpiYmHTLPdl3pkyZogceeECSFBUVpVatWumGG25QuXLlVKRIEV2+fFn79u3TokWLtGXLFsu6ZcuW1W+//ebyeATvc35vQ0ND1bx5c914442qWrWqihYtqpSUFB07dkyrVq3SkiVLzOldJSkkJERz5861TN2T1rJly9S+fXuzPHDgQE2ZMiXTmE6ePKmbb75Z+/fvN5ddd911uueee1ShQgWdOHFCs2bN0h9//GH+vXjx4vrtt9903XXXefgKAEDmVq1apQ4dOigxMdFc1r59e3Xu3FnFihXT3r179dVXX+no0aPm35s0aaLly5dneR5295r80KFDqlSpkmVZqVKlVLRoUY+ey7Rp0zKclju3zwX+oKBcW3MOzZiv3//XX39dr7zyimVZtWrVzL62OypUqOCy/dGjR2vMmDGSpNKlS6tly5aqX7++SpcurcKFC+vixYvatWtXuqnZJKlOnTpatWqVoqOj3Y4lP/L1PpBXfaS//vpLzZs3t0yj16hRI911110qU6aMDh48qK+//tqyH1StWlVr165V6dKls2wfAICc6ty5s2rWrKmhQ4eqXr16LutdvnxZ48eP1+uvv67U1FRz+dtvv62RI0fmRajwc7lxfQdkZv/+/erQoYOeffZZ3X333Zn2oXbv3q3BgwdrxYoV5rLIyEjt3Lkz3fc7QK7wdWYWALijcuXKlgzi7Px79dVXM92GJ3enZ2f7UVFRxrRp07z7whQwKSkpxv333+/W622z2Yznn38+yzazc1e7YRjGsWPHjIYNG7oVS5EiRYzZs2fn8NnDU2lH5cnuP1fHAk/vhs7Otps1a2bs3bs3d14guJT2vXX3X/ny5Y2FCxdm2X52RowyDMPYsWOHUb16dbdiKVOmjLFq1aocvhIA4NqsWbOMwoULu3VMatSokXH8+HG32nX3mjy7x+q0/5YuXerV9t09F/iDgnRtzTk0PV+//6+++mqOP7+VK1f2evtdu3Y1Tpw4kY1XNP/x9T6Ql32klStXGqVLl3ar/erVqxs7d+70qH0AAHLCuQ903XXXGffff7/xxhtvGJ988okxefJk45133jHuv/9+o0SJEunOW/fcc0/AjnIKz+XG9R2QGefr/9DQUKNNmzbGk08+abz33nvGpEmTjE8//dQYPXq00aFDB8v0jZKMkJAQY968eb5+CihAggQA8NjIkSPVqFEjhYSEZFm3fPnyevHFF7Vz5071798/D6ILXMHBwfrvf/+rb7/9NtO7Z5o1a6Zff/1Vb7zxRq7FUrZsWa1du1avvfaaypYtm2Edu92uu+66S1u2bFHPnj1zLRb4v0aNGql///6qWLFilnVtNptatGihqVOnatWqVapWrVoeRAhnxYsX12OPPaa6desqKCjry+Xq1atr3Lhxio2N1W233ZZrcdWuXVtbtmzR008/7fLum0KFCmnQoEHatm0bI9QByFV33XWXtm7dqp49e8put2dYp1y5cnrttdf022+/eTzaq6/567nAmwrStTXn0PT86f3PDbfccovuuusut0b8CQkJUceOHfXDDz9o3rx5BWaUIF/vA3nZR2rVqpW2b9+uQYMGKTIyMsM60dHRevrpp7VlyxZdf/31HrUPAIC37Nq1S1999ZVeeOEFPfLII3rggQc0cuRIffXVVzpz5oxZLygoSKNGjdKXX37p0YibCGy+vr5DwZacnKwVK1bogw8+0NNPP62HHnpIDz/8sEaPHq1ff/3VMtJ2+fLlNX/+fL8faRuBhan0ACAHEhMTFRsbq7///ltHjx7VpUuXJF0dBr5UqVJq1KiRqlev7uMoA9f27du1detWHT16VMHBwSpfvryaNGmS54kkqampWrNmjfbs2aMTJ06oSJEiqlChglq3bq3ixYvnaSzwf6dOndL27dt18OBBnT59WleuXFFYWJiKFSumKlWqqGnTpoqKivJ1mPif+Ph4bdu2Tfv379fx48cVHx+v4OBgRUVFqWzZsmratGmGUy3mtqSkJK1YsUL79+/XqVOnFB0drUqVKqlt27YqVKhQnscDoGA7e/asVq5cqcOHD+vixYsqU6aMatSooZYtW7qVVOTv/PVc4G0F5dqac2jG/OX9zw2HDx/Wzp07dejQIZ05c0YJCQmKjIxUsWLFVKNGDTVp0sRlskxB4st9IC/7SPHx8Vq+fLkOHjyoc+fOqVSpUqpSpYratGnjMtEXAIDcNGnSJE2fPl3r1q1TfHx8pnULFSqkPn36aPjw4brxxhvzJkDkW4F8jQ//EBcXp+eff17Lly/Xzp07LclPGalevbqGDh2qoUOHqlixYnkTJPA/JEYBAAAAAAAAAAAAgI84HA7t3r1bu3bt0uHDhxUXF6fk5GQVKVJExYsXV7169XTDDTcoODjY16ECQDoF5aYy5F8kRgEAAAAAAAAAAAAAAAAIOPl/THsAAAAAAAAAAAAAAAAASIPEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAAYfEKAAAAAAAAAAAAAAAAAABh8QoAAAAAAAAAAAAAAAAAAGHxCgAAAAAAAAAAAAAAAAAASfE1wEAAFAQHDx4UFu2bNHp06d1+vRpORwOFStWTGXLllXDhg1VsWJFX4cIAAAAIB+irwEAAADA2+hnAAgkJEYBQADZv3+/qlatmmvtG4aRa20HokOHDundd9/V/PnztWvXrkzrlitXTnfffbcGDBighg0bZmt7Xbt21fz5881yjRo1tHv3bpf1Bw0apC+//DJb28rKq6++qtGjR5tlm82W4zbnzJmjHj165LgdAAAAeI6+hn+hrzHaLNPXAAAAyL/oZ/gX+hmjzTL9DCCwMJUeAABeFh8fryeffFI1a9bUhAkTsuxASNKxY8f0/vvvq1GjRurevbt27tzp0TaPHDmiX375xbJsz549Wr58uUftAAAAAPBf9DUAAAAAeBv9DACBjhGjACCAhIaGqnr16lnWO3v2rM6dO2eWy5cvr4iIiNwMrcA4fPiwunXrps2bN1uWFytWTLfeeqvq16+vUqVKyW6368SJEzp48KAWLVqkffv2mXV/+OEH2Ww2zZ071+3tTpkyRampqemWT5o0SW3bts1wnTJlyri1v+zdu9d8HB4erpiYmCzXKV68uMu/udtGWoULF/Z4HQAAAHgHfQ3fo69xFX0NAACAwEE/w/foZ1xFPwMIbDaDMQQBoMAZPXq0xowZY5aXLl2qdu3a+S6gAHH8+HE1btxYR44cMZdVrFhRr732mu6//34FBwe7XHfbtm0aO3asvvnmGzkcDnXv3t3tToRhGKpRo4b+/vtvSVLVqlXNTklERISOHTumqKiobD8v5yFj27Ztq2XLlvmkDQAAAPg/+hq5g75G7rYBAAAA/0Y/I3fQz8jdNgD4D6bSAwDAC1JTU9WvXz9LB6Jt27batm2bBg0alGkHQpLq16+vadOm6ffff1ft2rU92vayZcvMDoQkTZ8+XWFhYZKkK1eu6Ouvv/aoPQAAAAD+g74GAAAAAG+jnwGgIGEqPQBAtsXGxmrbtm06duyYEhMT1bBhQ3Xs2NGnMV26dEkrV67U4cOHdfr0aRUpUkQxMTFq166doqOjc2277733nmXu60aNGumXX34xL+bd1aBBA61fv16zZs1ye51JkyaZj5s0aaJmzZqpe/fu+u6778y/P/LIIx7FAQAAAPgSfY3/R18DAAAA8A76Gf+PfgaAgoTEKACAS8uWLVP79u3N8r59+1SlShXNmjVLY8aM0bZt2yz127Zta+lEOA81OnnyZA0aNCjb28zKli1b9PLLL+uXX35RUlJSur+HhISoS5cuGj9+vK677ros2/NEYmKi3nnnHbMcFhamr776yuMOxDWFCxfWwIED3ap7/vx5S4fj2noDBw40OxEbN27Utm3bVL9+/WzFAwAAAHgbfQ330NcAAAAA3Ec/wz30MwAUNEylBwDwyBNPPKHevXun60D40iuvvKKGDRvqxx9/zLADIUkpKSn64YcfVL9+ffPi2lumTp2q48ePm+V+/fp5PHRsdk2fPl0JCQmSJLvdrn79+kmSbr/9dpUtW9as53wHBgAAAOCP6GukR18DAAAAyBn6GenRzwBQ0DBiFADAbRMmTNB//vMfSVK1atXUo0cP1ahRQzabTXv27NHRo0fzPKZHH31Un3zyiVkOCQlR586d1bJlS5UqVUpxcXFavXq1vv/+eyUnJyspKUn9+/dXRESEunXr5pUY5s2bZyk//PDDXmnXHc6dg65du6pEiRKSpODgYN17773mXR9Tp07VW2+9JbvdnmexAQAAAO6ir5Ex+hoAAABA9tHPyBj9DAAFDYlRAAC3vf/++5KkMWPG6IUXXlBIiG9PI19++aWlA9GsWTNNnTpV1atXt9R76qmntHPnTnXr1k179+5VamqqBg8erNjYWJUsWTJHMRiGoZUrV5rlwoUL6+abb85Rm+7avHmzfv/9d7M8YMAAy98HDhxodiLOnDmjuXPn6u67786T2AAAAABP0NdIj74GAAAAkDP0M9KjnwGgIGIqPQCAR0aNGqVXXnnF5x2IuLg4DR8+3Cw3atRIS5cuTdeBuKZ27dpavHixoqKiJEknT540O0U5sXfvXp05c8YSR1BQ3pxene+sKFmypLp27Wr5e/369XXTTTdlWB8AAADwN/Q1rOhrAAAAADlHP8OKfgaAgojEKACA28qUKaPRo0f7OgxJ0ueff64LFy5IkoKCgvTf//5X4eHhma5TuXJlPf/882b5s88+U2pqao7iOHHihKVctWrVHLXnroSEBE2bNs0s9+vXT6GhoenqDRw40Hz866+/6tChQ3kSX2aWL18um83m0b927dr5OmwAAADkIvoa6dHX8Bx9DQAAADijn5Ee/QzP0c8A8j8SowAAbuvXr1+WF+p5Zfr06ebjTp06qU6dOm6tN2jQIPPxiRMntHXr1hzF4XxnhSQVK1YsR+25a86cOTp37pxZdu4sOOvfv7/ZuXA4HJo8eXKexAcAAAB4gr5GevQ1AAAAgJyhn5Ee/QwABZFvxwwEAOQrLVq08HUIkqRLly5p8+bNZjntcKuZKVOmjCpXrqwDBw5IktatW2cZmtVTFy9etJQLFy6c7bY84TyEbJ06ddS4ceMM65UqVUqdO3fWDz/8IEmaPHmyXn75ZdlstjyJMyPh4eGKiYnxaB1P6wMAACB/oa+RHn0Nz9HXAAAAgDP6GenRz/Ac/Qwg/yMxCgDgtho1avg6BEnS9u3bLcPF1q1b16P1y5QpY3YiDh8+nKNYihQpYilfunQpR+25Y9++fVqyZIlZHjBgQKb1Bw4caHYi9u/fr8WLF6tDhw65GmNmbr75Zi1btsxn2wcAAID/oa+RHn0Nz9HXAAAAgDP6GenRz/Ac/Qwg/2MqPQCA24oWLerrECSlH+q1Xbt2Hs3tvH79enNd56Fbs6NEiRKW8vnz53PUnjsmT54swzAkXZ2L/L777su0/h133KHixYubZec7MwAAAAB/QF8jPfoaAAAAQM7Qz0iPfgaAgojEKACA20JC/GOgQW9eqF++fDlH65cpU8ZS3r9/f47ay4rD4dCUKVPM8i233JLlkKx2u1333HOPWU47lzcAAADga/Q10qOvAQAAAOQM/Yz06GcAKIj842wAAIAHIiMjLeWKFSvKbrdnq63SpUvnKJbq1aurRIkS5h0fmzZtksPhUFBQ7uQeL1y4UIcOHTLLv/76q8dzaycmJmratGl6/PHHvR0eAAAAkK/R16CvAQAAAHgb/Qz6GQB8i8QoAIBfceduh5IlS1rKM2bM0M0335xbIWXKZrOpdevWmjt3riTp4sWLWr9+vZo1a5Yr2/PWkLGTJk2iEwEAAIAChb5G5uhrAAAAAJ6jn5E5+hkA/AGJUQCAXBMZGWl2Ctwd3vXEiRNZ1qlVq5alfPjwYZ91IqSr811f60RI0sSJE3OlE3H69Gn98MMPZrlUqVIezZGekJCgI0eOSJI2b96s33//XQ0bNvR6nAAAAEBuo6/hXfQ1AAAAAPoZ3kY/A4C/yJ0x8QAAkFSsWDHz8bWL16ysXbs2yzqlS5dW3bp1zfLSpUs9js2b7rvvPpUtW9Ysf/311/rrr7+8vp2vvvpKSUlJZnnevHnas2eP2/9iY2MVHh5uru+tOzUAAACAvEZfw7voawAAAAD0M7yNfgYAf0FiFAAg11x//fXmY3c6B/Hx8ZoxY4Zbbffr1898/NVXX+ns2bOeB+glYWFhGjlypFlOSEjQ/fffb7ng98SlS5f05ZdfplvufNFfvXp1NW3a1KN2o6Ki1KVLF7M8ffp0JSQkZCtGAAAAwJfoa9DXAAAAALyNfgb9DACBicQoAECucR4Kdvny5dq9e3em9UeNGqVz58651fbjjz9uDrkaFxen+++/XykpKR7F580L6Kefflpt27Y1yxs2bFCXLl108eJFj9rZunWrbr75Zs2ZM8eyfN26dYqNjTXL99xzT7bidF7v/Pnzmj17drbaAQAAAHyJvgZ9DQAAAMDb6GfQzwAQmEiMAgDkmv79+5uPU1NT1b9//wzvgkhMTNSzzz6rDz/8UDabza22ixUrpg8++MAsz58/X+3atbNcaGfEMAytXbtWjz32mFq1auXmM8lacHCwvv76a8XExJjLFi9erPr16+urr75Sampqputv375d9913n2666Sbt2LEj3d/TDhHr/Np64o477rDM4c3QswAAAMiP6GvQ1wAAAAC8jX4G/QwAgSnE1wEAAAJXvXr11KtXL82aNUuStHHjRl1//fW67777VLt2baWkpOivv/7SrFmzdPjwYYWEhOiFF17Qa6+95lb7AwcOVGxsrMaPHy9JWr16terVq6cWLVqoTZs2qlixogoVKqSLFy/qxIkT2rZtm9auXasTJ05IkmrVquXV51uuXDmtXbtW3bp10+bNmyVJBw4c0IABAzR8+HB16NBB9erVU6lSpRQaGqqTJ0/q4MGDWrRokf7++2+X7cbHx+ubb74xyzfeeKNq166drRjDw8PVs2dPc1jbpUuXat++fapatWq22suOdevWqUaNGh6v16tXL40bNy4XIgIAAEB+Q1+DvkZG6GsAAAAgJ+hn0M/ICP0MIP8jMQoAkKs+/PBDxcbG6s8//5QknTp1Su+99166ena7XZ999pkqVarkdidCkt566y1VqVJFTz/9tDn/9Zo1a7RmzZos1w0ODnZ7O+6qUKGCVq1apeeff14TJ05UYmKiJOncuXOaMWOGW/ON9+7dW2+++aZZnjFjhmX42uwOOeu8/rVOhGEY+uKLL/T666/nqE1PJCQkaO/evR6vd63zBwAAAEj0NehrpEdfAwAAADlFP4N+Rlr0M4D8j6n0AAC5qkyZMlq5cqUGDhyooKCMTzutWrXSb7/9pgEDBmRrG4899pj27t2rxx57TNHR0ZnWjYiIUIcOHfThhx9q5cqV2dpeVgoVKqQPPvhAu3fv1lNPPaWaNWtmuU5MTIxGjBihbdu2acaMGZa7D5yHhrXZbDnuRHTo0EGlS5c2y1OmTJHD4chRmwAAAEBeo69BXwMAAADwNvoZ9DMABB6bYRiGr4MAABQMp0+f1tKlS3Xo0CGlpKSoQoUKatKkiVsX2e5yOBz6/ffftXPnTp0+fVrx8fEqXLiwypQpo1q1aqlu3boKCwvz2vbcdeDAAW3dulWnTp3S6dOn5XA4FB0drXLlyummm25SxYoV8zwmAAAAIFDQ16CvAQAAAHgb/Qz6GQACA4lRAAAAAAAAAAAAAAAAAAIOU+kBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4JEYBAAAAAAAAAAAAAAAACDgkRgEAAAAAAAAAAAAAAAAIOCRGAQAAAAAAAAAAAAAAAAg4Ib4OAAAQ2JKSkrRhwwYdPnxYp0+f1vnz51W4cGFFR0erVq1aatCggcLDw3O0jYsXL2rt2rU6duyYTp48KUkqXbq0ypYtq2bNmqlo0aLeeCoBzzAMbdu2TXv27NHp06d15swZ2e12RUdHq1KlSmrUqJGio6N9HSYAAAgwNpvNfDx58mQNGjTId8HAK6pUqaIDBw5Ikl599VWNHj3aJ3G0a9dOy5cvlyQNHDhQU6ZM8Ukc+cGgQYP05ZdfSpLatm2rZcuW+TYgwAemTJmiBx54wCwbhuHDaAAAAAAA3kJiFADA6wzD0HfffacpU6ZoxYoVunz5ssu6ISEhatWqle6//37dfffdKly4sNvb+PrrrzVp0iStXLlSycnJGdYLDQ1Vq1at9OCDD+ree++1/PCWFecfB1zFHhYWpmLFiql06dKqXr266tWrpxYtWqhNmzYKCwtze1vXOP94k13Dhw/XhAkT3K6/bt06/fvf/9aiRYvMxDJX6tatq3vvvVf333+/KlSokKM4AQD5T9ofDDMSHh6uqKgoM6m2W7du6tSpk4KCGLAYOTN37lxt3rxZ0tXEm/ySQJWQkKBixYopMTFRknTrrbfq119/dWvdS5cuKTo6WikpKeYyT5LHPvnkEz366KNmeerUqbr33nvdDx6Zck746tGjh2688UafxeKv3DlvZCUqKkrnz5/3TkDIN/bv36+qVau6/LvNZpPdbldkZKRKliypChUqqFatWmrcuLHat2+vatWq5WG0ObNs2TIzGbFYsWJ66qmnfBoPAAAAAAQav/1m+plnnpHNZrP8i4mJUUJCgte20a5du3TbsNlsqlKlist17rrrrnT1mzZtyh1EAPA/ixcvVoMGDdSvXz8tWLAg06QoSUpJSdGyZcv00EMPqXr16vrwww8tP/xkZP369WrcuLHuvfdeLVmyxGVSlCQlJydr6dKluv/++9W4cWOtX78+W8/LVezx8fE6cuSI/vjjD82cOVOjR49Wx44dVbp0aQ0ePFixsbFe25637d27V926dVOzZs00bdq0LJOiJCk2NlYvvPCCqlevrhEjRujs2bN5ECkAeF9e9Dc8kZCQoJiYmHQxPfPMMz6JJycSEhJ04sQJbdiwQZ988om6du2qWrVqMfoIcmzu3LkaM2aMxowZk69G/gkPD1fz5s3N8m+//aakpCS31l25cmW6a2NPPktLly61lG+55Ra310XWru2PY8aMMZP2AOQNwzCUmJioc+fOaffu3Vq6dKk++eQTDR48WNWrV1ejRo30+eefu3289aVly5aZxxJPbnICAAAAALjHL0eM2rFjhz744IN0y1988cUcT7eUU2PGjNHcuXMtiVAbNmzQpEmTNHjwYB9GBgC+98EHH2jEiBFKTU01l9lsNt1www1q3769ypcvrxIlSiguLk4nTpzQH3/8oWXLlpl3z588eVKPP/64WrZs6fJu67lz56p///66cuWKuSw4OFitW7dW69atVa5cOdlsNh07dkyrVq3S8uXLzXh+//13tWvXTl9//bW6d+/u8fOrXLmyQkL+/9RpGIYuXryoCxcupPuyNS4uTpMmTdLkyZP16KOPavz48YqIiPB4m9WrV/d4nVKlSmVZZ/ny5erVq5fOnDljWV6pUiXddtttqlatmkqVKqXk5GSdOHFCu3bt0sKFC81EqKSkJL333nuqVKkSd7MCyHf8sb8RHh6uF154QY8//rhl+QcffKCHHnpItWvX9klcWSldurSKFCliWXblyhWdPHnSksyxZ88e3XrrrZo+fbr69u2b12ECPte+fXszoeny5ctav369WrVqleV6GSVBeZIY5TwSaa1atVSuXDm31wVyQ0bnjawwNTokqUiRIipdurRlWVJSks6fP69Lly6lu2n1999/15AhQzRu3Dh9/vnnatu2bV6GCwAAAADwI36ZGDVixIh0o3+UL1/eLxKP6tevr549e2r27NmW5S+++KL69evn9hRQABBoXn/9db3yyitm2Waz6Z577tHrr7+e6RD28fHx+vbbbzVmzBgdPHgw023MmTNHvXv3lsPhMJf16tVLEyZMcDmt29GjR/XUU09pxowZkq7+WNurVy/NnDlTPXr08OAZXv0RytWogqdPn9b69eu1cuVKTZ48WSdOnJAkORwOffjhh1q3bp2WLl3q8Xliz549HtV3x+LFi9W5c2fLubZZs2YaN26c2rRp43K91NRULV68WKNHj9Zvv/3m9bgAIK/4a39jyJAh+te//qVjx46Zy5KTkzVy5EjNnz/fh5G5Nm7cuAyn9Lpy5YoWL16sl19+2RxFxeFwaMCAAWrcuHG2En8RuArCCMzt27fXq6++apaXLl3qcWJU4cKFdenSJR04cED79u3LdIopSdq5c6d5TXothryyf//+PNsW8hdX5w0gK3fddZfL0QJTUlIUGxur9evXa9asWVq4cKF5brmWnP3ll19mOZXooEGD2D8BAAAAIAD53VR6K1as0C+//JJu+RNPPCG73e6DiNIbOXJkumUnT57Ue++954NoAMD3Fi5cqNGjR5tlu92ub7/9VtOmTcs0KUqSChUqpAcffFC7d+/Wq6++qqCgjE9NBw8e1IMPPmhJiho/frxmzpzpMilKuvpD93fffad33nnHXJaamqoHH3wwy0QsT5QsWVJdunTRm2++qYMHD+o///mPZdSRjRs36u67785ymsDcdvToUfXv39+SEDBixAitWbMm06Qo6erIXB07dtSaNWs0Y8YMRUVF5Xa4AOB1/tzfsNvt6UaMkqSff/5ZK1eu9EFE2RcREaE77rhDa9euVbt27czlSUlJev31130XGOAjN998s2X0UHdGfbp48aI2bdokSYqKirL8oO/O+mnr5GViFADkpZCQEDVo0EBDhgzRggUL9Oeff1r6t9e+A0g7vSgAAAAAoGDwuxGjXn755XTLwsLCNHToUB9Ek7EWLVqocePG2rhxo2X5O++8o+HDhzPEN4AC5fLly7r//vstCUvTpk1T7969PWrHbrdr9OjRatasWYZTKwwePFjnz583y88++6yeeeYZt9sfMWKEjh07prfffluSdO7cOQ0ePFgLFy70KE532O12DRs2TK1bt1a7du107tw5SVd/2H733Xf13HPPeX2b7ho6dKhOnjxplocNG2ZJGnNX7969deONN2rv3r3eDA8Acp2/9zceeeQRvfbaa+Y0s9e88sor+fLHvLCwMH3++eeqVauWObXtvHnz5HA4XCZDpxUfH68VK1bo8OHDOnXqlKKionT33XdnOnXs1q1btWXLFp08eVIOh0NlypRRvXr1dNNNN8lms3nluW3btk1bt27VkSNHFBERoapVq+qWW25RZGRkjto9duyY1qxZo+PHjysuLk4lSpRQtWrV1Lp1a4WFhXkt9i1btujIkSMKDw9XlSpV1L59+2z1ZS9cuKBNmzbpr7/+0oULF+RwOBQZGaly5cqpRo0aql+/vs+TDv2B3W5Xy5Yt9euvv0qSfvvtNyUmJmb6nq5cudL83LRq1Uq33HKLPv30U0lXR5x64IEHMt2mc2KUzWazJCm6cunSJa1cuVKHDx/W6dOnVaRIEcXExKhdu3aKjo7Ocv2cMgxDa9euVWxsrE6fPq2SJUuqSpUqatu2rUJDQ726rfj4eC1dulQHDx5UXFycSpUqpaZNm6p+/fpe3Y4n9u3bpw0bNujEiROKj49XqVKlVKtWLTVv3lzBwcE5anf16tU6evSoIiMjVaFCBbVp00bFixf3YvT+58iRI/rtt9906NAhpaamqly5cmrbtm2mN9a4Iy+O07Gxsdq2bZuOHTumxMRENWzYUB07dnRZf9euXVq3bp2OHj2qwoULm+9xXnxu/dF1112nJUuW6LHHHtPEiRMlXU3O7tu3r/bt26dChQp5dXs7d+7UH3/8YX52w8LCFBUVpcqVK6t+/foqX768V7fnSnx8vLZu3apdu3bp9OnTSkhIULFixVSuXDk1b97cq9Op5tbn6+zZs1q9erWOHTumM2fOKDQ0VKVKlVKdOnV00003KSTE858zYmNjzevCxMRE87qwUaNGXrsuBAAAAODnDD+ybt06Q1K6f/fcc0+ubK9t27YZbq9y5cpZrvvxxx9nuO7bb7+dK7ECgL+aMGGC5Th4//33e30bGzdutGyjZs2axpUrVzxu58qVK0aNGjUsbW3atMll/YEDB1rq7tu3z+Ntzp8/37DZbGYbJUuWNC5evOiyftpzkzdt3rzZ0natWrWMy5cve3UbAODP8rq/kV19+/bNMM6NGzf6OjRj8uTJlpgmT57s1nqNGze2rPf3339b/u58/hs4cKBhGIZx+vRp44EHHjAKFSqU7rVYunRpum0kJycbH3zwgVGxYsUMXz9JRvny5Y3x48cbiYmJWca8b9++DLe5aNEi46abbsqw/cKFCxvPPPNMts6vc+fONRo3bmy5bkjb9vDhw41z585l2dbSpUszvIb59ddfjYYNG2bYvt1uN0aMGGHEx8e7Fe/evXuNfv36GWFhYS5fb0lGWFiY0bFjR2P58uUu28psn0r7Prjz79o+tGvXLsvyjz76yK3nds1ff/2Vo/XT+te//mVpL7PXxDAM49lnnzXrvvXWW8axY8fMcsWKFbPcXpkyZcz69erVy7Tu5s2bjW7duhl2uz3D1zQkJMS48847jb/++sut51q5cmVz3VdffdWtdb766iuXn99SpUoZY8aMMVJSUjxqP6Njy6VLl4wnnnjCKFy4cIbbql+/fqbvzauvvurxPpnRMeua1NRU44svvjCuv/56l+uXKFHCGDNmjMd9oO3btxvt2rVz+dns37+/cerUKcMwrH2ftm3berSdzGT3vOGujNr++++/jTvuuMMIDg7O8Lnfeeed2erb5cVxeubMmUb9+vXTte3qPVm3bp3RtGnTDOMJDw83BgwYYJw5c8YwjKzf4xdeeMGy7tmzZz16fZ5//vkcrZ9W2uP/tc+wJ5KTk41WrVpZ2hk7dqzL+mn318w4HA7j008/NWrWrJnlMaBKlSrGU089ZTgcDksbnh5LMnrfDh48aLz11ltGy5YtjdDQ0EzXb9KkiTF37ly3X7+8/HzNmzfPaNGihREUFOQy/iJFihh9+/Y11q1bl2V7CQkJxttvv21UqlTJZXsxMTHGf/7zH/PcAgAAACBw+VVi1D333JNhJ2XBggUeteNwOIzffvvN+Pzzz40333zT+Oyzz4wlS5YYycnJlno5SYw6f/58hl8YVq5c2UhNTfUoXgDIr1JTUy1fMtlsNmPv3r1e3869995rOdZOmTIl22198cUXlrbuvfdel3W9kRhlGIZxxx13WNp5//33XdbNzcSo++67L1d/lAAAf+et/sY1ly9fNpYuXWpMmTLFePfdd40333zT+Pzzz40FCxZkmgSblfnz52cYZ24kH3squz9wp032SvuDVtrkhc2bNxvly5d3+UNW2iSDkydPGo0aNXL7h8X69esbR44cyTTmjBKjJkyYkOkPdtf+1atXzzh58qRbr83FixeNrl27uh17+fLljdjY2EzbzOgH93HjxrkVe5s2bbJM7Fq8eLERGRnpdsySjBdffNFle5ntUzlJjDIMw5IU0qhRoyzfD2fOiUmRkZHG+fPnPVo/rTVr1ljiHD16dKb1nRMK169fbxiGYdSqVctctmfPHpfr7tixw7KtJ554wmXdl19+2a19Q7qaQPftt99m+Vw9SYxKTU1Nd93t6l+7du2MS5cuZTsx6sCBA0bt2rWz3E5oaKgxZ86cDNv0ZmLU8ePHXSa1ZPSvTp06WR67rpk9e7bLRDfnfxUrVjR27NgRMIlRixYtMooVK5bl8y5fvryxa9cut7aRV8fpxx9/3GWbGb0nEydOdOuzW6lSJbfe43379lmSvv7973+79foYhmGkpKRYztv9+/d3e11XvJEYZRjpb7QqWbKky0QYdxOjEhMTjTvvvNPjY0Ha76Y9XT+j983d46fzv0ceecStZKC8+HxduHDB6NKli0fxZ7Uv7Nq1y62EtWv/2rRpY8TFxbkVLwAAAID8yW+m0jt//rxmz56dbnmxYsV0yy23uN3OtGnT9OKLL+rAgQPp/la6dGk98cQT+sc//pGtYXedRUVF6ZZbbtGCBQssyw8cOKAlS5aoQ4cOOWofAPKDbdu26eDBg2b5tttuU7Vq1by6DYfDoZ9++sksFylSRH369Ml2e3fffbeGDx+uixcvSpLmz58vwzBydfj0p59+WvPmzTPLv/zyi5588slc215GDMPQ/PnzzXJUVJT69u2bpzEAgC95q78hXT13vPvuu1q5cqWSkpIyrGO323XLLbfo1VdfVbNmzTxq/9Zbb1VUVJQuXLhgWT5r1iz95z//yZdTd6ekpFjKmU0Jde7cOfXs2VNHjx5VSEiIunTpolatWqlEiRI6ffq0li1bZln/4sWLatOmjf78809zWfHixdWnTx/Vr19fQUFBio2N1XfffadTp05JunoN07p1a23YsMHtqaQWL16sN954Qw6HQyVKlFDfvn1Vr149ORwObdmyRTNmzDCn/d2+fbtuv/12rVmzRuHh4S7bjI+PV/v27S3TtEdHR6tbt2666aabVLRoUZ04cUI///yzVq5cKUk6evSo2rZtq02bNqlSpUpuxT59+nS9+OKLkqSaNWuqR48eql69ugzD0ObNmzV16lTFx8dLklasWKHRo0dr3LhxGbZ18uRJ3XXXXbp8+bK5rEWLFmrfvr0qVaoku92uixcv6sCBA/rjjz+0atUql58Td4SGhqp69ermtq9dw4WHhysmJibDdcqUKWM+fvjhh80p5TZt2qQtW7aoQYMGWW43OTlZ//3vf81ynz59FBUVld2nIUlq0qSJChcurEuXLkm6OtXdq6++mmHduLg4/fHHH5KuXv82bNhQktS2bVv99ddf5vrXXpu00k692b59+wzrPfroo/rkk0/MckhIiDp37qyWLVuqVKlSiouL0+rVq/X9998rOTlZSUlJ6t+/vyIiItStWzcPnr1rI0eO1JdffmmWg4OD1alTJ3P6vqNHj+qnn37SunXrtGzZMg0bNixb27l8+bK6d++unTt3ym6364477lCLFi1UvHhxHT9+XHPmzNGGDRskXX3/H3jgAd18883ppp4qXry4+bo7TytdunTpDKcEl6SIiIh0y44dO6ZWrVrp77//NpeVK1dOd955p+rWratChQrp4MGD+v7777V582ZJ0o4dO8zPf2bnghUrVqhfv36Wz94NN9ygnj17qmLFijp37pwWL16shQsX6tChQ+rdu7fq1q2bxSvo//78808NHz7cnN6uZ8+euuGGGxQZGak9e/Zo+vTpZv/16NGjGjBggFavXp3p1K55dZyeMGGC/vOf/0iSqlWrph49eqhGjRqy2Wzas2ePjh49aqk/Z84cPfLII5Yp7Rs3bqxu3bopJiZG58+f14oVKzR//nwdPHjQrfe4SpUq6tixo3755RdJ0qRJk/T444+7Ff9PP/1kiXHIkCFurZcXGjVqpNatW5vvz+nTp/X777+rSZMm2W7z1Vdf1Q8//GCWS5QooW7duql+/foqXry4kpOTdebMGcXGxmrVqlXav39/hu1cO5acPXtW586dk3T1OFy5cuUM67s6711TtWpVtWjRQvXq1VOJEiVks9l09OhRrVixQkuWLJFhGJKkTz75RKVLl9aYMWPcfs658fmKi4tTq1attG3bNnNZSEiI2rdvrzZt2qhs2bJKSUnR0aNHtWHDBi1dujTddNNpxcbGql27djp9+rS5rFq1aurWrZuuu+462e127d27V7NmzdLu3bslXT1mdurUScuXL8/xbwYAAAAA/JRv87L+38SJEzO8Y6Nfv35urZ+ammrcf//9bt0F0rhxY+P06dM5GjHKMAzjk08+yXD9AQMG5OCVAID84/3337cc/8aNG+f1bWzZssWyjc6dO+e4zdtvv93S5tatWzOs560Ro5KTk42IiAiznaJFi7q8OzO3RozKjdcRAPKTnPY3DMMwDh8+bLRs2dLju/IffPBBt6Zuc9avX78M2/riiy88fepeld2RP+rVq2dZ7+DBg5a/Z9Q3q1WrVpYjbhiGYTz44IOW9bp27WpOG+Ts3LlzRo8ePSx1+/bt67LdtCNVXBuVo3Pnzhm2f/z48XRTVr300kuZxj5o0CBL/cGDB7sclWjOnDmWUZpuvfVWl+2mHYkkKCjICAoKMt5+++0Mr0H27dtnGYEnLCzM5RRIzqPlhIeHGz///HOmz/HChQvGp59+akyaNMllHXf3qeyMaJOYmGiULFnSXO/xxx93a73Zs2db4lq5cqVb62XF+To0LCzM5dRo8+bNy/C6bdq0aebyzEY+7dOnj1nPZrNluM9OmTLF8hybNWvmchSqHTt2GNWrVzfrli5d2pyCLSPujui0cuVKywg15cqVczlF0rRp08wRkJxHyXF3xKhr69x4443G7t27M6yfdjSoZ5991mXbhuH+vptWamqqceutt1reo5deesnl/vDxxx9bpq168MEHXbaddvpwm81mvPfee+mm8DIMw1i+fLn5+XB+TfPriFHXnsO9996b4bE0Pj7e6NSpk2Wdn376KdP28+o4fe3fmDFj0o0qlNbZs2eN0qVLm+uEhIS4vD7YtGmTOUWlO+/xrFmzLPG4O42v8+hJNWrUcGudrHhrxCjDMIx//vOflrbeeuutDOu5M2JUfHy8pX/frVu3LEcK3bRpkzFgwACX3wM4H3vc/V76msGDBxuDBg0yRxZ0ZfPmzZZRB4ODg10eC6/J7c9X7969LfVbtmxp/Pnnny7rnz9/3vj3v//tchTKy5cvG3Xq1DHbCw0NNT744IMMX/fk5GTjlVdesWz/tddeyzReAAAAAPmX3yRGpZ1m6Nq/iRMnurX+0KFDM1zf1b8mTZq4nGrB3Q7oX3/9leH6JUuWZDo9AAVC2inuXE0RkRNpf8h++eWXc9zmiy++aGnzs88+y7CetxKjDMMw2rRpY2nL1Zd9uZUY9dlnn1nazWpKEwAINDntb/zxxx+WHyE9/de+ffsspydz9umnn2bYTs+ePbP7EnhFdn7g/v333y3rlC9fPl2dtOe/6Ohot6aL2r59u2W9m2++2UhISHBZPzExMV1ym6skjIymcLvppptcJi4YhmHExcUZ119/vVnfbre7nFJv2bJllraHDRuW5fOdM2eOZZ1ff/01w3oZ/eD+9ttvZ9r2L7/84tb1UevWrc06Tz31VJYxu8PdfSq7U30988wzln0rs/fwGudpfa6//nq3t5WVsWPHunX9PHLkSLPO2LFjzeWHDx82l8fExLjcjvPx6sYbb0z39wsXLhhRUVFmnUaNGmX5uuzfv9+yTmaJf+4mRjlfI4eGhhp//PFHpjF8/vnn6fZtdxOjpKvTxrlK+rumRYsWbr3GhpH9xKgvv/zSsu748eOzXGfChAlmfZvN5jKhwbmelPWUjatWrUo3HVt+TYySriapZJQEds2pU6eMokWLmvUzSzDM6+P0qFGjsn7ChpEumePDDz/MtH5sbKwRFhbm1nucnJxslCtXzqz3yCOPZBnP0aNHjZCQkAyPWTnhzcSoJUuWWNpylRjvTmLU4sWLzb+HhIRkmiTqrpwkRrlzTrvm8OHDRnR0tLmtp59+OtP6ufn5Sjt1dLt27Tx6LhkZM2aMpc3vvvsuy3Weeuops36hQoVyPG0uAAAAAP/keizbPJScnKwlS5Zk+Lc2bdpkuf68efM0ceJEj7a5YcMGbdq0yaN10rruuussQ/Rfc/r0aXP4dQAIZCdOnLCUq1atmuvbqFGjRo7brFmzZqbbyA1VqlSxlJ2Hdc+MzWbz+F9G8uK9AgB/ldP+xokTJ3TnnXfq5MmT2Y5h6dKleuKJJ9yu7yquRYsWpZuWzp+dOXNGAwcOtCzr1atXluu9/PLLKl++fJb1Pv74Y0v5o48+UlhYmMv6drtdH3/8seV8+dFHH2W5nWvef//9TKfGK1KkiN555x2znJSUZJmOzZlzvUqVKundd9/Ncvs9evRQp06dzHLa5+/K9ddfrxEjRmRap2PHjpbrlXXr1mVY7/jx4+bj6667zq3t+9rQoUPNx+fOnctwWk1nhw8fNqeSkqTBgwd7LZa0U9qlnfLummvT/0lSu3btzMcxMTHm1EtHjhwxpwFytmPHDsvxKqPpQj///HNzus6goCD997//zXTflqTKlSvr+eefN8ufffaZUlNTM10nM7t27dKKFSvM8tChQ3XjjTdmus5DDz2Uo+mvxo0bp+jo6EzrOO8vR44c0ZEjR7K9PVecP//NmjXTM888k+U6Tz75pGrXri1JMgzDMgWis88++8x8nPY9y0jLli3THadz0wMPPOBx/2bKlClutR0SEqIPP/ww02nSS5YsqbvuusssuzrWSXl7nC5TpoxGjx6dZT2Hw6EvvvjCLNevX1+PPPJIpuvUqVPH7WuQkJAQPfDAA2b566+/1pUrVzJdZ8qUKea1SUhIiAYNGuTWtvJSdvvjGXE+DxYvXlwlS5bMdlvekNWx21lMTIxlX/j555/dXtfbn6/x48ebjyMjI906D2UmISFBH374oVnu27ev+vTpk+V6//rXv8xplePj4/XVV19lOwYAAAAA/ssvEqO2bt2qy5cvp1teqFChdD9ep+VwODR8+HCXfy9evLjGjh2rlStXavny5Xr99ddVtGjRHMd8TYMGDTJcvmbNGq9tAwD81ZkzZyzlYsWKeX0bZ8+e9fo2oqKiMt1Gbkj7A0xebNNZXrxXAOCvctLfkKSnnnpKhw4dyvBvRYoU0QsvvKAlS5ZozZo1mjBhQoY3T0jSpEmTNG/ePLdivu666xQREZFu+aVLl7Rt2za32vCVhIQE7dq1S++//74aNGhgibdo0aJ64YUXMl0/KChIAwYMcGtbP/74o/m4WbNmatiwYZbr1K9f35J49tNPP7m1rdq1a6t169ZZ1uvcubMqVqxoln/44Yd0dS5cuGDZ7uOPPy673e5WHM4/OC9evFiGYWS5zsCBAzP9IfOaZs2amY937tyZYZ3IyEjzcX7p99asWdOSkPT5559nWn/y5Mlmwo/dbvdq0kijRo0s30k4J0Bdc+HCBW3evFmSVLhwYTVq1Mjy97Zt22a6ftplaZOxJGn69Onm406dOqlOnTpuRG/d/06cOKGtW7e6tV5GFixYYCk/9NBDbq3nbr20ChcurN69e2dZz/lzILn+LGTX9u3bLa9bVkmL19hsNsu+uGjRonR1/v77b8XGxprlgQMHunVscU4Gy89uvfVWy/HXFef3eO/evUpOTk5XJ6+P0/369XMrKWT79u06fPiwWX7ggQcUFJT117ueJHgOGTLEbPPChQuaMWOGy7qGYVgStbp16+byOsiXvNkfdz4Pnjx5Unv37s12W77QoUMH8/Fff/2lixcvurWeNz9fp0+ftiQG9+/f3622M/Prr79akoJHjhzp1nqRkZG6++67zXJGx1YAAAAA+Z9fJEa5Grnp+uuvz7Jzv3DhQv39998Z/q1EiRJat26dRo0apVatWqlNmzZ66aWX9Ntvv3ktOap+/foZLs/paFQAkB+k/QKtcOHCub6NQoUK5bjNtHHGxcXluM3c2mb16tU9/peRvHivAMBf5aS/sWPHDn333XcZ/i06Olpr167Vv/71L7Vv317NmzfX8OHDtX79epUtWzbDdf71r3+5FXNQUJDLRAV/6mtkNPJHRESEatWqpaeeesoy0kp4eLjmzJnj8rW5platWipRokSW2z527JgOHjxoljt37ux23HfccYf5+PTp09qzZ0+W69x+++1utW2z2dSxY0ez/Pvvv8vhcFjqrFmzxrKsa9eubrUtSTfffLP5+Pz58/rrr7+yXCdtoocrMTExlrYz4px8NnXqVL3++uuKj493q31fck78WLZsmcvvEQzD0OTJk81y9+7dvToaSHBwsCXBbt26delGY1m5cqWZmNWyZUuFhIRY/u6cGJXRiFPOiVHBwcHpRqC7dOmSmXglebb/lSlTRpUrV7bEn13OI21HRUXppptucms95xG0PNGoUSOFhoZmWc/5cyC5/ixk18qVK83HQUFBltGFsuL8+Y+NjU332Vu/fr2l7O5xq1mzZnl240Tp0qU97t+4+x1edo51hmGYo6c5y+vjdIsWLdxqO+0I9e5+HmrVqpXl+feaKlWq6LbbbjPLkyZNcll3+fLllnOoN0fY8yZvfgeQ9ljVvXv3fDVzQLly5czHhmHo6NGjbq3nzc+X83FQcm800aw4t1m6dGk1btzY7XWdP7M5Oa8BAAAA8F9+kRjl6kvoSpUqZbnurFmzXP7tlVdeyXDKpTp16ui5555zP8BMuLqbxZ0v1gEgvytSpIilfOnSpVzfhjd+eEsbpzdHEnQlbWJS2lGrXNmzZ4/H/zKSF+8VAPirnPQ3pk6dmi6p5Zp33303w+SlSpUquUyAWrt2rSUhITOB1Ndo27atfv/99wyn9ErL3Wlzd+3aZSm7Gs03IzfccEOmbWXE1U0xWdW9dOmSZXQPSdqyZYv5ODQ01KMp6dKOxJG27Yy4+2O48w/Hrq65hg4dahl96pVXXlHZsmV1991369NPP9WOHTvcGh0lr911111mgpNhGC5/6F+8eLH27dtnlocMGeL1WJxHcEpMTNRvv/1m+btzspNzElRGyzIaMWr58uXm44YNG6a71t2+fbtlCry6deu6H7ys+6A7+58rzq/ztSni3FGzZk23EpzSys7nQPJO/8OZ8+e/UqVK6a7TM+P82qempurYsWOWv//555+Wcr169dxu25O6OTFu3DiP+zfOU3NlxpvvcV4fp9099zl/biS5Pdqb5Nln3TmZdMWKFRlO2ylZR+CrWLGiR4l+eSm7/fGMVK5c2ZKMHRsbq6ZNm+qGG27Q888/rwULFmSYDJTb4uPj9c0332jQoEFq1KiRypQpo4iIiHQJ7GlHS3U3+dObn68dO3ZYyp4kMbni/JmtU6eOWyNlXuP8mT1x4kS+mrYaAAAAgHv8IjHK1bQU5cuXz3LdtF8gXhMUFKR7773X5XruTs2QFVcxOt+5DACBKu1oDt6+m1q6OiWqt7eR9kvKtNvIDWnjzottOsuL9woA/FVO+huLFy/OcHlUVJT69+/vcr3evXu7HI0qoxFePInPn/oaGY38UadOHTVv3lx33323xo4dq+3bt2vZsmVuJz64m7B87ty5dLG4K+2P1mnbyogn7ZcqVSrT9p2nuE1OTlZoaGi6Hy5d/XOewsfd2N2ZniktV8lNzZo105tvvmlZdunSJc2YMUOPPPKI6tatqzJlyuiee+7R3LlzM5xCxxfsdrtleqspU6ZYkoOucf6Rv0qVKpYph7wl7dR2aY8JzslOGY0GU7lyZXPUpmPHjllGo9mxY4dlKqGMptFLO8Vyu3bt3N7/bDabZVQid/Y/V5yvR9NOc5WZoKCgbCU1ZOdzILn+LGSX8+u/f/9+j177tEkwaV9/53JYWJhHN4CkPW7lR958j/P6OO3ue+X8uYmIiFBYWJhb60mefc7uvPNOy8hCGSWTnj9/3nLDqrvT+vmCt/vjn3/+ebpktm3btmns2LHq3LmzihcvrqZNm2rMmDEuRyj0pokTJ6pSpUq655579OWXX+r333/XyZMnlZCQkOW67tSRcu/zFRoa6pWRGZ3bXLZsmUfH1i5duljaysm5DQAAAIB/8oveqqvhi7Oa5scwjHR3w11TrVq1TKdfqFixolfmvHc1pVNeTMsEAL6W9ji6f//+XN+GN0bJSHu3qzfOB1lJ+2WoN6dkcUdevFcA4K+y29+QrHefO2vevLnsdrvL9YoWLeryWL9mzZostyvlj75GRiN/xMbGas2aNfr22281atQoj0ejSTttmCtpRz9M+0N0ZtK+tu6MpBgREeG19r2ZoHz58mWvteWuUaNGaeHChWratGmGfz916pS++eYb9ezZU9dff73mz5+fxxFmzHkElKNHj+rnn3+2/P3MmTOaO3euWX7ooYc8GnHCXTfeeKNl2jLnRKjz58+bo8oVKlTI5SgarkaNSptklVFilL/sf4mJieZjT5I7slPfn+Tm6+88MosnxyzJO1OWB5K8/py4e+7Lq89NSEiIHnjgAbP85ZdfphtFZ+rUqWZSTVBQkB588EGP4slL3u6Ply9fXhs3btTIkSMzHPXN4XBow4YNGj16tK677joNHjw4167fnnvuOT388MM6e/Zsur8VK1ZMMTExqlatmpnA7jwdquT95E93OI/g5a1jj7+c2wAAAAD4J/d63bnM1Z0pmf3QIF0d8SOjOzwlqUKFCllut0KFCjpx4kTWAWbC1d0yV65cyVG7AJAfNG3aVNOmTTPL69evz3C6j5xuw9nGjRtz3GbaNm6++eYct5mZ5ORkyzaLFSvm9lQJ3pL2dXS+0x8AAl12+xsXL160/ADpbMGCBdlOmDh+/Lhb9ehrZC5tYpsnP2KlndbFnSQ5T173rNp3TuIKCgpS1apV3W47LU+m4fKm2267TbfddptiY2O1YMECrVixQmvWrNHp06ct9f7++2/dcccd+vzzz33+o3nNmjXVvn17M3lo0qRJuuOOO8y/T5061fzMBwcHW5ICvCkoKEht27bV999/L+nqddnly5cVGRmpFStWmNN3tmjRwuWUcW3bttV///tfSVeToR5++GFJ1iSp0NBQtW7dOt26aZMIK1asmOXx0BVPRlJLy3mEnLTTXGXFnxJEPeX8+oeFhbn1/ZUrac8TzgkGnp4rvD1lYH7nr8dp58+Np9Oje/q5GTJkiMaOHSuHw6Hjx4/rp59+Uvfu3c2/O48iddttt6VLuPEnaWcc8MbUbVFRUXr77bc1ZswYLVy4UEuWLNHq1au1ZcsWyzTMqampmjRpktavX69Vq1Z5NJJbVhYtWqTx48eb5ZIlS+rJJ59Up06dVK9evQwTJPft26dq1ap5LYbscGfqXk85f2YLFSrk9tR/GXE3UREAAABA/uEXV/mu7lhKSkrKdL3MvgBw5844T++ey4irH1m80TYA+Lu0SVCLFy/Ws88+69Vt1K9fX1FRUeb0d6tWrVJ8fHy27yqMj4+3jNQRHR2tevXqeSVWV5YvX245X7Ru3TrPpxioX7++ihcvbt5FumbNGiUkJGR7OHwAyE+y29/IrR/e005j5Qp9jcylnRLIefqwrKSt6870Qp60f+rUqUzbdx6pwm63e2VETF+pW7eu6tatq5EjR8owDG3btk3ff/+9vvjiC3OESsMw9OSTT+qOO+7IUSKNNwwdOtRMjJo3b55OnDhhjqzp/CN/586dFRMTk2txtGvXzkyMSkpK0po1a9ShQwdLYlNmNxw4/2358uUZPm7SpEmG18xpR0qZMWNGrt8okBHnqdtcTXmakQsXLnicSOVPnF//qlWraufOnV5r2/lYk5iYqLi4OLeTMNIetwo6fz1OO39uUlJSdOzYMcuUd5k5fPiwR9uqUqWKbrvtNv3yyy+Srk4fdy0xatOmTebodtLVJCp/tmDBAks5o2lKs6tQoULq2bOnevbsKenqyEW//vqrvvnmG82dO9e8qXfbtm16/fXXLYlMOfXuu++aj8uUKaONGzdmmWzpzZGVsst5lofk5GSdPn06x6N4Oa/funXrdKNCAgAAACjY/GIqPVdf0mR151Nmd/W6c2ecN+60dnVXi6/u2gWAvFS/fn1VqlTJLC9atMjrU7QFBQWpS5cuZvnixYuaMWNGttv79ttvLT+kdOnSJVemSHH23nvvWcq33357rm4vIzabzfI6nj9/Xt99912exwEAvpDd/oY37+h35u7IRvQ1MnfddddZyq6mPczI1q1bM20rI9u2bXO7/e3bt5uPCxUqlC7B5vrrrzcfJyQkuJ0s5+9sNptuuOEGvfzyy/rrr7/Ut29f82/x8fGaM2eOD6O76q677jITC1JSUvTll19KktatW2d5jwcPHpyrcaSd4u5aspZzYlRmP9xXr17d3K+OHz+unTt3KjY21pLcktE0epJUq1YtS9nTZAlvadCggfl4z549bic7/fHHH7kVUp5w/vwfPXrUMrJMTqV9b52PRVnxpG5B4K/HaefPjST9/vvvbq2XkJCgHTt2eLy9a6PRSdLPP/+so0ePSrqaJHVN6dKldeedd3rcdl7ZsGGDVq9ebZbLlCmjG2+8Mde2V6xYMfXu3VszZ87U6tWrLQntU6dO9dp2HA6HZfrUp556yq0R6NJOK+gLaW9O88bI4M6fWV+d1wAAAAD4L79IjKpYsWKGy48dO5bpelFRUQoODs7wb+7cbejJHYmuXPtCIC1XzwkAAklQUJBGjBhhlh0Oh8aMGeP17Tz99NOW8htvvOFyFI3MJCQk6M0338y0bW/7+eefLXcqli5dOtemZcnKM888YymPHTs2W68jAOQ32e1vFClSxOVoU3mBvkbmypUrZ0nQ9mRkgHnz5pmPS5Ys6dYUtwsXLnSrbcMwLHUbNmyYrt/arl07S2K28w+bgcJut+vjjz+2PM/s/CjvzHlauewmk9jtdg0cONAsXxslynm0qHLlyqlr167ZjNI9N9xwg2XEjGXLluncuXNmgl9kZKSaNGmSaRvOo0YtW7bMklQluU6MKl26tOrWrWuWfbX/NW/e3HzscDjMEbSyMmvWrNwKyWPO0y25u086vy9xcXFuJ7a4I+3IX+4et9atW+cXo8j4E389Tjdt2tQy+rC7Cac//fSTy+mBM9OtWzdzRKrU1FRNmTJFV65c0ddff23WGThwoMtpP30tJSXF8p2FdLVfnFcjON98880aOnSoWT5+/LjOnTuXrl52zm9nzpyxvKdpk+ZcWbx4sVv1clPr1q0tny9vHNedj62xsbEejfQJAAAAIPD5RWKUqy+hDx48mOl6NpvNcjeIs3379mV6N9fBgwe90kFylVxVvXr1HLcNAPnBkCFDLFOiTJkyRXPnzs12ewsWLNDevXsty5o0aaJbbrnFLO/evVuvvPKKx22//PLLlikQOnTooEaNGmU71qxs3bpV9957rwzDMJc999xzioyMzLVtZqZBgwaWH/l27typf/zjH9lub8+ePea0CgDgz7Lb35Cujo6YkX79+skwjGz9c3d0RfoaWevWrZv5eO3atZZpfVyJjY3VihUrzLK7CTA7duywjDjhyoIFCyz71rVph5yVKlXKcm0zYcIEt2LIb6Kjoy3TPiUnJ+eoPedRo69Ns5wdQ4cONX+Q3bVrlxYsWKBvvvnG/PugQYMsCS+5wWazWRKbNmzYoJ9//tn8Qbx58+ay2+2ZtuG8/tKlSy2JUWFhYWrRooXLdfv162c+/uqrr8zplvNS586dVbx4cbP81ltvmVNOuXL06FFNnjw5t0NzW3b2yYYNG6pmzZpm2Zuf/2rVqlmS3r788sssp42VpIkTJ3othkDhr8fpEiVKqFOnTmZ52rRpOnDgQKbrOByOdDcIuSskJEQPPvigWf7iiy/03XffWfb33B5hL7tSU1M1bNgwrVq1ylxWpkwZPfbYY3kaR9qR3DI6F2bnWOL8PYPkegpmZ2fOnNFXX33lVvu5qUSJEurQoYNZ/vrrr3N8A/Ptt9+uYsWKSbr62nzwwQc5ag8AAABAYPGLxKiGDRtmuHznzp3pOnlpOd9h6MzhcGjatGku1/NWJ9DVdAq5+UM7APiTyMhIffXVV5Y7Lvv166fZs2d71E5SUpJGjx6trl27ZjiNxqRJkxQVFWWWx48fr3feecft9t999129/fbbZjkqKkqfffaZRzG6KykpSR9++KGaNWtmuRu0a9eueuqpp3Jlm+6aOHGiJZHt/fff16hRo7I836Y1c+ZMNW7cWDt37vR2iADgdTnpbzj/aOPsp59+ylYiQUajBGTE4XC4HF2Hvsb/e/TRRy3lYcOGZZoEkJycrMcee8wyGoMnP5AOHz480xE34uPjLSM02u12DRgwIMO6L7zwgvl49erV2frR2hcjP3oybfKRI0d0+vRps1ylSpUcbdt5/d27d2dr9BNJqlmzpmWaukGDBpnXnzabLc9+5Hce3SI5OdmyDzgnPbniXGf58uVavny5WW7WrJll+qa0Hn/8cXO60Li4ON1///1KSUnxKP6c7n9hYWGWkVS2bduWboRTZ4mJibr33ntdTjPqC877pLtT0QUFBVluTpg+fbqmT5/u8bZdvf5DhgwxH+/fv19vvfVWpu2sXbvWnFISVv56nH7yySct7ffv3z/TaXpffPFFbdq0KdvbGzx4sNnf37t3r0aNGmX+rU2bNm5NR5vXdu3apVtuucWS9Ge32/Xdd9/l+Ealw4cPZ5nE6cx5qt9ChQpZEoavcT6WxMXFuZUkVKJECRUqVMgsO4+GmRGHw6EhQ4ZkOZV0XnE+3sfHx2vAgAE5+rwUKVJETzzxhFkeP358upEU3cGo2gAAAEBg8ovEqAYNGmT4hV18fLxlZI+M9O7d2+XfXnvttXSjjkhX7/TN6oshdzl3bp25StgCgEDUsWNHjR492iwnJiaqT58+GjBggPbt25fpuvHx8friiy903XXXacyYMS6Hja9SpYo+//xzSwLWM888oz59+ujw4cMu2z969Kj69u2rkSNHmsuCgoI0adKkHP845+z06dP6+eef9fzzz6ty5cp6/PHHdeXKFfPvN998s7799luXU8DmlfLly2v69OmWofrfeusttW7d2nInbUZSU1O1aNEitWzZUn369MnRSA0AkJdy0t/o37+/ZaqPay5evKg+ffq4NfXQlStX9OOPP+quu+5S06ZN3Yp5165dlvPINZGRkW5PlVIQ1K1bVw899JBZXrNmjfr06ZNhAtqFCxfUr18/y2hR/fr1c/s9CQoK0qZNm9S7d+8M2z916pS6d+9uSWh77rnnMvwBVJJuueUWDRo0yCy/8MILGjp0aJYjGyckJGjevHm68847Ldc3eaVmzZq67777tHTp0kyn+zl79qzuu+8+s47NZstw9CxPNGvWzHx85coVvfDCCxl+TtzhnJBz4sQJ83H79v/H3n2HRXG1bQC/t9BBFFQEC/aKir3Egl009tiiRmOJJSbWV1OsMSYxJrHEbuwaYzdq7C323lGjYo3YUJqUZct8fxDm24FlmYWFXfD+XZeXe5ZzzjyzuyxzZp45pwlKliyZ8SAtkHKpO+PEGuPErbSUK1cOPj4+AICXL1/i1atXafadUt68eSWzaezevRtBQUEICQkx204QBJw5cwbDhg1DgwYN0o0xPRMmTIC/v79Ynj17Njp06CBZXk6v12P//v2oU6cOjh49ikKFCklmmrIl48/khg0bcPjwYVnt+vbtKybeCoKAPn36YMKECYiOjjbbLiYmBhs2bEBQUBDmzJljss7gwYMlMyVOmjQpzZlTTpw4gfbt20Ov12fb0mI5ib1+T7dq1QpdunQRy6dOnULt2rWxe/duSYLj1atX0bVrV/zwww9QKpVpzrqfnuLFi6NFixZi2fg7015mi9LpdLh27RqWLl2K4OBglC9fXvL3Xq1WY9WqVWjUqFGmt/Xbb7+hXLlymDNnDp4/f2627saNGyVLtbZv397kcWWtWrUkv4Pjxo1Ld7ytUqkkCfwrV67E6tWrTdZ9/fo1unfvjm3bttnN73rLli0lsxcePXoULVq0wD///JNmm5iYGMyfPx8TJkww+fPx48cjICAAQNINa8HBwZg9e3a6idTh4eFYtmwZatSokakZ0ImIiIiIyH5l7dzwMjk6OqJp06b466+/Uv3s+PHjkinGU2rZsiVKlSplMgHq9evXqF27NsaNG4cGDRrAYDDg2LFjmDlzZronm+S4c+eO5GRAsrx586JOnTqZ7p+IKCeZOHEi8uTJgzFjxkCv18NgMGDNmjVYu3YtAgMDERQUBD8/P3h7eyM6OhovXrzApUuXcPToUdl3+3/wwQfYuHEjevXqJbbZvHkztm3bhkaNGqFBgwbw8/ODQqFAWFgYTp48iaNHj0ru5nRycsK6deskJ5LlCgoKkiyrIggC3r59i8jIyDRnp1CpVBg2bBh+/PFHODs7W7zNtJZ/MqdIkSJm74xs1qwZDhw4gM6dO4uznZw8eRINGzaEv78/WrRogZIlS6JAgQLQarV48eIF7ty5g3379tlkmRUioszKzHijcuXK6Nq1KzZu3JjqZ4cPH0bp0qXRp08fNGjQAIULF4ZarUZUVBRevHiBGzdu4NKlS/j777/Fu8+NEwDMMb6YZ6xp06aS5FYCZs2ahZMnT+L27dsAgB07dqBMmTLo1q0bKleuDIVCgZCQEGzYsEGSOFKyZEnMnz9f9na++uorfPfdd9i1axfKli2L7t27IyAgAIIg4OrVq9iwYYMkUa5atWr4+uuvzfa5cOFChIaG4vjx4wCApUuXYvXq1WjRogXq1KmDggULwsHBAVFRUXjy5AmuXr2KM2fOiDPmDB48WHb81qLT6bBu3TqsW7cOPj4+qF+/PgIDA1GwYEG4uLjgzZs3uHLlCrZv3y4Zdw8ZMiTVckKWqlOnDipVqiQm7/zyyy+YP38+ihcvLjnOat++Pb755huzfXXu3BkFChSQfCYA6Ww7Wa1SpUooWLBgqiQLFxcX2Ql7jRs3Nvn9lF5iFJCUnBMSEoKZM2cCSDoeDAgIQP369dGoUSMULVoUbm5uiImJwYsXL3D9+nWcOXNGPA+S2fcTSJo9ZcuWLWjWrJmYBLBjxw7s2LED7u7uyJcvH169eiV+hyqVSqxduxYDBgwQj0tteePBxx9/jMWLF0MQBMTGxqJZs2bw9vaGr6+vJK7ffvsNNWvWFMsqlQp//PEHGjZsiFu3bsFgMGD69OmYO3cuWrVqhRo1aiB//vxQKBSIiorCgwcPcPXqVZw9e1Ycdxgvp2bM2dkZy5YtQ4sWLZCYmAhBEDBixAgsX74cnTp1QpEiRRAZGYnDhw9j7969MBgMqFixIipVqoRNmzZl7QuGpMSFb7/91uJ269ats8m5Nnv9nl6yZAnu3r2La9euAUhaJrZt27ZwcnJCwYIFERkZKZmJecKECXj06JH4t9LS35vBgwenWkY9b968Zm9YtbatW7emupknMTERUVFRiImJSXMW0DJlymDZsmVo2LCh1WIJDQ3FyJEjMXr0aNSsWRO1a9dGyZIlkS9fPmi1Wjx8+BD79+/HhQsXxDZubm5pfvb9/PzQunVr7N69GwDwxx9/YPPmzShevLhkVqiaNWvit99+E8tffPEFduzYAUEQYDAY0LdvXyxbtgzBwcEoVKgQoqOjcfHiRfz555/id+y0adPSPT7JLosXL8atW7fEG49PnDiBgIAANG3aFI0aNUKhQoWg1+sRFhaGCxcu4PDhw4iPj0ffvn1N9ufm5iaeH3r27BkSEhIwatQoTJ8+Ha1atUJgYCC8vLxgMBgQGRmJu3fv4sqVK7h48aJFs4AREREREVEOJNiJxYsXCwBS/evdu3e6bXfu3GmybUb/+fv7y4p50aJFJtv37Nkzk68GEVHOdeDAASEgICBD37++vr7CkiVLBJ1OZ3Ybp0+fFgIDAy3uPzAwUDh16pTsfenbt2+G/5Z4eHgIAwYMEEJCQix6/Ro3bpxtf8fu3bsntG3bNkPbcHZ2FsaPHy9ERkZatH9ERLaSmfFGWFiYUKRIkWwda/To0cNk+8WLF2fylcicFStWSOJZsWKFVfo1/vvXt29fi9u/fPlSqF69uuz3ISAgQHj69KnZPh88eCBpc+TIEWHWrFmCUqlMt/9KlSoJL1++lBW7RqMRBgwYkKHP07Bhw0z2eeTIEUm9Bw8eyIpl8uTJ6X5WMxJnr169hMTExDS3a8ln6tKlS0KBAgXMbk/uZ2js2LGSdt7e3kJCQoKsttbSrVu3VPE3adJEdvv58+enau/i4iJoNBqL+nB0dLT4fa1YsWKaffr7+4v1Jk+enG4MFy5cEMqVK2d2e97e3sLevXsFQRCEQoUKic/Pnj07zX4z+t1iyWdy2rRpgkKhMBv7kSNHTLaNjIwU3n///Qz9Xv34449m49qyZYus97Vo0aLCzZs3JWOfxo0by36t0pPy70ZG/6X1GlryXiWz9DvSnr6njb18+VJo06aN2e2rVCrh+++/FwwGg+TYomPHjhZtS6vVCr6+vpK+P/30U4tjtkTKv8OW/qtWrZqwZMkSi74PU35eTTH+Wyn3n5eXl3D8+HGz23706JFQsmRJs/2Y+t386aefZMWgVCqF6dOnmzy+SUt2/H5FRUUJrVq1suj1TO/7/OnTp0KdOnUy9LnZuHGjrP0kIiIiIqKcxT7mzgXQtWtXODk5pXo+5TTQprz//vuSafDlqFGjBmrUqGFRm5TSmlq3T58+meqXiCgna968Oa5du4b169ejVatWcHV1NVvfwcEBzZo1w6pVqxAaGopBgwale/dq3bp1cfHiRaxZswZBQUFmZ85Qq9Vo3LgxVq1ahYsXL1p1qVOlUgkXFxf4+voiMDAQXbp0weTJk3HgwAG8evUKv/32GypWrGi17VlbqVKlsGvXLpw5cwYffvghChYsaLa+QqFAlSpV8OOPP+LBgwf44Ycf4OnpmU3REhFlTmbGG76+vti5c2eaS6JZW2JiIvbs2ZPqeScnJ3Tr1i1bYshpChQogLNnz2LOnDkoWrRomvV8fX3x448/4uLFi/Dz87N4OyNHjsS+ffsQGBho8udubm4YO3Yszp8/L/vz4ujoiN9++w1nz55F+/btTX5OjXl7e6Nr167YvHkzZs2aZekuZNq6devQs2dPcQk3c+rWrYutW7di7dq1VpvprFq1aggJCcH333+PJk2aoFChQhmalROAZIksIGksn97rb22mZnZq3Lix7Pam6tavXx+Ojo6y+xg2bBhCQ0MxbNgw5MuXz2xdFxcXNG/eHPPnzxdn0LGGGjVq4OrVq1iyZAmaN28OX19fODo6wtfXF/Xr18dPP/2EW7duoVWrVhAEQbKcZd68ea0WR0ZMmDABZ86cweDBg1G1alXkzZtXMsusOZ6enti5cyf27duHJk2apNvOz88Pffv2xd69ezF69GizdTt37oxLly6l+XlycnLChx9+iEuXLqFChQqy4n1X2ev3dIECBfDXX3/hr7/+Qo8ePcTZ87y8vFC1alWMGTMGN27cwBdffAGFQiGZ/dfS3xu1Wo1evXpJnsvOGfbS4ujoiLx586J06dIICgrC4MGD8dtvv+H+/fu4dOkSBg0aZNH3oRx9+vTBpEmTUKtWrXR/Z/Ply4fhw4fj9u3b6S4/WqxYMVy9ehW//vorWrdujcKFC5tcCjqlMWPGYPv27ShbtmyaderWrYtDhw7hq6++Sre/7JYnTx7s3bsXW7ZsQY0aNUwuNZjM09MTvXv3xueff262Tz8/P5w+fRobNmxArVq1zPYJJM0iOnToUBw/fhxdu3bN0H4QEREREZF9UwhCGvMM20CPHj2wYcOGVM/v379fspa9KcnTBa9duzbd7VSrVg379u1D165d8ffff6f6ub+/Px4+fGi2j6ioKBQsWDDV0klFihTBw4cPbTqVOxGRPUlMTMS5c+fw77//Ijw8HFFRUeKyGOXKlUNgYGCmL0BFR0fjzJkzePbsmbgUSYECBeDr64u6desyeUcmQRBw7do13Lt3D+Hh4Xj9+jUcHR2RL18+FC9eHDVq1LD5hScioszIzHgDAMLCwtCrVy+zy5Wao1Qq0bVrV/zxxx9m6+3Zswdt2rRJ9XyPHj2wfv36DG37XXPlyhVcvXpVclxQuXJlVK9ePd2LY8kePnyIEiVKiOUjR44gKChILF+/fh1Xr15FWFgYnJ2dUbx4cTRv3jzdpPD0xMfH49SpU3j06BHCw8Oh1+vh4eGBIkWKoEKFCihbtqzsfchqDx48wK1bt/Do0SNERUXBYDDAw8MD/v7+qFmzZoaSz7LTH3/8gZ49e4rlGzduoFKlSjaMyPYMBgMuXbqEW7duITw8HLGxsXB3d4ePjw/KlSuHSpUqZXvyWEp37tyRLON34sQJvPfeezaMyHqio6Nx8uRJ/Pvvv3j9+jWApKQBf39/VKxYUfKdZIn79+/j5MmTCAsLg6urK4oWLYpGjRrBy8vLmuG/M3LS97QxPz8/PHv2DADw7bffWrycWuvWrcXl9GrWrInz589bPcacJj4+HlevXkVoaChevHiBuLg4ODs7w9vbGwEBAahatarVE7PSkvz9ffHiRbx+/Rru7u7w9fVFzZo1M/zdYQvPnj3DqVOn8Pz5c0RERMDFxQU+Pj6oUKECAgMDM3TOPTw8HCdPnsTz58/x5s0bqFQqeHp6okSJEqhUqRIKFy6cBXtCRERERET2xK4So86ePYu6deumer5Xr16yEp4AYO3atZgwYQIePXqU6mdeXl749NNPMXHiRDg4OCAoKCjDiVGLFi3C0KFDUz0/Y8YMjBs3TlasRERERESUfawx3gCAw4cPY/bs2Th06BDi4uLM1s2TJw8aNmyIli1bomvXrvD19U23/7QSuM6ePYvatWvLjpMyJ73EKMr5WrRogYMHDwIA6tWrh1OnTtk4IpJj9uzZGDVqFICkhNPo6Gi4ubnZOCoi+3blyhVUq1ZNLO/ZswetW7eW3f7x48coUaIEDAYDAGDx4sUWz95PREREREREZCt2lRgFJE0Df+zYMclzzs7OCAsLS3dK92SCIODMmTO4ceMGwsPD4e3tjZIlS6Jx48ZWm76/Vq1auHDhguS5PHny4PHjx5yZhIiIiIjITlljvJFMq9Xi8uXLuHPnDiIiIhAVFQVnZ2dx1ohy5cqhRIkSFt3Z/vr1axQuXBgajUbyfKNGjUze1EFZh4lRududO3dQvnx5JJ8SWblyJfr27WvjqCg9sbGxCAgIEG9ma9y4cYZn8SN6lyQv7QcA7u7uePbsGdzd3WW3//rrr/Hdd98BADw8PBAWFmZReyIiIiIiIiJbMr8Qug188803qU42JyQkYMmSJRg/frysPhQKBerVq4d69eplQYTAqVOnUiVFAUlrujMpioiIiIjIflljvJHMwcEBtWvXtuosTosXL06VFAUA06ZNs9o2iCjpdyo5KSp//vzo3r27jSN6dz148ACurq7w8fExWy8hIQF9+vSRzPA9ePDgLI6OyD7FxcXh3r17qFKlSrp1f/zxRzEpCgA+/PBDi5KaXr9+jQULFojljz76iElRRERERERElKMobR1ASo0bN0arVq1SPT937lwkJibaIKLUfv7551TPFShQQJzKnYiIiIiI7JM9jzcSExMxb968VM+3bt0ajRo1skFERLmPTqfDL7/8Ilk+c8yYMXB2drZhVO+2s2fPokSJEhgwYAD27t2LyMhIyc/Dw8OxZs0a1KhRA9u2bROfr1+/PhPa6J0VHR2NwMBAtGnTBuvWrcO///4r+Xl8fDz279+P4OBgSeK3l5cXJk+eLHs7YWFh6Nmzp/h76ejoiHHjxlllH4iIiIiIiIiyi93NGAUAv/zyC6pWrQqdTic+FxYWhmXLlmHo0KE2jAy4fv265ERcsu+++w4eHh42iIiIiIiIiCxhr+ONpUuX4tmzZ5LnHBwc8Msvv9goIqLcYdGiRVi0aBF0Oh0eP36MmJgY8WelSpXCiBEjbBgdAUlJHMuXL8fy5csBAN7e3nB3d0dMTAwiIiLE2b2SFStWDGvXroVSaXf3+xFlG0EQsGfPHuzZswdA0hJ3+fLlQ0JCAl6/fg29Xi+p7+zsjNWrV8PPz89sv23atEFYWBhiYmLw6NEjST9jxoxBsWLFrL8zRERERERERFnILs8gVaxY0eSJyenTpyMhIcEGEf2/yZMnpzohV6tWLQwYMMBGERERERERkSXscbyRkJCA7777LtXzn3/+OSpUqGCDiIhyj+fPn+Pq1asICQmRJEV5enpi48aNcHFxsWF05ODgkOq5169f49GjR3jz5k2qczDBwcE4c+YMSpQokV0hEtkdlUqVKjEwJiYGjx8/xsuXL1MlRVWqVAmHDx9G27Zt0+375s2buHr1Ku7fvy/pp1mzZhbNNkVERERERERkLxRCyjNMRERERERERO+4hw8fShIvjhw5gqCgINsFRBk2ZcoUTJ06FUBSEk7hwoXRsmVLfPXVV/D397dxdAQAISEh+Ouvv3D69GncuXMHYWFhePv2LVQqFby8vFCsWDE0btwYH3zwAWrVqmXrcInswvPnz7Fz506cOHECN27cwJMnTxAdHQ29Xo+8efOiUKFCqF+/PoKDg9G+fXvZM6wVL14cjx49AgC4ubmhQoUK6N27Nz799FOo1Xa5+AARERERERGRWUyMIiIiIiIiIiIiIiIiIiIiIiKiXMcul9IjIiIiIiIiIiIiIiIiIiIiIiLKDCZGERERERERERERERERERERERFRrsPEKCIiIiIiIiIiIiIiIiIiIiIiynWYGEVERERERERERERERERERERERLkOE6OIiIiIiIiIiIiIiIiIiIiIiCjXYWIUkZUNGTIECoUCCoUCq1evtnU4ZGX9+vUT39+goCBbh2OXkl8fhUKBlStX2jockiEoKEh8z/r162frcIjsypw5c8Tfj4kTJ9o6HCIispKMjtvu3buHTZs2Yd68eZg+fTpmzJiB+fPnY/v27bh27Rq0Wm0WRk053dGjRyXjpYcPH9o6JCKLCIKA6tWrQ6FQwNHREbdv37Z1SERERERERETpYmIUkRVdvHgRS5cuBQBUrVoVvXv3NlnPOAnB1D9HR0d4eHigWLFiqF27Nj788EP88MMPOHHiBPR6fXbuEuVAn376qeTzlCdPHsTFxdk6rFxlypQp4r8rV67YOhwAwJUrVyRxkZRxUiMvQpElhg4diuLFiwMAZs6cifv379s2ICIiyjS547ZkUVFRmDp1KooVK4YyZcqgW7du+OyzzzBhwgR88cUXGD58ODp16oSqVavCw8MDdevWxYQJE3Dp0qXs2B3KQsbHj7wxJuebMmWK2XMxarUabm5u8PX1RdWqVdGpUyd8/fXX2LVrF2JiYjK0zZTjEIVCAScnJ7x+/drivvbs2WMybnM3JK1cudKqNy8pFAr88MMPAACtVovPP/88U/0RERERERERZQe1rQMgyk1GjhwJg8EAAPjmm2+gVGYs91Cr1UKr1eLt27d48uQJzp8/j/Xr1wMA8ufPj969e2PkyJHw9/e3WuyUOyQkJOD333+XPBcTE4NNmzahb9++Nooq95k6dar4uHjx4ggMDLRdMP+5cuWKJC4mRxFZh6OjIyZMmICBAwdCo9Fg3Lhx2Lx5s63DIiKiTLBk3Hb48GH06dMHYWFhsvrWaDQ4e/Yszp49iwsXLmDv3r1WiZmIsp5er0dcXBzi4uLw/PlzXLt2Ddu3bwcAODs7o3379hg1ahTq1q2bqe0kJiZi3bp1FicVLVu2LFPbtZaWLVuiQYMGOHHiBA4cOIBdu3bh/ffft3VYRERERERERGnijFFEVrJnzx6cOHECAFCpUiW0a9dOdttSpUpJ/pUoUQLe3t5Qq1PnLoaHh2P27NkoV64cpk6dyhmkSGLLli2IjIxM9by9nEAlIsqJ+vTpAz8/PwDA1q1bOQMIEVEOZsm47ciRI2jbtq0kKcrd3R0ffPABpk+fjiVLlmDZsmWYOXMmBg4ciKpVq0KhUGT5PhCRdfj5+aU6H+Pj4wMnJ6dUdRMSErBx40bUq1cPPXr0wJs3bzK17RUrVlhUPzw8HDt37szUNq1p/Pjx4uOJEydCEAQbRkNERERERERkHmeMIrIS49lZRo8ebdEJ8Xv37qX5s7CwMJw9exZHjhzB6tWrERUVBSDpTuQpU6bgwoUL2LZtm8kkKrK+lStXZnrq+axknABVokQJPHjwAABw/Phx3LlzB2XLlrVVaGTHjh49ausQiOyao6Mjhg8fjq+++gqCIGDq1Kn4888/bR0WERFlgNxxW1xcHPr27YuEhATxuc8++wzffvst8uTJk2b/YWFh2Lp1K5YsWWK1mCn3CAoKYgKJHVm3bl2aSyRGRUXh/PnzOH36NFasWCGOrQFgw4YNOHfuHE6ePAlfX1/Z23NzcwMAxMbG4sqVK7h8+TKqVasmq+3atWuRmJgIAChUqBCeP38ue7tZoW3btihXrhz++ecfXLlyBdu3b0enTp1sGhMRERERERFRWjhjFJEVHD9+HOfOnQMAeHp6okePHlbr28/PD506dcLcuXPx9OlTTJ48GSqVSvz5rl27MGzYMKttj3Ku+/fvSxJcfv31V3GGEwBYvny5DaIiIsodPv74YzEJeefOnbh7966NIyIiIktZMm77/fff8eTJE7E8fPhwzJ0712xSFJA0fhs+fDiuXbuG+fPnWydwIsp2np6eaN68OSZOnIh79+5h/fr1yJcvn/jzBw8eoG3btnj79q3sPp2dndGtWzexbMmsUcZ1+/TpI7tdVlEoFBg0aJBY/vnnn20YDREREREREZF5nGKGyArmzp0rPu7evTtcXV2zZDtubm6YMmUKGjZsiDZt2oh3Cy5duhTNmzeXnGCT49q1a7h69SpevnwJg8EAHx8fBAQEoFq1alZbAuLmzZu4fPkynj59CpVKhfLly6Np06ZwcXFJs82TJ09w4sQJPHnyBAqFAsWKFUPz5s3h7e1t8fb1ej1CQkJw69YtPHv2DLGxsXB3d0f+/PlRo0YNlC9fPjO7l2Hnzp0TY3J3d0fp0qURFBQEZ2fnDPe5fPly8e5jX19ftG7dGr1798aPP/4IAFi9ejWmT58uSayzhMFgwIkTJ3D79m28efMGPj4+KFWqFBo0aAClMnN5tomJibh+/Tpu376NFy9eID4+Hnny5EHBggVRp04dFC9ePFP9G3v69ClOnz6Np0+fQqfToUiRIggKCoKPj4/VtiHX/fv3ERISgkePHiE6OhqOjo7w8vJCxYoVUaNGDTg4OGR7TJaKj4/H8ePH8ejRI4SHh8PDwwOFChVCw4YNrfaaJn/27t69i5cvXyJv3ryoUKECGjRoYHez5YWEhIjfqxqNRvxerVGjRoa/V7Prc2IwGHDq1Cncv38fz549g4ODA1q2bImAgIB02yYmJuLo0aN4+PAhXr9+DS8vLwQGBqJWrVqZ+n7QaDQ4efIkHj58iJcvX8LFxQW+vr5o1KgRChUqlOF+jUVEROD48eMICwvDmzdv4O3tjT59+qT6W16oUCEEBwdj586dEAQBv/76q+TvPxER2T9Lxm1//fWX+FihUODrr7+2eHulSpWyuE2y69ev49q1a3j69ClcXFxQokQJNG3aNMNjzadPn+L69et48OABIiMjoVKp4OXlhdKlS6Nu3bqZGoekdOHCBfzzzz949uwZBEFAgwYNUK9evTTjunDhAh4/fozo6GioVCp4eHigSJEiKF++PMqWLZuhY6hnz57h1KlTeP78OaKjo+Ht7Y2SJUuiYcOGJpdJy2mSxzRPnjyBXq+Hr68vGjdujCJFimSq36x43V69eoVr164hNDQUEREREAQBXl5eKF68OOrVqwcPD49MxWwsJCQE169fx7Nnz6DRaFC9enW0bNky0/0qlUr06NED9evXR1BQkDh71OXLlzFu3DgsWLBAdl/9+/cXk5x+//13/PTTT3B0dDTb5sKFC7h27RoAIE+ePPjggw8wc+bMDO6N9Xz00UcYP3489Ho9Tp48iUuXLqF69eq2DouIiIiIiIgoNYGIMuXNmzeCo6OjAEAAIOzfvz/dNo0bNxbrZ/TXcNGiRZI+KlasKOj1+nTbabVaYe7cuULRokUl7Y3/+fn5CTNnzhQ0Gk26/T148EDS9siRI4IgCMLx48eFWrVqmew/X758wvz581P19c8//wht27YVFApFqjZqtVoYNWqUEB8fn25M0dHRwsqVK4V27doJefLkSXM/AQhFixYVZs2aJWtfBUEQ+vbtK7Zt3LhxmvVWrFhh8j1ev369ULZsWZOxuLu7C9OnTxd0Op2sWIzpdDqhcOHCYl9jx44VBEEQQkJCJNvYsWOHxX0LgiD89ttvgp+fn8m4ixQpIsydO1esa/yzFStWpNnnq1evhPnz5wvNmzcXXFxczL5P5cuXF1asWCEYDAZZ8fr7+4ttJ0+eLAiCINy/f19o27atoFKpUvWvUqmETp06CU+ePEmzz8mTJ5uN0dS/5N+HZDqdTti9e7fQr1+/NF9P48/DyJEjhefPn8veVzn//P39U/Vh/J3Ut29fWa/xkydPhI8++ijN906hUAgNGjQQjh07Jqs/49fXOMZff/1VKFKkiMltFChQQFi8eLGs/o1/dwEIDx48kNVOjoSEBOGnn34SihUrlubrXrhwYWHevHmyfr+z4nOSzNTrrNVqhW+//Vbw9fVN1X/y748gmP7+02q1wuTJkwVvb2+T8RUvXlzYunWrpS+pcP/+faFXr16Cq6trmp+vxo0bC+fOnZPVn6nvhIcPHwqdO3eW/A1P7/OxatUqsY63t7eQmJho8b4REZFtWDpuCwwMFOv6+PhYPZ60xlEHDhwQqlWrlubf/bFjxwpxcXGytnH06FFh2LBhQsmSJc0eTzg5OQkff/yxEBoaKqvftMY6CxcuNLktU8eXR44cERo2bJjusWu+fPmEXr16CY8fP5YV2/bt24WaNWuaHFMmv4YjRowQIiIiZPVn3Nbc+E+uI0eOyD4mNa6XPK66f/++8P7775sc0wAQ2rdvn6HjXGu/bhcvXhT+97//CRUrVjT7/iaPw65cuSKr37Rev82bNwuVK1dO1X/K9yzlmC7leE2Oy5cvC87OzmIfjo6OZj+fxsfQ3t7egiAIknMCGzduTHebQ4YMEesPGjRIuH79usnPhykpf1/N1c2IJk2aiH1/9tlnVu2biIiIiIiIyFqYGEWUSUuWLBFPAnl6egparTbdNtZIjBIEIdWJvz///NNs/ZcvXwo1atRI9+Rz8r/KlSsLT58+NdunqRP6ixYtEtRqdbr9jx8/Xuzn0KFDgru7e7pt2rRpk25iQcoTf3L+1a9fX3j58mW6r3lmEqOGDx8uK5Zu3brJTgBK9tdff0n6uHbtmvizmjVris936NDBon51Op3Qo0cP2XHr9XrZJ10zkmjUoUMH4e3bt+nGnTIJ4u+//xby5cuXbv+enp7C6dOnrRZvyhPtKX9f5Pzz9fUVzp8/L2tf5fyzRmLUzp0700xYMfVvzJgx6X6mUybsJCYmCp06dZLVf3IioDlZlRh1584doUyZMrJfi0aNGgnR0dFm+8yKz0mylK9zVFSUUK9evTT7NZcYFRkZKdSvX19WfPPmzZP9mi5atMhkspKpfwqFQvjll1/S7TPld8KBAwcET0/PNPtN6/MREREhuRCZ0WRTIiLKfpaO24wTF/LmzWv1eEyNo2bPni0olcp0//4FBATIGrtYejyRJ08eYffu3en2m3Kso9VqhY4dO6bZb8rjy++//97i2A4cOGA2ppiYGKFt27ay+/Pz8xNCQkIseg1tnRh14MABIW/evLL27c6dO7LiyarXzdIxiqOjo7B8+fIMvX7mxtlZkRglCKnH9qNGjUqzrqnEKOPfgdatW5vdVnx8vOR9P336tF0lRs2dO1fsu0CBArJu2CMiIiIiIiLKbva1/gxRDrRr1y7xccOGDbN1WaeRI0diwIABYnnfvn1o3769yboxMTFo1KgRbt++LT7n5eWFrl27onLlylAqlQgJCcHGjRvx6tUrAEnLNzRs2BDnz5+Hl5eXrJgOHz6M7777Dnq9HmXKlEGXLl1QsmRJJCYm4vjx49i0aRMMBgMAYMaMGWhgqy6ZAAEAAElEQVTRogX8/PzQoUMHvH37Fl5eXvjggw9QpUoVODo64saNG1i1ahWioqIAALt378a8efMwYsQIWfF4eXmhQYMGqFatGgoWLAgXFxe8fv0aFy5cwI4dOxAfHw8AOHXqFLp3746DBw9melk4U7777jvMmzcPABAYGIj3338f/v7+0Gg0OHPmDDZs2ACtVgsA2LhxI4KCgjB06FDZ/S9btkx8XK1aNVSuXFks9+3bFxcuXACQtCTIixcvZC9xNnz4cPzxxx9i2cHBAe3atUODBg3g4eGBBw8eYNOmTbh79y42btyIChUqyI7ZmK+vL9577z0EBgYif/78cHBwwIsXL3D69Gns2bMHOp0OAPDnn39i2LBhWLVqley+nz9/jm7duiEiIgKOjo7o0KED6tevDzc3N4SGhmLjxo3iUghRUVEIDg7GmTNnUK5cOUk/Xl5e4nIooaGh4vMFCxZMc/kHc0tGOjk5oX79+qhZsyaKFCmCPHnyICYmBiEhIdixYweePXsGIGk5i7Zt2+LatWsm37fixYtDrVYjJiYGL1++FJ9Pa+mWzC6vsWfPHnTq1El8TwCgatWq6NixI4oWLYqIiAgcOXIE+/btg16vBwD8/PPP0Ol0mD17tuztDB8+HNu2bQMANGjQAC1btoSfnx/evn2Lo0eP4s8//xSXjvzpp5/QtGlTBAcHZ2rfLBUSEoKgoCCEh4eLz5UsWRLt2rVD2bJl4ejoiNDQUGzZsgV3794FABw7dgytW7fG33//LevvhbU+J2np168fTp8+DQCoU6cOgoODUbhwYcTGxuLKlStwc3Mz2c5gMKBnz544deoUFAoFWrZsiSZNmqBAgQKIiIjAnj17cOjQIbH+yJEj0bBhQ1SpUsVsPDNmzMAXX3whlhUKBZo0aYImTZrA19cXcXFxuHDhArZs2YLY2FgIgoDRo0fDyckJw4YNk7XPDx48wNy5cxEVFQVXV1e0a9cOderUgaenJ168eIG//vorzSV78ubNi2rVqonfqbt27UK7du1kbZeIiGzL0nFbgQIFcOfOHQBAZGQkzp49izp16mRZfIcOHcJ3330Hg8EAb29vdO/eHQEBATAYDLh69So2bdqEyMhIAMCNGzfQqlUrnDp1StYSeCqVCrVr10bt2rVRvHhxeHp6Ii4uDnfu3MGuXbtw//59AEB0dDS6dOmCCxcuoGLFirJjHzt2LLZv3w4ACAgIQLt27VC8eHEkJibi1q1bkiXY9u3bhy+//FIsOzo6ok2bNqhVqxZ8fHygUCgQGRmJO3fu4Pz587h06VK624+NjUWTJk3Ev88AkC9fPrRr1w7VqlVDnjx58OLFC+zZswfHjx8HAISFhaFx48a4ePEiihUrJntfbeX27dsYMWKEuLxdp06dUKVKFbi6uuLevXv4/fff8fjxYwBJ+/bRRx/h5MmTZse22fG6KRQKBAYGok6dOihTpgzy5cuHhIQEPHjwAHv37sX169cBJC3LPHDgQBQrVgzNmjWT/brMnj1bHGeXLFkSHTt2ROnSpaFQKHDv3j2EhYXJ7ssSI0eOFLcLJH2uLdG3b19MmDABer0e+/fvx9OnT1G4cGGTdbds2SL+7lesWBF169bFjRs3Mhy7tTVt2lR8/OrVK5w9ezbNpTOJiIiIiIiIbMbWmVlEOZlWq5XMcjRjxgxZ7aw1Y9S///4r6adixYpp1u3fv7+kbtu2bYXXr1+nqhcREZHqbt/u3bun2W/KO52Tp96fMmWKyZmdDhw4IJkJpGHDhkKdOnUEAEKnTp2EN2/epGrz6NEjydJ/BQsWNDtr1IoVK4TGjRsLu3btMrvM0cuXL4V27dpJ4k/vLtWMzhilVCoFZ2dnYe3atSbrX7x4UTKjka+vr+wl9V6+fCk4ODiIbWfNmiX5eXh4uOQ1l/s5PXDggGQf/P39hcuXL6eqp9VqhS+//FLcT+M25u5GnTp1qtChQwfhyJEjZu8qffDgQaoZbQ4fPmw2duM7lJNjKlWqlHD9+vVUdRMTE4URI0ZI+m/UqJHZGY7k7qOpfSldurSwZMkSITIyMs16Go1GmDhxomQ7H330kdm+01rSRA65M0a9evVK8PHxkby2CxYsMFn39OnTqZZm27NnT5p9G9+9nfye5cuXL81lbvbs2SP5XNeqVcvsPlp7xqi4uDjJ0iAODg7C3LlzTf7earVaYdKkSZLtf/PNN2n2nZWfE1Mzn7m7u6c746AgSF/D5PfI399fuHDhgsn6y5Ytk2yna9euZvs/fPiw5DukbNmywqVLl0zWffLkiVC7dm2xrouLi/DPP/+k2bepWQvq168ve1keY6NHj5Z8LxIRkf3LyLhtzJgxkr8bFSpUEO7du2e1mFKOo5L/BgYHB5scpz1//lwICgqStJkwYYLZbfj6+go///yz2SV39Xq9MH/+fMl4olGjRmb7NTVDr1qtFpYsWZLuLKHGx52lSpVK9zV98uSJ8PXXXwtnz55Ns06/fv0ksQwcODDNY6ht27ZJZj5t1qyZ2e0b92vLGaOSPx+9evUyuW+xsbFC69atJW3++usvs7Fk5esWGBgoTJo0SXj48KHZehs3bhQ8PDzEfkuUKGF2bJjy9Uv+N3XqVFmzd1trxihBEITSpUtL+kprFjdTM0YJgiCZqWv69Olpbqdp06ZivZkzZwqCINjVjFGCIEiW1TaecZaIiIiIiIjIXjAxiigTLl++LDnBtG/fPlntrJUYJQiCUKxYMUlf8fHxqercuHFDUqdOnTpCQkJCmn1qNBrhvffek7RJ60S0qSWfxowZYzbmzz//3OQFanOJQJs3b5bUTytZQhAEk69BWhITEyX7Wq1aNbP1M5oYBUDYvHmz2b4XL14sqZ/echHJfvrpJ8kFiRcvXqSqY7wkWbly5WT1GxgYKEk6uHnzptn6gwcPTrXP5k66WvI+RUVFSU48d+rUyWz9lEkQ7u7uwt27d8226dWrl6SNuUSRjJ5YTkxMlJ3wJgiCMG7cOHE7Tk5OZpdMyY7EqP/973+SbaRMwkvp8uXLkuQlc8mbKS9SqNXqNJc1TJackJf8z9x7bO3EqKlTp0r627hxY7ptRo4cKdZ3c3NL88JTVn5OTCVGmUtYM5byNcyTJ49w//59s2169uwpiS0mJsZkPb1eL5QqVUqs6+/vL7x69cps35GRkZLf9d69e6dZN+V3QunSpdOMJT2rV6+W9PXs2bMM9UNERNknI+O2kJCQVEn/jo6OQvfu3YU//vhD+PfffzMVk6lxVLVq1cweI0dHRwvly5eXxGPu774lx9sLFiyQxHL16tU065oa6yxcuDDdbWg0GsmStNu3b5cdX1qOHj0qiePTTz9Nt822bdskbQ4ePJhmXeN6tkyMAiC0a9fObOLZq1evhDx58oj1e/XqlWbdrH7dLPns7d69W/Y4zFRi1Pjx42Vvy5qJUR999JGkr71795qsl1Zi1JYtW8Tny5QpY7LtgwcPxJvP1Gq1mORob4lRxslbrVq1snr/RERERERERJll/fWiiN4hKaf1r1SpUrbHULx4cUn59evXqeosXLhQUl6wYIFkOYOUHB0dsXDhQslSQgsWLJAVj7e3N6ZNm2a2Tp8+fVI9N2fOHKhUqjTbtG/fHp6enmL57NmzadaVs5xEMgcHB0m8ly9fxosXL2S3l6tly5bo0qWL2Tq9e/eGq6urWDa3j8aMl9Fr3bo1ChYsmKpO3759xcf//PMPTp48abbP8+fP48qVK2J55MiR6S6T98MPPyBfvnyyYgYse5/y5MmDr776SiwfOHBAXJJRjnHjxqF06dJm6/zyyy+SZcOWLl0qu3+5HBwczH7OU5o4caL4mdBoNDh8+LDVY5IrISEBy5cvF8uBgYH4/PPPzbZJWefmzZs4evSorO31798fdevWNVtn8ODBkrLc35nMSkhIwPz588Vy9+7d0bVr13TbTZ8+XVyWNDY2FmvWrDFZLzs/J+3bt0fr1q1l1zf2xRdfoESJEmbrGL9HGo0GV69eNVlv+/btkiUqFy1ahPz585vt29PTEzNmzBDLmzZtMvk30JQff/wR7u7usuqmZLxUKQDJ8jNERGSfMjJuq1ixomTJNyBpua8NGzagR48eKFKkCPz8/NC+fXtMnz4dx44dg0ajyVScc+bMMXuM7OHhgZ9//lkSz+rVq9Osb8nx9uDBgyV/1/fs2SO7bWBgYKrjMlPCw8PFpZYBoGzZsrK3kRbj16NYsWL45Zdf0m3TsWNHyfFPyvGyPVKr1Zg/f36ay/0CQP78+dG5c2exbO7YOKtfN0s+e8HBwWjUqJFYtuSz5+PjgylTpsiub00pz8UYL68tR7t27VCgQAEAwN27d8XlCo2tWLFCXD68TZs2Fi2ZnZ2Mj495bExERERERET2iIlRRJlw79498bGDgwN8fX2zPYaUiShv3rxJVWfnzp3i47p166J69erp9lu5cmXJycm//vpLVjxdu3aFi4uL2TpVqlSRXPSvUKECatasabaNg4OD5GTb7du3ZcUjR8OGDSWJYufPn7da38k+/vjjdOu4urqiSpUqYvnWrVvptjl9+rSknnEClLE2bdpIkgyMk6lMMf7MAMCgQYPSjSVv3rzo1q1buvUyqnnz5uLjt2/f4ubNm7LaKZVKWfEXLFgQHTt2FMv79u3L9MWtzHJ3d5ckB2XFZ1Ou06dPS5JOhgwZAqUy/cOIYcOGSS7g7Nq1S9b25PzO+Pv7o1ChQmJZzu+MNRw8eBAvX74Uy2PGjJHVztXVVfI7cuDAAavEk5nPiZzXOS39+vVLt06tWrUkn5O03qPff/9dfFyxYkXZyVpdunSBh4cHgKTEq2PHjqXbxtvbG+3atZPVvylFixaVlI2PBYiIyD5ldNw2bdo0TJs2DWq12uTPnz17hp07d2LChAlo3LgxfHx8MHjwYNy9e9fiGCtUqICGDRumWy84OFjyt2jHjh0Wb8sUpVKJJk2aiGVLjif69u1rNmEnmfFNIABw6tQp+QGaEBUVJRmnDh8+HI6OjrLaGh/HHDp0SEw+sVfNmjVLdQxiivExYWhoKLRabao69vi6GY/1LPns9ejRw6IkLGuScy7GHAcHB/Tu3Vssr1ixQvJzg8GAlStXiuX+/ftbHmQ2Mf5svn79GpGRkbYLhoiIiIiIiMgEJkYRZcLjx4/Fxz4+PrKSBKwt5YwX0dHRkvKzZ88kcQYHB8vu+/333xcfh4eHy7r4W6dOnXTrODo6Sk4iymkDQJIAYc0TbWq1WpI09PTpU6v1nSy9mW+SFS5cWHwsZx+NE5zy5cuX5sV+BwcHfPjhh2J548aNiImJSbPfc+fOiY/LlCmT7qwwyTI684wcKS9gyX2fqlSpIvnsmGMcv1arTXN2m+xkvN9Z8dmU68yZM5Ky3O+SEiVKoGLFimn2Y4qDgwNq1Kghq39Lf2eswfhu7oIFC6ab2GnM+PvOmjNcZfRzUr9+/Qxtz9/fX9ZFZVdXV8n3fVrv0YkTJ8THbdu2lR2HWq2WJPvKeU1r166d5gVuOby9vSXJtMZ/Y4mIyD5ldNymUCgwYcIE3Lx5EwMGDBCTcdMSFRWFJUuWoFKlSpg0aZJFSSOtWrWSHVPLli3F8qVLlyyaSdWcrD6eyJs3r2RcMXr0aGzatCnD8Z86dUrS1pJjCONjssjISPzzzz8ZiiG7ZGQ8KQgCoqKiUtWxx9ctu49lrSG9czFyGCc7bdq0CW/fvhXLBw8eFL+7fHx8LHqfspvx5w7g8TERERERERHZHyZGEWWC8QXe9E6SZ5WUyS3Gy80BwJ07dyTlqlWryu7bePYiU32ZIjcBxXjJMrnTwRu3iY2NTbe+wWDA4cOH8fnnn6NRo0YoXLgwPDw8oFQqoVAoJP+MT75mRXKF3NfF+ORqevv49u1bbNiwQSx3797d7BKJxrNJxcbGStqmZDwjV0BAgNk4jKVcYkqOxMRE7Ny5E4MHD0a9evVQqFAhuLm5pXqPHBwcJO3kvk+WxJSyrjVnJkvpxo0bmDRpEtq0aYMSJUogb968UKlUqfZ73bp1Yhtb3nlr/PufN29eFCtWTHZb4+8SOd8jXl5eqd7vtFjyO2MtxglzFStWlDVDQjLj77sXL15Ap9OZrZ+VnxMPDw+TS2/KIfc7DUj/PXr+/LlkCVNLl6U1fk3//fffdOunt6ymHMb7xDviiYjsX2bHbWXKlMFvv/2GFy9eYPfu3fjiiy8QFBSU5jLSWq0W06ZNw4ABA2RvI6PHrG/fvk3379/9+/fx/fffo0OHDihTpox4rJXyeGL69OliG0v+vlnyt3XIkCHi4+joaHTr1g1FixbFkCFDsGHDBll/y5MZH5M5ODhYtDRfyjGoJdu1hYyMJwHTx17Z+bo9e/YMc+bMQdeuXVGhQgV4e3vD0dEx1WfPeIbfrPrsWVt652LkCAgIQK1atQAk/S5v2rRJ/JnxMuZ9+vTJVGJ/Vkv5uePxMREREREREdkb+x1VE+UA8fHx4mNbTd+e8oSTl5eXpBwRESEpW3IRPOVJz5R9mZKR1yEjbdK7+/rYsWMYOnSo7OXWjCUkJFjcJj1ZsY8bN26U3FH60Ucfma1fvXp1BAQE4MaNGwCSZpsaOHCgybrG77Uln5kCBQrIrgsA27Ztw4gRI/DkyROL2gHy36fMxC/nM2+pR48e4dNPP5W9PKWxrPhsypXRzwQg/S6Rc5I8o9+n2bUEivGSgkePHrUoMSqliIgIk7832fE5yZMnj8V9J7Pme2T8egJJS7TIWabPFDm/s5nZ72Surq5i3HFxcZnuj4iIspa1xm0uLi4IDg6WzJwZGhqKw4cPY/369Thy5Iik/ooVK9CsWTP06tUr3b4ze8xqKmn99evXGD16NNasWWPxcZIlx52W/G0dM2YMTpw4IVm6OywsDIsXL8bixYsBJCW7tGrVCr179zY7U5LxMYRWq5WdWG9KVhz3W1NWHXtl1esWFxeHCRMm4Ndff033RoCUsuqzZ23pnYuRq3///uLygcuXL8fHH3+MiIgIbN++XVLHnqVcJpPHx0RERERERGRvmBhFlAnGd+xZerLPWu7fvy8+VigU8Pb2lvzcOHEGSH3CyhzjGZpM9WWvtm/fjm7dukGr1ab6maurKzw9PeHs7CxZQuPRo0fie5hdyRWZZbyMXpkyZVCvXr102/Tt2xf/+9//ACQtaXbz5k3JMmfJjO8sdnFxkR1Tys+MOfPnz8fw4cNN/szDwwMeHh5wdnaWJJ2EhoaKj+W+T5mJ39qf+bt37yIoKAhhYWGpfubg4AAvLy84OTlJLk68fPlSvBvZlp9N49fCku8RQPq6arVaaDQas7Ob2Ttr3gFt6qJBdn1O7OWu86x+PVOyxn4b/33JzMVEIiLKHlk5bitVqhRKlSqFQYMG4fjx4/jwww8ls+hMmzZNVmKUtY9ZX716haCgIJM3iqhUKnFpWEdHR/H5N2/eiIkulhx3WvK3VaVSYfv27Vi0aBFmzJhhcsmte/fu4d69e5g/fz4aN26MxYsXo1y5cqnqZfcxRG6R1a9bfHw8goODcezYsVQ/UyqV8PLygouLi+SzFxMTg5cvX1q8fVsezxqfiwGA/PnzZ6ifnj17YvTo0YiPj8eJEydw9+5d7Nu3DxqNBkDSMooVKlTIdLxZKeW5Fx4fExERERERkb2xjytiRDmU8XThxnchZ5d///1XctI9ICAgVbJByinNLTnhm3La/ZR92aNXr17h448/Fk/MqdVqDBw4EB988AGqV6+e5nIX/v7+Jk/K26vbt2/j1KlTYvnu3bsZmrVm+fLl+Omnn1I97+bmhujoaACWfbblLmV28+ZNjBo1Siy7u7tj2LBheP/99xEYGGhyiRNBECTJbHJlJn5rf+b79+8vSXYJDg5G//79Ua9ePfj5+Zl8D/v27YvVq1dbNY6MMH4tLL1wZPy6Ojg45OikKECaGObm5mbRsnIpmbqYk5M/JxmRMtHO19fX4uS7ZH5+ftYIKV3G3yuWJIQSEZFtZNe4rWHDhtizZw+qVasmJmD9888/CA0NRalSpcy2tfYx68iRIyVJUfXq1cPQoUPRoEEDFCtWDCqVKlWbyZMn45tvvpEdR0YplUoMGzYMQ4YMwfHjx3Hw4EGcOHECZ8+eTfU6/P3336hduzaOHz+eaql34+MFpVKJEiVKZDimjCyxmFNl9ev27bffSpKiKlWqhM8++wxBQUEoWbKkyaSZFStW2P2sSCmdPn1afKxQKFCjRo0M9ePp6YkuXbpg7dq1AJJeiz179og/zwmvS8rfWx4fExERERERkb1hYhRRJhhfDH/16lW2b3/v3r2SclBQUKo6KROBLLkLM2XdtJKK7Mny5cvFO2CVSiV27dqFVq1apdvOmnfNZgfj2aIyY82aNfj+++9TnZzOly+fmBhlyWdG7u/Br7/+Kiavubi44MSJE6hatarZNhl9jzITvzU/82fPnsWJEyfE8ldffYXp06en285ePpvGr4Wld3Mb18+bN6+1QrIZ47vBky+AWktO/5xkRMq762fNmoXu3bvbKJr0aTQaREVFiWVfX18bRkNERHJk57gtICAArVu3xq5du8Tnbt++nW5ilDWPWZ8/f47169eL5d69e2PVqlXp3mSQ3ccTSqUSjRs3RuPGjQEAiYmJOHnyJLZs2YI1a9aI45Ho6GgMGDBAXG4smfExhKOjI+7du5d9wedgWfm6abVazJ8/Xyw3bdoUu3fvTvfGiJx2LHv37l3JbMYBAQGpZu+2RP/+/cXEqHnz5okzwbq6utr1cXGylN9fPD4mIiIiIiIie2P51BtEJDK+szIqKirbl5qbPXu2pGwqAahs2bKS8tWrV2X3f+3aNbN92aNDhw6Jj1u0aCErKSo8PFw86Z4TaLVaycwwefPmFZfwkPOvePHiYtuXL19i586dqbZhvFTFjRs3ZMcmt67x+/TRRx+lmxQFpF6qQK7r16/LrpsyflNLdmSU8T7nyZMHkyZNktUuo/ttbca//5GRkRbNsGb8XZITvkfSU758efGx8ax91pDTPycZ4efnhzx58ohla7+m1pZyiUN/f38bRUJERHJl97itUqVKkrJxQm1aMnrM6ubmhsKFC0t+fvjwYXEpPIVCgRkzZsiaedXWxxOOjo5o0qQJ5s2bh7t370qOxS9cuIB//vlHUt/4mCwhIQGvX7/Otlhzsqx83c6fPy/5vE+fPl3WbLG2/uxZSs65GEskz6YFQEyKAoAuXbpIjpPt1dOnT8XHarU61XcSERERERERka0xMYooEwICAiTlu3fvZtu2Fy1ahJCQELFcuXJltGnTJlU9X19fFCtWTCxbMrOJ8V3O+fPnR+nSpTMYbfYxPiEnJ9kGSLpwkJPs2rVLckfm4sWLce/ePdn/QkNDJScqTc0+VadOHfHx3bt38eDBA1mxpZzFLC0ZeZ+ME0Ysce3aNTx//lxWXeP4HRwcEBgYaLKe8fJnBoNBVt/G+1y+fHlZFwieP38u+T03J+WsX3Ljkqtu3bqSstzvkocPH0r2IWU/OVGTJk3ExyEhIRbPoGVOVn9O7JFKpULDhg3F8pEjR2wYTfru3LkjKVeuXNlGkRARkVzZPW5LSEiQlL28vNJts3//fll9C4IgqVu9evVUy+IZH08UKFBA1lKzGo1GMmulrRUsWBA//PCD5DnjpQGBpGQS4yWG7f0Ywl5k5etm/NkDsn6sZwtXrlzB8uXLxbKTkxNGjhyZqT4VCgX69euX6vmcsIweID0+Ll++vMnlwomIiIiIiIhsiYlRRJlQs2ZNSTnlDEtZ5dChQxgxYoTkucmTJ0tObhpr166d+PjMmTO4cuVKutsICQnBsWPHxHLbtm0zFmw2S74zGkh9QSItc+bMyapwsoRxIpO7u7vk/ZVDqVRKpuPft29fqhPYKfv87bff0u03KioKGzdulBWDpe9TYmIiFi5cKKvvlAwGg6ylB1+9eoXt27eL5VatWqWZlOLu7i4+ljMDAJCxz+bcuXMl7cwxjsmSuOSqX7++ZHmIxYsXy4pt4cKFknrvv/++VeOyhVatWolLAgqCgLlz51qt76z+nNirHj16iI/37t2bakYIe2L8t97JyQlVqlSxYTRERCRHdo/bTp48KSnLucHk5s2bqdqZsnfvXsnMnR06dEhVx/i4QKPRpNsnAKxatcruljNLOXtr8lLcyQoUKICmTZuK5ZSz+JBpWfm6pTwmlXM8u3//fty6dctqMWSlx48fo3PnzpL9GjRokFVmSOrXrx8CAwNRtWpVVK1aFc2bNxeXmbR3xt+ptWrVsmEkRERERERERKYxMYooE/Lnzy9ZJuHcuXNZur3Y2FhMnToVrVq1QmJiovj8kCFD0KVLlzTbDR06VFL+9NNPJe1T0mq1GDZsmGTGmWHDhmUi8uxjvKTRnj17oNfrzdafPXs2Tp06ldVhWU1YWJhkVqOOHTvCxcXF4n569uwpPtbr9Vi1apXk57Vq1ZLMljR79ux0ExW++uorvHnzRtb2jd8n45nJ0jJu3Dg8fPhQVt+mzJgxI93lGcaOHStZVmXQoEFp1jVejlDu8oHG+3zjxo109+fcuXP46aefZPWdMiZL4pLLyclJcsfy5cuXMX/+fLNtrl27Jkk8rFixIoKCgqwaly14eHjgs88+E8szZ87E0aNHLe7H1IWirP6c2KsePXqIyxzp9Xp8+OGHFi9zJDeRLLPOnz8vPq5fv36q2dqIiMj+ZGTcNn78+AzNLLthwwZcuHBBLJcrV072zLsjRowwm8gUGxuLsWPHimVHR0d89NFHqeoZH09ERUXh+PHjZrf74MEDjB8/XlaMmfHmzRvJMmHpSbkMfMrjXSBpDJLs5MmT+P777y2OK7uOIexJVr1uKZcYTm+sFxERgSFDhli87exmMBiwYcMGBAYGSmZTrlGjRqqZzTKqaNGiuHz5Mq5cuYIrV67gwIEDad78Zk+io6Ml5wpyw3iPiIiIiIiIch8mRhFlkvHydVkxdX9YWBi2b9+Ozz//HIULF8aUKVMkyT4dOnTAvHnzzPZRqVIlDBgwQCyfOnUKXbt2RURERKq6UVFR6NGjh2S2qB49eqB27dpW2Jus16pVK/Hx3bt38dlnn0Gn06Wqp9VqMX36dIwePRpA0ixKOcHKlSsl7/+HH36YoX5q1qyJsmXLiuXly5enurt35syZ4uO4uDgEBwebvLter9dj0qRJWLBggezX0fh9Onz4ML777juT9WJjY/HZZ59hzpw5GX6PlEolYmJi0Lp161TLbwBJn4UxY8Zg9erV4nMNGzY0OxOX8XJwGzZskHXRzHifDQYDevbsifDwcJN1d+zYgZYtW0Kr1cre74oVK8LDw0MsT548GS9evJDVVq5x48bBx8dHLI8cORJLly41Wffs2bMIDg6WXNz7+eefrRqPLY0fP15clicxMRHBwcGYPXt2urMyhIeHY9myZahRo4ZkhrJkWf05sVdqtRq//fabuBTQpUuXUKdOHVmJq9euXcMXX3yBUqVKZXWYACBJggsODs6WbRIRUeZZOm47efIkmjVrhnr16mHJkiXpzqak1Woxa9Ys9OnTR/L8l19+KSs+pVKJixcv4oMPPjA5Tnv16hU6dOggOZ4dN24cChQokKpu06ZNJUtZ9e/fP81k65MnT6JRo0aIjIzM8uOJa9euoVixYvjiiy/SXQb4+vXrkiSwwoULp5r5C0jaV+MlyL766it88skn6S51nJCQgF27dqF9+/YYM2aMZTuSC2TV61ajRg3JLLNjxoxJc8bqkJAQNGrUCA8ePLDLY9moqCgcOnQI06ZNQ5kyZdCjRw/J72apUqWwa9cuuLm52TBK2zt+/Lh4jkKhUEjGM0RERERERET2gou+E2VSly5dxASSW7du4fHjxyhWrJhFfaS8g9hgMCAmJgZRUVGplgtI5uzsjK+++gpff/21rJOIs2bNwsmTJ3H79m0ASRfUy5Qpg27duqFy5cpQKBQICQnBhg0b8OrVK7FdyZIl050Vxp4MGDAA33//vXhCd+HChTh48CC6du2KUqVKQaPR4M6dO9i2bRsePXoEAPjkk0+wb98+sWyvBEHA8uXLxXL+/PnRokWLDPfXs2dPTJ06FQAQGhqKv//+W3J3Z/PmzTFkyBAsWrQIQNKd5DVr1kT79u3RoEEDeHh44MGDB9i0aRPu3LkDAJg4caLYpzmjRo3C4sWLxbuMv/76a2zatAmdOnVC0aJFERcXhxs3bmDr1q3ie/ntt99K7myWa9CgQdi+fTvu3r2L6tWro2PHjqhfvz5cXV0RGhqKjRs3SmaTyps3L5YuXWr27tyPP/5YXEouNjYWzZo1g7e3N3x9fcXEDiBpCcLkCziBgYEIDg7Gnj17ACQta1m2bFn06NEDVatWhVqtxpMnT/DXX3+JswwEBgaiTJky2LRpU7r76eDggD59+mDBggUAki74+fn5wd/fHx4eHuL++Pn5Yffu3Ra+ikny58+PFStWoH379tDpdNDr9fjkk0+wcOFCdOzYEYULF0ZkZCSOHj2aasa2ESNGoHXr1hnablYICgqSXDCU48cff0Tnzp0BAG5ubti2bRsaNWqEZ8+eISEhAaNGjcL06dPRqlUrBAYGwsvLCwaDAZGRkbh79y6uXLmCixcvmp3JLqs/J/asadOmmD17Nj7//HMIgoCbN2/ivffeQ2BgIJo0aYKSJUvCw8MDsbGxCA8Px40bN3D27FlxOaG0lr60pkuXLkn+RiZ/HoiIyP5ldNx25swZnDlzBsOHD0fVqlVRp04d+Pv7w8vLCwDw+vVrXL9+HXv27MHr168lbbt27Yq+ffvKiu+rr77Cd999h127dqFs2bLo3r07AgICIAgCrl69ig0bNkiSs6pVq4avv/7aZF8FChTAoEGDxKWo7927h0qVKqFbt26oVasWnJ2d8ezZMxw8eFBM+C1SpAjatWuX4eWr5YqMjMSMGTMwY8YMlC1bFnXr1kWlSpXg5eUFpVKJ58+f49SpU9i7d6/kmOmXX35Jc9y7cOFChIaGijNjLV26FKtXr0aLFi1Qp04dFCxYEA4ODoiKisKTJ09w9epVnDlzBrGxsQCAwYMHy4r97Nmzsmf/Mnbv3j2L22SHrHjd1Go1xo0bJ85A9urVK9SuXRsdO3YUx5CvXr3CsWPHxPc4T548GDp0KGbMmJF9O/+fXr16pZqBOTY2FpGRkWZnEuvRowcWLFiAfPnyZXWIVjd+/Hh8++23FrXp0qVLmu/Pvn37xMcNGjSQ3EhDREREREREZC+YGEWUSXXq1EHZsmXFxJCtW7di5MiRFvURGhoqu27+/PnRu3dvjBo1yqIELA8PDxw7dgytW7fGpUuXACSdxDd34jsgIAD79u0TT/rnBB4eHti8eTNat26NuLg4AEkzR6U1I1H79u3x66+/SmZPsld///235LPStWtXixM7jBknRgHAsmXLUk17P2/ePERERGDDhg0Aku6E37JlC7Zs2ZKqv27dumHSpEmyEqP8/f2xcuVK9O7dW5zRK3nJAFOGDBmCL7/8MkOJUYUKFcLGjRvRoUMHREZGYsOGDeL+pJQnTx7s3r0b5cqVM9tn7dq18c0332DSpEniTFuvX79OdTEs5VJgK1aswHvvvSe+jxEREWn+DpYvXx7btm3DlClT5OwmAOC7777D2bNncfHiRQBJSZbGSz0ASHe2g/QEBwdj27Zt6N69u/g7dvnyZVy+fDnNNqNHj7a75d4ykggZHR0tKZcuXRoXLlxA586dcfbsWQBJM0KtW7cO69atS7c/4yQ6Y1n9ObFnw4cPR+HChdGvXz/x9Tb33WAsrdfTmjZv3iw+rl+/frbNUkVERJln6bjN1dVVUtZqtbhw4YJkmby0KJVKfPrpp/jll19kx5ecaD9mzBiEh4ebvTmlUqVK2LdvH5ydndOs89NPP+HSpUviMUpcXBxWrlyJlStXpqrr5+eHP//8Ezt27JAdrzXcuXNHfD/SolKpMGvWLHTr1i3NOs7Ozjh48CCGDRuGZcuWAQA0Gg127dola9luuccQCQkJFo3d7V1WvW5jxozBqVOn8OeffwJI+t3ZtGmTySR+T09PbNiwAc+ePcvEnmRcWFiY7LrOzs5o3749Ro8ejTp16mRhVFnr5cuX6c4MllJaMxELgoCtW7eK5ZQz5hERERERERHZC/ubq5ooBxo0aJD4eP369ZnuT6VSwc3NTVwuoEePHvjuu+9w/PhxPH/+HLNmzbJ4Viog6c7hs2fPYs6cOShatGia9Xx9ffHjjz/i4sWL8PPzy8yu2ETDhg1x7tw5NGnSJM06pUqVwsKFC/Hnn3/C0dExG6PLuOST1ckyuoxesnLlyqF69epiecuWLYiKipLUUalU+OOPP7B06VL4+vqa7Kdw4cKYM2cONmzYYNESCN27d8eRI0dQo0aNNOtUrlwZmzZtyvSd640aNcKlS5fQpk0bkyfwVSoVOnbsiBs3bqBevXqy+pwwYQLOnDmDwYMHo2rVqsibN2+6iWo+Pj44f/48+vfvDwcHB5N18uXLh1GjRuHixYsoXry4rFiSeXp64tSpU+KsTsWLF4ebm5vZ2a8y4v3338ft27fRp0+fVHdYJ1MoFHjvvffw999/4+eff7Z6DPbCz88Pp0+fxoYNG1CrVq1097NkyZIYOnQojh8/jq5du5qsk9WfE3vXqVMn3L9/H19++SUKFSpktq6DgwPee+89zJgxI90Lq5klCIIkqfKTTz7J0u0REZH1WTJu27NnD44ePYoxY8agRo0aspJnPD090b9/f1y4cAFz5861+CaGkSNHYt++fQgMDDT5czc3N4wdOxbnz583uYSeMVdXVxw9ehRjx45NleRl3N/HH3+Ma9euScYFWaVatWqYM2cOWrVqBXd3d7N1HR0d0alTJ1y6dAmfffZZun07Ojrit99+w9mzZ9G+fft0Z5L09vZG165dsXnzZsyaNcui/chNsuJ1U6lU2Lp1K77//vs0b7JydHRE586dcfXqVbtaek2pVMLZ2Rk+Pj6oXLky2rdvjy+//BI7d+7Eq1evsGHDhhydFGVtx44dw9OnTwEk3WTUvXt3G0dEREREREREZJpCSJ7qgogyLCoqCkWKFBFnh7ly5QqqVq1q46jSd+XKFVy9elW8W7BAgQKoXLkyqlevnmuSGEJDQ3Hy5Ek8e/YMKpUKvr6+KF++vNlkHDLNYDDg+PHjuHXrFiIiIuDj44PSpUujQYMGFiVEmRISEoKzZ8/i5cuXcHJygq+vL6pUqYKKFStmqL/ixYuLMwJNnjxZMpvO06dPcerUKTx9+hQ6nQ6FCxdGkyZN0k3AsLbw8HAcO3YMDx8+RGJiIgoWLAh/f380atQozWQYexQfHy/ux+vXr+Hu7g5fX180bNgw219TexAeHo6TJ0/i+fPnePPmDVQqFTw9PVGiRAlUqlQJhQsXtri/3PA5yYwbN27g2rVrePXqFWJiYuDm5ob8+fOjbNmyCAgIgJubW7bEcfDgQXH50kKFCuHRo0c5JrGWiIiSZGbcFhsbi9u3b+PevXt48eIF3r59C6VSCQ8PD3EcVbZsWdmzDz18+BAlSpQQy0eOHJHM3nr9+nVcvXoVYWFhcHZ2RvHixdG8efM0k5zMiY6OxvHjx3H37l3ExcWhQIECKFKkCBo3bpyh/qxBr9fj5s2buHPnDp4+fSq+nnnz5kXZsmVRo0YNeHp6Zrj/+Ph4nDp1Co8ePUJ4eDj0ej08PDxQpEgRVKhQAWXLls01Y15rsvbrFh8fj5MnT+LWrVuIjo6Gt7c3/Pz80KhRI+TNmzfrdoSyRe/evcWZckeNGmXRLHlERERERERE2YmJUURWMm7cOMycORNA0p3IS5YssXFERO8uc4lRREQZ0blzZ2zbtg0AMGPGDIwbN87GERERUUbYy7gtvcQoIiJ79vLlS/j7+yMhIQFOTk64e/eu2ZnJiYiIiIiIiGyJS+kRWcm4cePg4eEBAFi9ejWePXtm44iIiIjIGm7fvo0///wTQNJsUcOHD7dxRERElFEctxERZd7s2bORkJAAABg8eDCTooiIiIiIiMiuMTGKyEry588vzh6h0Wjw008/2TgiIiIisobvv/8eBoMBQNIsdLZadoiIiDKP4zYiosyJiIjAggULAAB58uTBV199ZeOIiIiIiIiIiMxjYhSRFY0dOxYlS5YEAMyfP19cyouIiIhyphs3bmDt2rUAgOrVq+OTTz6xcURERJRZHLcREWXc999/j6ioKADA1KlT4ePjY+OIiIiIiIiIiMxT2zoAotzE2dkZa9euxb59+wAADx48gL+/v42jIiIiooz6999/MXHiRABAp06doFTyvgIiopyO4zYioowRBAHe3t6YPHkyHB0ducQ0ERERERER5QhMjCKysnr16qFevXq2DoOIiIisoHXr1mjdurWtwyAiIivjuI2IyHIKhQLjx4+3dRhEREREREREFuEt70RERERERERERERERERERERElOsoBEEQbB0EERERERERERERERERERERERGRNXHGKCIiIiIiIiIiIiIiIiIiIiIiynWYGEVERERERERERERERERERERERLkOE6OIiIiIiIiIiIiIiIiIiIiIiCjXYWIUERERERERERERERERERERERHlOkyMIiIiIiIiIiIiIiIiIiIiIiKiXIeJUURERERERERERERERERERERElOswMYqIiIiIiIiIiIiIiIiIiIiIiHIdJkYREREREREREREREREREREREVGuw8QoIiIiIiIiIiIiIiIiIiIiIiLKdZgYRUREREREREREREREREREREREuQ4To4iIiIiIiIiIiIiIiIiIiIiIKNdhYhQREREREREREREREREREREREeU6TIwiIiIiIiIiIiIiIiIiIiIiIqJch4lRRERERERERERERERERERERESU66htHQBRZiQkJCA0NFQslypVCs7OzjaMiIiIiIiIcgOONYiIiIiIiIiIiIhyPiZGUY4WGhqKgIAAsXzjxg1UqlTJhhEREREREVFuwLEGERERERERERERUc7HpfSIiIiIiIiIiIiIiIiIiIiIiCjXYWIUERERERERERERERERERERERHlOkyMIiIiIiIiIiIiIiIiIiIiIiKiXIeJUURERERERERERERERERERERElOswMYqIiIiIiIiIiIiIiIiIiIiIiHIdJkYREREREREREREREREREREREVGuw8QoIiIiIiIiIiIiIiIiIiIiIiLKdZgYRUREREREREREREREREREREREuQ4To4iIiIiIiIiIiIiIiIiIiIiIKNdhYhQREREREREREREREREREREREeU6TIwiIiIiIiIiIiIiIiIiIiIiIqJch4lRRERERERERERERERERERERESU6zAxioiIiIiIiIiIiIiIiIiIiIiIch0mRhERERERERERERERERERERERUa7DxCgiIiIiIiIiIiIiIiIiIiIiIsp1mBhFRERERERERERERERERERERES5DhOjiIiIiIiIiIiIiIiIiIiIiIgo11HbOgAiIiIiopzOYBAQr9VDozPAIAgQBEChAJQKBZzUSrg4qKBUKmwdJhERERER5SAcZxAREREREWUeE6OIiIiIiDJIqzcgTqOHRqeHkPKHAqCHAK3egFiNDk5qFVydVHBQcdJWIiIiIiJKG8cZRERERERE1sPEKCIiIiKiDHir0SFWoxPLiToDEnR6GAxGd3IrFXBWq+CoViJBp0eCTg83JzXcnXgYTkREREREqXGcQUREREREZF0cKRERERERWSgqXosErR4AkJCoR7xWD50h1b3cgF6ARmuAWqmAi4MKzo4qxGp0MAgC8jg7ZHPURERERERkzzjOICIiIiIisj4mRhERERERWeCtRiderIhO0EKjNQBIunPbSa2Eg0oJpUIBg5C0vIVGZ4DOICBGo0OiwYA8zg6IT9RDqVDwjm4iIiIiIgLAcQYREREREVFW4QiJiIiIiEgmrd4gLmthfLHC1VEFF0cVlAqFpL6zgwpugoD4RD3iEvXQaA2IhhZ5nB0Qq9GJFziIiIiIiOjdxXEGERERERFR1uHoiIiIiIhIpjjN/y9rkXyxIo+LGm5O6lQXK5IpFQq4OamRxyXpngSN1iDeCZ7cHxERERERvbs4ziAiIiIiIso6TIwiIiIiIpLBYBCg0SVdYIj/74KDq6MKTmqVrPZOahVcHZPqxicmtdfo9DAYhCyIloiIiIiIcgKOM4iIiIiIiLIWE6OIiIiIiGSI1+ohAEjUGaAzCFAoABdHeRcrkrk4qqBQADqDgESdAQL+/+IHERERERG9ezjOICIiIiIiylpMjCIiIiIikkGjS1rSIuG/u7md1Mo0l7VIi1KhgKNKKeknuV8iIiIiInr3cJxBRERERESUtZgYRUREREQkg0FIWooieUkKB1XGDqUd1UpJP8n9EhERERHRu4fjDCIiIiIioqzFxCgiIiIiIhmSrysk/2/pXdzJkpul7I+IiIiIiN49cscZ8fHxWL38NwhpDCA4ziAiIiIiIjJNbesAiIiIiIhyAoUCgPD/Fxwyegd2crPkfjKYX0VERERERLmAnHGGVqvF4I/7YP+ev3Dv7j/45vuZqepwnEFERERERGQaZ4wiIiIiIpIh+c5tpTLpf63ekKF+EnUGST8ZnXmKiIiIiIhyvvTGGQaDAaM+HYz9e/6Cs7MzWrdtb7IfjjOIiIiIiIhM44xRRNkgMTER58+fx7///ovw8HBERkbC3d0d+fLlQ7ly5VC1alU4OzvbOsx3SmxsLI4dO4YnT57gzZs3KFCgAIoXL45GjRrBwcHB1uFZVUJCAk6dOoXQ0FCEh4fDw8MDfn5+qFu3Lvz8/GwdHhFRjuGkVkKrN8BZrYJGa4BGZ4CbIFh0wcEgCEj870KHs1ol9ktElBEcZ9gfexpnZPU4ICYmBidOnMCjR48QERGBvHnzonDhwmjQoAG8vLyssAdERO8Gc+MMQRDw9bjR2LxhPdRqNZasWof6DRqm6oPjDCIiIiIiorQxMYooiwiCgI0bN2LlypU4duwY4uLi0qyrVqvRoEED9OnTB926dYO7u3s2RvpuCQ8Px/jx47FhwwbExsam+rmXlxf69euHadOmwdXV1erb79evH1atWpXpfgQZyzc9fvwY06ZNw9q1a5GQkJDq50qlEg0bNsT06dPx3nvvZTomIqLczsVBhViNDo5qJdRKBXQGAfGJerg5yT+kjk/UQxAAtVIBR7USiv/6JSKSi+MM+2TrcYaxrB4HhISEYMqUKdi+fTt0Ol2qnzs4OKBVq1aYMWMGKlasmKF9ICJ6l5gbZ/w4/RusWLoYCoUCcxctRcvWbUz2wXEGERERERFR2njbCFEWOHToEKpWrYoePXpg7969Zi9WAIBOp8PRo0cxYMAAlCpVCvPnzzd5gpky59SpU6hcuTKWL19u8mIFALx58wa//PILAgMDcefOnWyOUB5PT8906/z5558ICAjAb7/9ZvJiCJA0Ffvff/+NRo0aYeLEidYOk4go11EqFXD67+7r5IsMcYl6aHR6We01Oj3iEpPqujgm38WtEpe6ICJKD8cZ9smexhlZPQ5YvHgxqlWrhs2bN6f5WdJqtdi1axeqV6+ORYsWWbwPRETvmrTGGfPmzsasmT8AAL7/aTY6d+1hsj3HGUREREREROZxxigiK5s7dy5Gjx4Nvf7/L5IqFApUqVIFTZo0gZ+fH7y9vREdHY0XL17g8uXLOHr0KDQaDQDg5cuXGD58ON577z0EBgbaaC9yn7t376J9+/Z4/fq1+Fz16tXRuXNn+Pj44PHjx1i/fj3u3bsn1m/Tpg3OnDmD/PnzWy0OHx8flCpVyqI2ERERePPmjVju2bOn2fp79uxB586dYTAYxOcCAgLQqVMn+Pv7IzY2FmfPnsWWLVug0WhgMBjw7bffwtXVFV9++aVlO0RE9I5xdVIhQaeHs6MKiQYDNFoDouN1cHUU4OKoMrmsnkFIuuM7+WKFk4MSzv9d8HB14l3cRCQPxxn2yV7GGUDWjwMWL16MIUOGSJ6rV68e2rRpAz8/P0RGRuLYsWPYuXMnDAYDNBoNhg0bBk9Pz3THMERE77qU44w/1qzCtxOTvpu/mDgF/QZ+kqoNxxlERERERETyKAQ56zER2amQkBAEBASI5Rs3bqBSpUo2i2fatGmYNGmSWFYoFOjZsyemTZuGkiVLptkuNjYWGzZswNSpU/H48WMAwOXLl3nBwopq166N8+fPA0h6X2bOnIkxY8ZI6hgMBowaNQpz584Vn+vatSs2btyYrbGm9P777+Ovv/4SyxcuXECNGjVM1n316hXKli2LyMhIAEn7+vPPP2PkyJFQpLhYHxoainbt2uHWrVti3ZMnT6JevXpZsyNERLnEW40OsZqkWTKiE7TQaJMuQCsUgKNKmbR0hQIQBCBRZ0Ci3oDkI24nByXyODsAANyc1HC3YBk+Ispe9jTW4DjDftnLOCOrxwEhISGoXr06EhMTAQBOTk5YsWKFyYSnixcvon379ggLCxPr3r59G8WLF7fCnhIR5V7J44xdf27DJ/16w2AwoN/gzzBm4jdwUqs4ziAiIiIiIsogLqVHZCX79+/HlClTxLKjoyM2bNiAdevWmb1YAQBubm7o378/7t69i8mTJ0Op5K+mNW3evFm8WAEAgwcPTnWxAgCUSiXmzJmDVq1aSdpeuHAhW+I0JSwsDHv37hXLgYGBaSZFAcBPP/0kXgwBgK+//hqjRo1KdTEEAEqVKoX9+/cjb968AABBEPC///3ParETEeVW7k5q8U7sPM4O8HBWQ61UQBAAjc6AmAQdouN1iEnQQaNLulihVirg4awWL1a4OKp4sYKIZOE4w37Z0zgjq8cB33zzjZgUBQDz589PcxaoGjVqYNeuXXBwSPqbp9Fo8PXXX1u4R0RE7x53JzVOHzuCYQP7wWAwoEfvfhg3aRoABccZREREREREmcAZoyhHs5e7uOPi4lCiRAm8fPlSfG7Tpk344IMPMtTf3r17UaZMGVlLrmm1Wpw6dQqhoaF4+fIlXFxc4OPjg7p161r1jtwLFy7gn3/+wbNnzyAIAho0aCBrZiGDwYBTp07h/v37ePbsGRwcHNCyZUvJ+5bV3nvvPZw6dQoA4OLigqdPnyJfvnxp1r916xYqVqwolnv37o01a9ZkeZymTJ8+HRMmTBDLv/76K4YPH55mfT8/Pzx79gwAkC9fPjx9+hQuLi5mt/HNN99g8uTJYvnkyZOoX79+JiMnIsr9jGeOApLu2k7Q6WEwCBCEpBmklEoFnP+7uzsZ7+AmyhnsYazBcUbaOM6QyspxwNu3b+Hl5QWtVgsAqFChAm7evJluTP3798eKFSsAJM1K9eTJExQuXFj2PhERvWtOnz6N5s2bIy4uDu06dsai5auhUqk4ziAiIiIiIsokjpSIrGDp0qWSixV9+vTJ8MUKAGjdunW6dd68eYOpU6di5cqViI6ONlmnatWqmDp1Kjp06JBufytXrsTHH38slpNzJhctWoSZM2fi/v37kvp9+/YVL1hMmTIFU6dOBQD4+/vj4cOH0Ol0mDFjBubPny+eoE82efLkbLtg8fz5c5w5c0Ysf/DBB2YvVgBJJ/obNGiAEydOAAB27doFrVYr3vGcXQRBwPLly8Wys7MzevfunWb927dvS17rtm3bpnsxBAC6desmuSCyZcsWJkYREcng7qSGk1qJOI0eGp0ejmql5MKEMQUAJ7UKrk4qOKg4YwsRycNxBscZcmT1OODEiRNiUhQAdOnSRVZc3bp1ExOjBEHA1q1b8dlnn8lqS0T0rrl27RratGmDuLg4tGzZEr+vWws91BxnEBERERERWQFHS0SZZDAY8Msvv4hlhUIhWeoiK5w7dw7lypXD3Llz07xYAQBXr15Fx44d0bNnT8mJbDl0Oh06deqEoUOHprpYkZ7o6Gg0atQIEyZMSHWxwpR+/fpBoVCI/44ePWrR9szZs2cPDAaDWG7ZsqWsdi1atBAfR0ZG4uTJk1aLSa4jR45IXvsuXbqIy12Y8uDBA0m5SpUqsrZTrlw5ODk5ieUdO3ZYFigR0TvMQaWEp6sD8rs7wd1JDQeVEiqlAkqFAiqlAg4qJdyd1Mjv7gRPVwderCAi2TjOSI3jDNOyehyQ0f5T1uM4g4jItHv37qFly5aIjIxE/fr1sXXrVri7unCcQUREREREZCWcMYook65fv47Hjx+L5RYtWqBkyZJZtr3Lly+jWbNmePv2rfhc6dKl8cEHH6BkyZJ4+/Ytzp49i+3bt0Oj0QAA/vjjDyQkJGDbtm2ytzN27Fhs374dABAQEIB27dqhePHiSExMxK1btyQn0FPq168fTp8+DQCoU6cOgoODUbhwYcTGxuLKlStwc3PLwJ5nzNWrVyXlunXrymqX8k7pa9euISgoyFphybJs2TJJecCAAWbrR0RESMrp3bGeTKFQwNPTU5yNIDQ0FG/fvoW7u7sF0RIRvduUSgXcnNRwS/vPIxGRRTjOSI3jDNOyehyQ0f5T1rty5YqsdkRE75KnT5+iefPmePHiBapUqYJdu3ZJ/p5xnEFERERERJR5TIwiyqS///5bUm7WrFmWbUuj0aB3796SixUTJkzA5MmToVZLf51v376NTp064fbt2wCA7du3Y9GiRRgyZIisbc2ZMwdqtRoLFizAwIEDoVAoZLV79OgRHj16BHd3d6xbtw7t27eXuXdZ49atW+JjlUqFEiVKyGpXqlQpSfnmzZtWjSs9kZGR2Lp1q1guXbp0uhdMUi6XER8fL3t7xnUFQcCtW7dQq1Yt2e2JiIiIyLo4zpDiOCNtWT0OyGj/KeuFh4fj1atXKFCggOz4iIhys/DwcLRo0QKPHj1C6dKlsX//ftnJp0RERERERCQf59glyqRz585JyrVr186ybS1btkxy4nzEiBGYNm1aqosVAFC+fHns378f3t7e4nNff/01EhISZG/v119/xaBBg2RfrDC2adMmm1+sACBZnsPPzw8qlUpWuyJFikCp/P+vSEuX+cistWvXSt6r/v37p/s+pLzAkHLJi7SEh4cjJiZG8lxoaKjMSImIiIgoK3CcYRrHGall9Tggo/2b2jeOM4iIksTExCA4OBi3bt1C4cKFcfDgQfj4+Ng6LCIiIiIiolyJiVFEmfTixQtJWe6dwhmxYMEC8bGvry+mT59utn7RokUxdepUsfzmzRv88ccfsrYVGBiIwYMHZyjO9u3bo3Xr1hlqa23R0dHiYy8vL9ntHBwcJFOXp7xgkNWMl9FTqVTo169fum2qVq0quXh18OBBWdsyVc/4dSMiIiKi7MdxRmocZ5iW1eOAGjVqpNsuM/0TEb1rEhIS0KFDB1y4cAH58+fHgQMH4O/vb+uwiIiIiIiIci0mRhFl0uvXryXlvHnzZsl2Hjx4gJCQELHct29fyQn1tPTr109Sb9euXbK217dv3wzdwQ0AH3/8sUX1V65cCUEQxH/pLRlnCePlQJydnS1qa7xkhHE/We3ixYu4cuWKWG7Tpg18fX3Tbefh4YF69eqJ5evXr2Pfvn1m2+j1evz888+pns/uRDAiIiIikuI4IzWOM0zL6nFAhQoVUKxYMbG8e/fudJcAfPv2rSThzlz/RETvEq1Wi+7du+PIkSPw8PDA3r17UaFCBVuHRURERERElKsxMYook1Ke2HV3d8+S7Zw5c0ZSDg4OltXOzc1NcgEgZT9pqV+/vuzYrNnW2oyX9HB0dLSorZOTk/g4Pj7eajGlx3i2KAAYOHCg7LajRo2SlAcMGGB2uYqxY8fiwoULqZ7Pzv0lIiIiotQ4zrBuW2uzt3FGVo8DRo4cKT7W6/Xo0aMHXr16ZbKuTqfDxx9/jCdPnsjun4joXWAwGNC/f3/s2LEDTk5O2LlzZ6pZ+YiIiIiIiMj6mBhFlEkeHh6SclbNLHTnzh1JuWrVqrLbVqlSRXz89OlTxMXFpdumdOnS8oMz4uHhgYIFC2aobVYwvns7MTHRorYajUZ8bHxXd1aKj4/H77//LpZ9fX3Rtm1b2e07duyINm3aiOWnT5+iVq1amDFjBu7evQuNRoOIiAjs3bsXLVq0wOzZswGk/hynLBMRERFR9uI4Q4rjDPOyehwwdOhQBAYGiuXr16+jWrVqWLhwIR4/fgytVotXr15h69atqFu3LjZv3mxR/0REuZ0gCBgxYgTWrl0LlUqFTZs2oXHjxrYOi4iIiIiI6J3AxCiiTPL29paUIyMjs2Q7ERER4mNHR0d4enrKbuvj45NmX2nJkyeP/OCs0C6rGN9Zb3xXtxzGdzNn1R36KW3evBlRUVFiuV+/flCpVLLbKxQKrFmzRnLHYUREBL744guULVsWzs7O8PLyQnBwMA4ePAgACAgIwBdffCHpJ1++fJncEyIiIiLKDI4zrNMuq9jbOCOrxwHOzs7YunUrSpYsKT739OlTDBs2DP7+/nB0dETBggXRpUsXXLx4EQDQrFmzVMsfcpxBRO+qyZMnY968eVAoFFi1ahXatWtn65CIiIiIiIjeGUyMIsqklBcDHj58mCXbMb5D3NXV1aK2bm5uafaVFrVabdE2MtsuqxhfQJFzoSaZVqtFbGysWM6uO5uNl9FTKBTo37+/xX14eXnh2LFjGDp0KBwcHMzW7dq1K44ePQqFQiF5Pn/+/BZvl4iIiIish+MM67TLKvY4zsjqcUCJEiVw9uxZdOvWLVU7YwqFAsOGDcOOHTtSJY1xnEFE76JZs2Zh2rRpAIB58+ahV69eNo6IiIiIiIjo3WJfZxaJcqDatWtj3bp1YvncuXNZMhW28Z3EcpaoMGZ84j1lX7ldiRIlcO/ePQBAWFgY9Hq9rBmY/v33XxgMBrFsfGd0Vrl37x7+/vtvsdy4ceMMLzXi6uqKBQsWYPz48di6dSuOHTuGp0+fIjY2FoUKFUKVKlXQq1cv1KxZEwDw5MkTSftq1aplfEeIiIiIKNM4zrBv9jrOyOpxQP78+bFhwwZMnjwZ27dvx8mTJ/H8+XNoNBr4+fmhVq1a6NOnD8qXL5+qf1dXV5QrV86q+0tEZO+WL1+O0aNHAwC+/fZbDBs2zMYRERERERERvXuYGEWUSSkvThw6dAj/+9//rL4d4yUHEhMTERUVJXuZi5cvX6bZV25XsWJFHDhwAACg0+nw8OFDlCpVKt12oaGhqfrJasazRQHAwIEDM92nv78/Ro0ahVGjRpmtd+3aNfFxkSJF4Ovrm+ltExEREVHGcZxh3+x9nJHV44CKFSvKit24/+rVq1u0TDgRUU63detWDBo0CAAwZswYfPXVVzaOiIiIiIiI6N3EpfSIMqly5cooVqyYWD5w4ECWLHNRtmxZSfnq1auy2xqfjC5cuLDFS2TkZFWrVpWUT58+LavdqVOnJOXKlStbLSZTdDodVq1aJZbz5s2LLl26ZOk2k0VHR+PixYtiuXnz5tmyXSIiIiJKG8cZ9i2njDPMyepxwJ07d/D06dMs65+IyJ4dPHgQPXv2hMFgwIABAzBz5kyzy5ASERERERFR1mFiFFEmKZVKcUpsADAYDJg6darVt1O3bl1Jec+ePbLaxcXF4ejRo2n2k9sFBwdLTjzt379fVrvku7+BpCSlBg0aWD02Y7t378azZ8/Ecq9eveDs7Jyl20y2efNmJCQkiOVPPvkkW7ZLRERERGnjOMO+5ZRxhjlZPQ5Yu3at+FilUmHAgAFW7Z+IyF6dOXMGHTt2RGJiIj744AMsXryYSVFEREREREQ2xMQoIisYNGgQChYsKJZXrlyJ7du3Z7i/vXv3plpioUSJEqhUqZJYXr16NeLi4tLta9WqVXj79q1Yfv/99zMcV05UqFAhyUWazZs3IyIiwmyb27dv48SJE2K5bdu2cHBwyLIYgaxZRk+OuLg4fPPNN2K5evXqqFevXrZsm4iIiIjM4zjDfuWUcUZasnoc8OzZM8yZM0csd+jQAUWKFLFa/0RE9ur69esIDg5GbGwsWrZsibVr13IZUSIiIiIiIhtjYhSl8urVK+zZswcLFy7E999/jx9//BFLly7FsWPHJCe+6f+5urpizZo1UCr//1eqR48e2Lp1q0X9JCYmYsqUKWjbti1iYmJS/XzYsGHi47CwMEyaNMlsf//++6+kjpeXF3r06GFRTNmhX79+UCgU4j/jO8+tYeTIkeLj+Ph4fP3112brjxo1SlIeMWKE2fqZjf/Zs2fYvXu3WK5RowYCAwMt6iMj9Ho9Bg4ciEePHgFImpVgwYIFWb5dIiIiIpKH44zMedfHGWnJ6nFAXFwcPvzwQ0RHRwMA3Nzc8Msvv1itfyIie3Xv3j20bNkSkZGRqFevHrZu3QonJydbh0VERERERPTOY2IUifbt24fmzZvDx8cHbdq0wbBhw/DVV19h/Pjx+OSTT9C4cWPkz58fPXv2REhIiK3DtTstW7bElClTxLJGo0HXrl3x0Ucf4cGDB2bbxsbGYvny5ShbtiymTp0Kg8Fgst6AAQMkd3P//PPPmDp1KvR6faq6//zzD1q1aoXw8HDxue+++y7blmezJ127dkWNGjXE8qJFi0yemDcYDBg5ciT27t0rPtelSxfUqlUrS+NbtWoVdDqdWM7sbFFr167Fvn37TH4ukj148ADt2rXD+vXrxefGjh2LOnXqZGrbRERERGRdHGfYL3sbZ2T1OGD+/Pk4efIkBEFIs861a9fQtGlTSRLXzJkz4e/vL28niIhyqKdPn6JFixZ4/vw5qlSpgr/++gtubm62DouIiIiIiIgAqG0dANmeXq/H0KFDsXTp0nTrajQa/PHHH9iyZQt++eUXDB8+PBsizDkmTpyIPHnyYMyYMdDr9TAYDFizZg3Wrl2LwMBABAUFwc/PD97e3oiOjsaLFy9w6dIlHD16FBqNJt3+nZycsGbNGjRq1EicvWvKlClYt24dunbtihIlSiA2NhZnzpzB9u3bkZCQILbt2LEjBg8enGX7bs8UCgXWrVuHevXqISIiAoIgYMyYMfj999/RuXNn+Pj44PHjx1i/fj3u3r0rtitRokS2zKC0fPly8bGrqyt69uyZqf5OnDiBxYsXw8vLC02bNkXVqlXh4+MDAHj+/DmOHz+Oo0ePQqvVim0+/vhjfP/995naLhERERFlDY4z7JO9jTOyehywc+dODB8+HH5+fmjSpAkqV66M/PnzQ6vVIiwsDIcPH8bp06clCXiTJ0/G0KFDrbujRER25vXr12jZsiUePnyI0qVLY9++fciXL5+twyIiIiIiIqL/MDGK8Nlnn6VKigoKCkKzZs3g5+cHrVaL0NBQ/Pnnn7hz5w4AQKvV4rPPPoOnpyf69Olji7Dt1ogRI1CpUiWMGjUKN27cAAAIgoDLly/j8uXL6bb39fXF1KlTUblyZZM/r1atGg4dOoS2bduKd2nfvXsX3333XZp99ujRA6tXr87A3uQe5cqVw44dO9ClSxe8fPkSAHDx4kVcvHjRZP1SpUph165dKFiwYJbG9ffff0suknzwwQfw9PS0St9v3rzB5s2bsXnz5jTrODg4YPz48Zg6dapkiRYiIiIisi8cZ9gnexxnZPU4ICwsDOvWrTNbx93dHd9//z1vpiKiXC8mJgbBwcG4efMmChcujAMHDqBQoUK2DouIiIiIiIiM8Cr4O+7cuXNYtGiRWM6bNy8OHTqEI0eOYMKECejfvz8GDx6MH3/8Ebdv38aMGTMk7UeOHImYmJjsDtvuNW/eHNeuXcP69evRqlUruLq6mq3v4OCAZs2aYdWqVQgNDcWgQYOgUqnSrF+7dm38888/+Pzzz5EnT54061WpUgVbt27F+vXr4eDgkOH9yS0aNGiAGzduoF+/fmm+J/ny5cOoUaNw9epVlC9fPstjWrZsmaSc2WX0AKBZs2aoX7++2ffc3d0dPXr0wNWrVzFt2jQmRRERERHlABxn2Cd7GWdk9Tigffv2qF69utk2Xl5eGDhwIG7dusWkKCLK9RISEtChQwecP38e3t7eOHDgAIoXL27rsIiIiIiIiCgFhSAIgq2DINv59NNPJVP4b9myBZ07d7aozfr169GjR48si9GckJAQBAQEiOUbN26gUqVKNonFnMTERJw7dw7//vsvwsPDERUVBXd3d+TLlw/lypVDYGAgnJycMtS3VqvFyZMnce/ePYSHh8PZ2Rk+Pj6oV68eT8aYERsbi7///huPHz9GREQEChQogOLFi6NRo0ZwdHS0dXhW8fbtW5w7dw737t3DmzdvAACFChVC0aJF8d5778HZ2dnGERIRERHZr5ww1uA4w/7Ywzgjq8cBEREROHv2LB48eICIiAg4ODigUKFCKF68OOrVqwe1mpOTE1Hup9Pp8MEHH+DPP/+Eh4cHDh8+jJo1a9o6LCIiIiIiIjKBiVHvuLp16+Ls2bMAgIIFC+L58+dQKBRm29y4cUOy/ML48ePxww8/ZGmcackJFyuIiIiIiCjn4ViDiIiITDEYDOjXrx/WrFkDJycn7N27F0FBQbYOi4iIiIiIiNLAtZPeca9fvxYflypVKt2kKAAoU6aMpJx8ByoRERERERERERFRbiUIAkaOHIk1a9ZApVJh06ZNTIoiIiIiIiKyc0yMesd5eXmJj2NjY2W1SVmvYMGCVo2JiIiIiIiIiIiIyN5MmTIFv/76KwBg5cqVaNeunY0jIiIiIiIiovQwMeodV79+ffFxSEgIXrx4kW6bQ4cOScqNGjWyelxERERERERERERE9mL27Nn45ptvAADz5s1D7969bRwRERERERERycHEqHfckCFD4ODgAADQ6/UYMWIEBEFIs/7r16/x9ddfi+WqVauiRYsWWR4nERERERERERERkS2sWLECo0aNAgBMmzYNn376qY0jIiIiIiIiIrmYGPWOK1euHH744QexvGHDBrRo0QLHjx+HTqcTn3/79i3Wr1+PWrVq4e7duwCA/PnzY/369VAoFNkeNxEREREREREREVEyg0FArEaHN7GJCH+rwasYDcLfavAmNhGxGh0MhrRvBjVn69atGDhwIABg9OjRkptGiYiIiIiIyP6pbR0A2d7o0aORN29ejBkzBpGRkTh06BAOHToEZ2dnFCxYEDqdDs+fP4fBYBDbNG/eHIsXL0bJkiWtFsfLly/x6tUri9rcu3fPatsnIiIiIiIiIiKinEWrNyBOo4dGp0eq1CcB0EOAVm9ArEYHJ7UKrk4qOKjk3S988OBB9OzZEwaDAf3798dPP/3Em0SJiIiIiIhyGCZGEQCgf//+6NKlC8aPH48lS5ZAEAQkJCTg8ePHknpubm6YOnUqRo0aBaXSuhOOLViwAFOnTrVqn0REREREZN+uXr2KmjVrSmasbdy4MY4ePWq7oIiIiChHeKvRIVbz/8cQiToDEnR6GAwCBAFQKAClUgFntQqOaiUSdHok6PRwc1LD3cn8qfEzZ86gY8eOSExMRJcuXbBkyRImRREREREREeVAXEqPAAC7d+9GgwYNsHjxYghC2tNKx8bGYuzYsahQoQIOHTqUjRESEREREVFuo9frMXDgQElSFBEREZEcUfFaMSkqIVGPiNhERMVrodEaoNUL0BkEaPUCNFoDouK1iIhNREKiHgAQq9EhOkGbZt/Xr19HmzZtEBsbixYtWmDdunVQqVTZsl9ERERERERkXUyMIkydOhVt27bFjRs3AADlypXDkiVLEBoaioSEBMTExODKlSv45ptvkC9fPgDAnTt30KJFCyxfvtyWoRMRERERUQ42a9YsXLhwwdZhEBERUQ7zVqNDgjYpySk6QYsYjQ46gwCFAnB2UMLDWQ1PFwd4OKvh7KCEQgHoDAJijBKi4hP1eKtJnZwdGhqKli1bIiIiAnXr1sXWrVvh5OSUrftHRERERERE1qMQzE0PRLne+vXr8eGHH4rlDh06YP369XBxcTFZ//Hjx2jatClCQ0MBAGq1GufOnUO1atUyHcvLly/x6tUri9rcu3cPHTt2FMs3btxApUqVMh0LERERERFlrfv376Ny5cqIi4tDgQIFYDAY8Pr1awD2sZReSEgIAgICxDLHGkRERPZBqzfgTWwigKSkKI3WAABwdVTBxVEFpYnl7gyCgPhEPeL+mzHKyUGJPM4OAAAvN0c4qJLuHw4LC0ODBg3w4MEDVK5cGX///bd4oygRERERERHlTOYXUqdcTafTYdy4cWLZ19cX69atSzMpCgCKFSuGDRs2oFatWhAEATqdDpMmTcLOnTszHU/BggVRsGDBTPdDRERERET275NPPkFcXBwA4JdffsGECRPExCgiIiKitMRpkpKbEhL1YlJUHhc1nNRpL3WnVCjg5qSGWqVAdLwOGq0BCSo9nB1UiNPo4emqxOvXr9GiRQs8ePAApUqVwv79+5kURURERERElAtwKb132IkTJ/Dvv/+K5Y8//hhubm7ptqtRowbq1asnlvft2yde0CAiIiIiIkrP8uXLcejQIQBA8+bN0bt3bxtHRERERDmBwSBAo0tKjIr/byk9V0eV2aQoY05qFVwdk+rG/zd7lEanR1RUNIKDg3Hz5k34+fnh4MGDKFSoUBbsAREREREREWU3Jka9w65evSop16xZU3Zb47parRZ37tyxWlxERERERJR7vXjxAmPHjgUAODs7Y9GiRTaOiIiIiHKKeK0eAoBEnQE6gwCFAnBxlJcUlczFUQWFAtAZBCTqDIhPSECHjh1x/vx5eHt748CBAyhevHiWxE9ERERERETZj4lR77DY2FhJ2d3dXXbblDNLxcfHWyUmIiIiIiLK3YYPH46IiAgAwMSJE1GqVCkbR0REREQ5hUaXtHRewn+zRjmplVAqFBb1oVQo4KhKOi3+NkGDoQM+wt9Hj8Dd3R179uxBxYoVrRs0ERERERER2RQTo95h+fLlk5SfP38uu+2zZ88kZW9vb6vEREREREREudeff/6JzZs3AwAqVaqE//3vfzaOiIiIiHISgyAk/W9I+t9BlbHT245qJQwGA74c+Sn27NoJJycn7Ny5E7Vq1bJarERERERERGQfmBj1DitdurSkfODAAVnt9Ho9Dh8+LJadnZ1RtGhRq8ZGRERERES5S1RUFIYNGwYAUCgUWLx4MRwcHGwcFREREeUk/+VFif9bOluUUU/4ccqX+HPTeqhUKixdtQ5BQUHWCJGIiIiIiIjsDBOj3mENGzaEq6urWP7jjz9w7dq1dNvNmzcPjx8/FsuNGjWCi4tLlsRIRERERES5w7hx4xAWFgYAGDRoEN577z0bR0REREQ5TXIeVPL/yTNIWWrWjO+wbvliAMCchUsR3PZ9a4RHREREREREdkht6wDIdpydnTFs2DD89NNPAACtVos2bdpg48aNqF+/fqr6giBg4cKFGDt2rOT5lGUiIiIiIiJjx44dw9KlSwEAPj4+mDFjRrZu/+XLl3j16pVFbe7du5dF0RAREVFGKRUK6CFAqVQAegFavQHODiqL+li6cB7mzPweADDxu5n4oHvPTMw8RURERERERPaOiVHvuAkTJmD37t24efMmAODp06d47733EBQUhKZNm6Jw4cLQarUIDQ3Fjh078M8//0ja9+vXDy1atLBF6ERERERElAMkJCRg0KBBEP6b0WH27NnImzdvtsawYMECTJ06NVu3SURERNbnpFYmJUOpVdBoDdDoDHATBNmJTX+sW4OJX/wPAPDp2K8waPAwsV8iIiIiIiLKnZgY9Y7z9PTE/v370blzZ5w7d058/ujRozh69KjZtgMGDMCiRYuyOEIiIiIiIsrJpk6dijt37gAAWrdujR49etg4IiIiIsqpXBxUiNXo4KhWQq1UQGcQEJ+oh5tT+qe5d+/8E6OHDwEA9Bk0DJ+OGgdHtRKK//olIiIiIiKi3Im3whAKFy6MU6dOYeHChahcubLZukqlEq1atcK+ffvw22+/Qa1mbh0REREREZl29epVceluV1dXLFiwwMYRERERUU6mVCrgpE5KYkpOZopL1EOj05ttd/zoEQzp/xEMBgM6du+F/02aDtf/kqmc1KqkpfmIiIiIiIgoV2JWCwEAVCoVhgwZgiFDhuDff//FhQsX8PTpU0RFRUGlUiFv3rwoVaoUatWqBU9PT1uHS0REREREdk6v12PAgAHQ6XQAgEmTJqFEiRI2iWXYsGHo2rWrRW3u3buHjh07Zk1ARERElGGuTiok6PRwdlQh0WCARmtAdLwOro4CXBxVqZbVu3ThHPp+2BWJiYloHtwOk2fMgbOjCs7/JVa5OnG2KCIiIiIiotyMiVGUSpEiRVCkSBFbh0FERERERDnYrFmzcPHiRQBA5cqVMWbMGJvFUrBgQRQsWNBm2yciIiLrcVAp4eakRqxGhzzODoiGFhqtAXGJesRr9XBUKZOWyFMAt2+GoGeXDoiLjUW9Rk0wY95vcHNxRB5nBwCAm5MaDiouqkBERERERJSbMTGKiIiIiIiIrOr58+eYPHkygKTluJcsWcJluImIiMhq3J3U0BsEJGj1yOPsgASVHvGJeugMAjQ6AzQ6A548eoi+H3RAVGQkqlSvhV+XrYW3p5s4U5SLowruTjw+ISIiIiIiyu048iMiIiLKYgaDgHitHhqdAQZBgCAACgWgVCjgpFbCxUEFpVKRfkdERDnE8+fPERcXByBp2e7evXun2+bp06fi47Nnz6J06dJiuUWLFli4cKH1AyUiIqIcy9PFASqlArEaHZwdkpbGS9QZkKDT41lYGD7p2QGvXjxH2fIVsXbjVhQs4CW2dXNSMymKiIiIiIjoHcHRHxEREVEW0eoNiNPoodHpIaT8oQDoIUCrNyBWo4OTWgVXJxWXcSCiXEer1SI0NNSiNgkJCZI2AQEB1g6LiIiIcgF3JzWc1Epx3OWoVuJtdAQ++bAz/n38CMVLlMSmP3ehYIH8UAAcdxEREREREb2DmBhFRERElAXeanSI1ejEcvKdywaD0YxRSgWc1So4qpVI0OmRoNPzzmUiIiIiIiILOKiU8HRVwmBQ4+WbSPTu2gn/3LqJQr5+2LzjLxQpXJgz9RIREREREb3DeNWNiIiIyMqi4rVI0OoBAAmJesRr9dAZkuaMMhgEaHR6aPUGGARAEAC1SgEXRzU8ndUwGAQYBAF5nB1suQtERJkSGBgIQUg1V55ZxYsXx6NHjwAAjRs3xtGjR7MgMiIiIsqtEhM16NX9A1y6cB5eXl44eGA/KlUqb+uwiIiIiIiIyMaYGEVERERkRW81OjEpKjpBC43WAADQGQwQDIAAAWqVEkqlAlq9gESd4b9/iUjQ6uDh5IC3Gh30BgH5XB1tuStEREREREQ5gk6nQ8+ePXH48GG4u7tj7969qFSpkq3DIiIiIiIiIjvAxCgiIiIiK9HqDeLyecZJUYAApUIBpTpp2QatzoBEvQGCQYACArR6AxL0Buj0KgCAOxzwNCIeAJgcRUREREREZIbBYMDAgQOxfft2ODk5YceOHahVq5atwyIiIiIiIiI7wcQoIiIiIiuJ0/z/8nnJSVEKBSAICigVgEarR4LRsnrJ1ColHAUgRqNFfKIOgpsAD1dHhMdooFIquKweERERERGRCYIgYPTo0Vi1ahVUKhU2btyIJk2a2DosIiIiIiIisiNMjCIiIiKyAoNBgEaXlBgV/99SeoAAQUiaJSpGo0WiUbKUo1oJB5USSihg+G/WKAMExCfq8TpOC6gUUCgcEKvRQalQwN2Jh21ERERERETGvvnmG8yZMwcAsGLFCrRv397GEREREREREZG94RU2IiIiIiuI1+ohAEjUGaAzCNAZDEnL5ymkSVEujio4O6igVCgk7Z3USc+/iEpAvFYvzj7l6phU1+m/RCoiIiIiIiIC5syZgylTpgAA5s6diz59+tg2ICIiIiIiIrJLTIwiIiIisgKNLinxKeG/WaMEA6BUK6DR6sWkKA9nNRzVqjT7UCuV8HRxhEqphUZngFqpQHS8Fq6OasRp9PB0ZWIUEeVeDx8+tHUIRERElEOsWrUKI0eOBABMnToVn332mW0DIiIiIiIiIrvFxCgiIiIiKzAIQtL/BgEGgwABSeWE/5bVc3FUmU2KSuagVsBBp4RCkdQ+PjGpvUanh8GghlKpMNeciIiIiIgoV9u+fTsGDBgAABg5ciQmTpxo44iIiIiIiIjInnHaASIiIiIr+C8vCoKQlMSk+D/27jxKsruu///zs9x7q6qXWbJAAAUjCBI2+QqiyKaCCAKRRSAsERAQRBBBEJQloAiCICg7hBAgShBQMKAg/gBBRVEQ2YWwCISQzNbdVXWXz/L741bXzGQmyUwySU/PvB7n5HRXdd3bn+45J13ve1+f99sYutlYPWNgUFx5KArA0AefSm8wBrqUaUMi04/rExEREREROV595CMf4cEPfjAxRn7t136NP/3TP8UYbR4RERERERGRy6dglIiIiMgRsH4t3hjoYiLlTB37IFPpLfYQL9avd5ryxlI4i2HveL71cX0iIiIiIiLHm0996lPc7373o21b7n//+/PGN74Ra3V5W0RERERERK6YKkcRERGRI2A9+GStIWXoYianPuRUuEN/y9WF/hhj+0CVMYY0O8/6uD4REREREZHjyec//3nuda97MR6P+YVf+AXOO+88vPcbvSwRERERERHZBBSMEhERETkCKt+/rRp4R87QhkScBZosh9YtKuVMG9P8PAYond1vTJ+IiIiIiMjx5MILL+Qe97gHO3fu5A53uAPvfe97qapqo5clIiIiIiIim4SCUSIiIiJHwLCYBZm8xTtDzpl2NvoucWiJprqL5Jzx1uBnXaaqwu43pk9EREREROR4cdFFF3H3u9+diy66iFvc4hZccMEFLC4ubvSyREREREREZBNRMEpERETkCLDWUHkHwLDsRzrUMdGGRDfrAnVF2pCYthGAQen2ntcYrDXzz0VERERERI4HO3fu5B73uAcXXnghp556Kh/60IfYvn37Ri9LRERERERENhkNYhcRERE5QkaVow6RLQNP3QVCdKw2HYnMoHB4e2AmPeVM3cV5KKoqLJV3pJxxs0DUYBa4Wh/XJyIiIiIicixbW1vjXve6F5///Oc55ZRT+Md//EdOOeWUjV6WiIiIiIiIbEIKRomIiIgcIYWzLFSelDJLVQHAtA1M28jFe2q2DEsKbzAYMpkuZNqYyLkftVcVlsXZcdYAxuKtofQWQz+uT0RERERE5FhW1zWnn346n/rUp9i+fTsf/vCH+ZEf+ZGNXpaIiIiIiIhsUgpGiYiIiBxBi5UnpsxaE1ikIC9kdkw6pl3E2Y4iHNj1yVvDoHTzUXzWQkp9t6hhud4tys1H6omIiIiIiByLQgg89KEP5SMf+QiLi4t88IMf5LTTTtvoZYmIiIiIiMgmpmCUiIiIyBG2ZViQcua7u6YsjUpwhkkTaULCmEzpDd5YjO3H5HnXh6VSzlizNxRVFZbBrEvUqFK3KBEREREROXallHjsYx/L3/zN31BVFX/7t3/L7W9/+41eloiIiIiIiGxyCkaJiIiIXAO2jUoALl1tMKYfj+dnHZ9yBmw/ei/lTBsiAM4aMH1Iqiosy4P+uIXKU7gDO01tRillpl0fEks5kzMYA9YYKm8ZFuqMJSIiIiJyvMk587SnPY1zzjkH5xzvfOc7+bmf+7mNXpaIiIiIiIgcAxSMEhEREbmGbBuVWGOYtIFR6ViZdkzbSJcyMWXqLlE6S1VYrOnDQN4ahqWbd4oalo7FavO/ZetimnXNiuTLfjFDJNPFxLgJVN4xqtwxEwYTEREREZEr9sIXvpA/+7M/A+Dss8/mfve738YuSERERERERI4Zm/8um4iIiMhRbMuwwFmDNYZR2b/1akOiDpGU9umYZA0D7yj93jDQQuWPiVDUWhMYN2H++Mp+/jpE6hCPmZ9fREREREQu36te9Sqe97znAfDKV76SRz7ykRu8IhERERERETmW6E6TiIiIyDVssfJU3s47JpXe7heA2peBY6pj0p5pR931owLrNjLtIiEd0DMKYqbpUt8xq3AMSse4CaSc5yMFRURERETk6Hc447PPPfdcnvKUpwDw/Oc/nyc/+ckbuXQRERERERE5BikYJSIiInItKJxly8iSkj/kmwSb3VoT5qGolbqj6RLQ/7yVtxSuHyGYcj9GrwmJkDKrTaBNieVBwbSNWGPUOUpERERE5Ch3ReOzU8zUXaSNiZz7+uif//ED/PqjHw3Ak5/8ZJ773Ode+4sWERERERGRY57uMImIiIhci6w1LFSehWqjV3LN6mKaj8/bNxQ1Kh3D0mHN/uGvQeFYyJlpG5m0kaZLrNCxPCgYN2EepBIRERERkaPP5Y3PbrrEtI2EGDGz8dneWT75z//EEx71CGKMPPhhj+BZZ/0xK9NwzHTOFRERERERkaOHglEiIiIicsRNmr3j89ZDUctDT+Xd5R5jTR8a886wMg00XaJ2kUHhmDSRLSPdIBEREREROdpc3vjsSRuYtnH+utAmdsSW//2fz/CsX38oXdtyl3vcm9//4z/DWEsdInWILFReHWNFRERERETkiFGFKSIiIiJHVEqZJvQ3QKazGySj0l1hKGpflXeMysykjUzbPhjVhEhK/pgZMygiIiIicrRJKR/22O/LG5+91nSAYXHg6ULfNaoJkQu/+iWe88SHU08n3PqnfpZnv/Q17JwEujThhIWKQekYN4GUM8uD4tr+FYiIiIiIiMgxSMEoERERETmipl0k04/PCCljDAzLQwtFrRuWbr7TvA2J0lumXb97XEREREREjpwuJiZNH1zKl/1ihkiej8quvJuPu7u88dmQGZUeawyrTUcbEtYaVi/5Li940sNZ27Obm93qtrzgz8/BFxXGwGod+g6yybM8KJi2EWuMOkeJiIiIiIjI1abKUkRERESOqCb0N0TqWdeoylusObxOT9YYSmdpQqIOkdL3ny9UR3y5IiIiIiLHrbUmzMNN0G9uqEMkpX06RlnDwDtKv/+4uxj7GNW+47OHpWXaJqyhD0XNnh/vvoSnP/pXufTi73Pjm96c15z7LuxgcXaMI2eou4R3iRU6lgfFLIhlKZxGaouIiIiIiMhVp2CUiIiIiBxRKfc3SFLqP17VGxnrYaj186yfV0RERERErr49024+Bq9u47xj6wFipukS3hqGhWNQOlbrjkkbWaz8fuOz4+z4povzUFSqV3nKmb/Kd779TW5wwxvx+ne8m5NOPIFJG5i2/eu2jEraGEm5/16160dqT5rIlpGCUSIiIiIiInLVKRglIiIiIkfUen5p/ePhdotat37YZc8nIiIiIiJXz1oT5qGofcfgGcO8S5M1hpT7MXrNbEz2ahNoUx+SmraREPeOz668ZfekA5ifO3dTfvtRD+FrX/kiJ13nurzhvL/h5OueAsCgcNRdf3yIidI5DJCBadsHo5oQSclj7VWrKUREREREREQUjBIRERGRI8rM7masB5uuaqen9cPWz3MV81UiIiIiIrKPLqb5+Lx9Q1Gj0jEs3QEbGwaFYyFnpm1kMhubtydEBt6xa9Iy8I7FgacNiQx0sxBV1zX8wRPO5HOf+TTLW7by+ne8hx+64Y3m5907Prsfz7foLNZCyhBSpg2J0lumXT+6T0REREREROSqUEUpIiIiR52UMtMu9mPUcibPQjbWGCpvGRZOO4aPYtYYIrn/N4r9DvNB4Q77PG3ob9Cs/1tf1c5TIiIiIiKy16TZOz5vPRS1PPRU/vLfs1tjWKg83hlWpoG6jRj21m7bFsq9Y/liJITAHz7tCXzqEx9jOFrgtW/7a25ys5sfcN7CG5oAOa0/YyidoQmJOsT5eO2F6kj+BkREREREROR4omCUiIiIHDW6mJg0kSZEDugxlCGS57ubK+8YVY7C2Y1YqlyByts+DOUdTdeP3VjI+bCCTSln2tjfHRnMbtBUXv/WIiIiIiJXR0qZJvQBpuksyDQq3RWGovZVeceozOya9MEqgBAT5L7TE0AMkZc952l87EMXUJQlrzr7PG5125886PkMfY2w3mU250zpXb9JZnbCq9qBVkRERERERAQUjBIREZGjxFoT5uMcoO8WVIdISvt0jLKGgXeU3lLPxi0sVJ5FjVU4qgwLx7gJlN7irSGkfuzG4Yy/mLaRnMFbQ+ktZnZeERERERG56qZdvwmlnY27MwaG5eG9z+7H7UGImZwzxhimbSBjyDnzF3/8PP7+vX+Fc46XvuZs7vCzd7ncc+XZlpj1TRTGmPkI7fU8lHJRIiIiIiIicnXoLqKIiIhsuD3Tbu/YhTYy7SIhHeTqd8w0XcJbw7BwDMo+gJNyZnlQXMurlstjraHyjjpEhoVjtQlM2oh35pB2ojchMpntPl+/SVN5jU8UEREREbm6mtm46nrWNarydh5KSjlTd5E2JFJmHnqyBkpvGRQOa8xsxLkjxEDM4A2M28io8rz+lS/lnee8HoDn/Mmr+Pl7/vIVrqcLfd1nZs1hrdkbhFoPSGmitoiIiIiIiFwdCkaJiIjIhlprwjwUtVJ3NF1/od6Y/iJ94foL9Sn3Y/Sa2c7m1SbQpsTyoGDaRqwx6hx1FBlVfTBqUDralGi6xMo0MCrzbIf5gXc3Uu47S62Hoqqiv/myfj4REREREbl61sfSrY+pK5wlxMSkjbQxHdidKWci0MX+fXrpLKPSsVD1m1TWp13XIfGet7+OV7/sRQA86dkv5BdP/9UrXctlx2eX3tLOwlvrGyMOZyS3iIiIiIiIyGXp7qGIiIhsmC6m+fi8fUNRo9IdNDwzKBwL+4Rnmi6xQsfyoGDchHmQSjZe4SwLlWfcBJYHBSv0/76TWUew0tl+RN5sR3gb0n43YqrCzruALVRe/64iIiIiIgeRUmbaRZqQSHmfMeTGUHnLsNi/8+plx9PVbaTbp1tviJc/0tw7SxP6zSrW9t2k3Kxm++B73smLnvNMAB73lGfwwEc+ru88VebLDTbVXSTnjLcG7/raoPSWSdsBe8NSlVctICIiIiIiIledglEiIiKyYSbN3vF566Go5aG/wnFr1hgWKo93hpVpoOkStYsMCsekiWwZ6aL50WKx8sTUj+NYHhTULjJt+zGJ6zdULstbw7B0805Rw9KpE5iIiIiIyGV0MTFpIk2IHDCEPEMkzzeiVN4xqhzFLHzELPC01gSK2bjrJkTq9spHmg9KR+Ud0zYRYsIXln/9//6BFz/7KQA89Ncex5Oe/ixWph1hVguMygPfz7chMZ11ih3MxmeXztJ0/WYJb02/kQIYFuoeKyIiIiIiIled7jKJiIjIhkgp04T+Qvh0NkpvNLvIfigq7xiVue9A1PbBqCZEUvL77YiWjbVlWOCsYdwEBkUfeGrD5e9CL/fZDb5QeYWiREREREQuY60J8867wJW+v65DpA6RhcpjjSGSqUOk6SJg+5Hl85HmfSCpcGafkeaZdjbSfK0OdMXeTq//+smP8+zf+nVijNz3QQ/lN5/9wr5DrLeEWa3Wh5z6Oi/lPiw13Wd89noN6CzzsdrDcr1blFN9JyIiIiIiIleL7jSJiIjIhph2/c7m9Qvsxuy9+H2ohqVj2vW7mtuQKL1l2vUX/OXosVh5Km/nO9pLb/cLQO3LwH472kVEREREZK89046629t5d70eOsA+XZ6GhWNQOsZNIOdMTJnUn4Jdk46Bt1izt3PrZUffVR5SuTfQNG0jdUh860v/zXN+80zapuEev/TLvPjPXk0T+jUaY2hTggQ71tr5qPSQMnmWqqoKy2JVkHLGGpi0af78egfZUaVuUSIiIiIiInL16K6hiIiIbIj1MWr1rGtUNbsYfzisMf24hdkO6dL3ny9UR3y5cjUVzrJlZEnJM+0iTUikvM+OdmOovGVYaEe4iIiIiMjBrDVhHopaqbt9ujz19VTh7D5dnvrR1SFlVptAmxLLg4IM7Bi3FN4SU6bpIgY4eWlwuZsXoH+/Pio93lp+sFrzta98id9/7BlMx2Nu/zN34nVnn8toNKTuIinDat1RWstaCHQhMW4DxoC3lmHpGBb9elfrDmfNfNxeVViWBwXQd5DVZgkRERERERG5uhSMEhERkQ2RZruE02x381W94L0ehlo/z/p55ehkrWGh8gqviYiIiIgchi6m+fi8fUNRo9LNuzGl1Hd1amMiZcgZmtnIvKK15JRZGhZMZmOu93eodVTm+9/5Ns9/whms7tnFLW/z/3j9ue/khC2LTLt+xPn1tw3ZOXbsmbaUrmQaIm2XSPQBLmcMbci0ITAs3SxwtbdjFfTdgTVWW0RERERERI4EVZciIiKyIdbzS+sfD7db1Lr1wy57PhERERERkWPFpNk7Pm89FLU89FTe0cXEWhtoQzog3lR5h8GwWneMm4BdqQkxs2OtIeZ+tLkzcMlqw5ZhwajyB63NUu5DV9/5zvf4/cc/hJ2XXMyNbnJT/vyt53Pi9i04a9i+UM7HZ29fKPtx2m1kib4DVBcSdYzkDIU1jEpHWTgG3u3XrWqh8gpFiYiIiIiIyBGjClNEREQ2hDFA3htsuqqdntYPWz/PVcxXiYiIiIiIHJVSyjSzEeTT2Si9UemovGPcBCZtnL92Hj5Ke8dW51kAatIGpl1iUFimTaQqbR9AMv156y5SOMvS0DMqPbOSjTYkupjYs2sXv/vrD+Z73/4m1/uhG/KyN53P1m3bKdz6SHO/3/jswllGZWTS9F2sisqx1RcMCndA+MrQh7hGldP4PBERERERETmiFIwSERGRDWGNIZKx1kDMdDEdZJzDlWtDv1vaWjM/r4iIiIiIyLFi2sV5QCmkjDH9qLmVumM669C0Wgd2T1umbZofV3lDzv0mFOcMTZtYayNdtNRtZK2BExcrytJROktKmTYmdqy1jIvIcJ/6bDIe86zfeBgXfvVLnHjydXjN29/NdW5wPQZFH2Lad6PLwcZnp5SZdrEfg573hrasMVTeMizcvKYTEREREREROZIUjBIREZENUXnbh6G8o+lSv8M458MKNqXcX7gHGHg3P6+IiIiIiMixopltBqlnXaMqb1mpO3autUzbyM5xy6QLfdgI8NZSOMOkS7RdBNMHk+ousdZ0TCtPafu6KeZMNzu/N4bSWTAQY6axicXS0XUtL/jtR/OFz/4ny1u28obz3stNb3ITwqwrFVz5SPODhaVERERERERErg0KRomIiMiGGBb92IfSW7w1hJSZtpGF6tDfnkzbSM7graH0FjM7r4iIiIiIyLFivRtTSv3HSRfYtdYx7fpQ1LTtR9U5k+mjUf3jlDOlc6SUCTkRUqLpMs5EyqFhWHiGpWexdIy7flxeiInCWxYHs7osJ/7waU/g3/75owxHC7z5L9/N7W57a2LKrNZBI81FRERERETkqKdglIiIiGwIaw2Vd9ShH9Gw2gQmbcS7/vkr04TIpO13TA/L9W5RGr8gIiIiIiLHln27Mq02HV1IjNvArrWWPdOOOkS8tQQLkEkpz2ul3aHDGCidY1hYRoMMydCGTFVkDFAWjm2LFZM2sGcS6GJiGiJDZ/ijZ/0O//jB91OWJeecdz53uuPPADBtO0AjzUVEREREROTop2CUiIiIbJhR1QejBqWjTYmmS6xMA6MyMyzdQS+up9x3llq/0F8VlsGsS9SoUrcoERERERE5thgD5L5jbt1G1urAShPYM+0YtxFnofT9+LzKO6Yh4K1h3CSalIg54ZwlkAkBCgcYGNeBbiHRhL5z72JVUDrLah3IOfOGl53FB979l1hred3Z53KXu/0coJHmIiIiIiIisrkoGCUiIiIbpnCWhcozbgLLg4IVOpouMWkj0y5SOtuPyDP97ug2JNqY5jumq8KyPCgAWKg8hdPFeBERERER2XxSyky7SBP6EXg594Eoawx1G0k508TIpA1cvNpgyIzbiDWwZVSwUHrKWTgpAaXLQMDZPshkjWGtjngLTUgMCksbM3WIVJ2jCZFh4Sm9Y1hmXv/Kl3Lem18LwAv/9C+4573vO1+rRpqLiIiIiIjIZqJglFyuEAL/9m//xre+9S0uuugiuq5j69atnHrqqfzET/wEJ5988kYvUUREjgGLlSemTN1FlgcFtYtM20hImSYkmpAOOMZbw7B0805Rw9KxWOltjYiIiIiIbC5dTEyaSBMi+bJfzBDJdClx8Z6GLiZ2rDbUXSDlTOFgUHi2DEq867vtNl0i50xImUSmKiyVt0y7iG0zMUPhLU2XGFWOtTpS+ci4DgyLvqZ67zvezNmvfAkAT3/ui7jvg86g7iKjymukuYiIiIiIiGw6uoMoB/jud7/LC17wAt797nezY8eOy33dzW52M5785CfzhCc84VpcnYiIHIu2DAucNYybwKDoA09tSNQhktI+u6WtYeDdfCc0MBv5oLc0IiIiIiKyuaw1gXET5o8vrwbyxtDFREiZS8ctOUOm76C7UPl5KAqgi328qpttMPHGUnpH3fXj9HLKDArHtAkMypKcMilnVuvAqAr84/v/mhc/55kAnPmbT+f+Zz4WgHoW3NJIcxEREREREdlsdBdR9vPqV7+a3/u932Ntbe1KX/vlL3+ZCy64QMEoERE5IhYrT+XtfLd06e1+Aah9GfpdyaPKaXyeiIiIiIhsOnumHXXXh4zq2SjxkA7oGQUxs7sNTNvAahuwBsZdJMSMtwWVv2ynpv4cadZ417s+VJXJGKAsHWQoC0fbJpaGJQbIZP7x7y/gub/zmwA88JG/zhm/8Ts0bcRkQ8yZLcP+nBppLiIiIiIiIpuJglEy9/znP5+zzjpr/th7z8/+7M9yl7vchete97p477nkkkv43Oc+x0c/+lG+//3vb+BqRUTkWFQ4y5aRJSXPtIs0IZHyPruljaHylmGhUQ0iIiIiIrI5rTVhHopaqTuark8xGQOVtxTOYo0h5UwXEyt1xjnDznFLTOCtpekCkzbSdAk/ez0wH8eXc6YJkaaLxJTJQEwZkzKBxJZBQUizsJSzfPmz/8ZZv/04Yoz84v1+lcf+7llMukgbEsYYrDEaaS4iIiIiIiKbkipXAfpOUfuGon7xF3+RV7/61fzoj/7oQV+fc+Zf/uVf+PznP39tLVFERI4j1hoWKs9Cde18v5SyglgiIiIiInKN62Kaj8/bNxQ1Kh3Dsg8c1V2k7iIp99fg8qxGSbEPShkMpbfEnFitAwkonJkFpiLTENk97mhSpHIW7yzeWqoK6i5ROMNaHfHOUBaWr3z+szznN8+kbRvueo978Qd/8kq6ZPCxP29VWEalZ9tCOf85NNJcRERERERENgtVr8I3vvENnvnMZ84fP+xhD+Otb30rzrnLPcYYwx3veEfueMc7XhtLFBERuUZ0Mc1H9x0wtCJDJM9vXGh0n4iIiIiIXF2TZu/4vPVQ1PLQ44xhrQ60MZEvU5yk1HfXHRSOBDRtx6j0WOeoQ2KYM12EtaZl11ogkYg5E2OmjpHRoO8+VbeJBFgsbUqkZPnON77K83/zEUzHY37qjnfmZa85m2owYLXusKYPTi1WBYUzGmkuIiIiIiIim5KCUcLv/M7vMB6PATj11FN54xvfeIWhKBERkWPBWhPmO7UB2pCoQySlfTpGWcPAO0pvqUOkDlE7o0VERERE5CpJqR9vBzCdjdIblY4QMyvt3tokxP1rk9VZ3eIsbB8VfD9Exk1keWQovcNbQ9tlYoCqMEzaDGSYdcE1QMp5Pm5vpelIOdPsupg3PeMRrO7Zxa1+4v/xtr96F34wmnWryn0n38JTOMO2UcmJi5U66YqIiIiIiMimo7t6x7lvf/vbvO9975s/ft7znsdwONzAFYmIiFzz9kw76m7vTu1pFwnpgJ5REDNNl/DWMCwcg9IxbgIpZ5YHxbW8ahERERER2cymXd+ptg2JkDLGQEiJNvS1SBMidXtgbZJTokuZ6ey4wlqygxihIbAnZwaFYzRw0GTqzlIVhpQMzmUqb1kaFNRdYtJ2NDEy3bWTt//Br7Pzkou54Y1vyqvPfReuGjEqPTnDlmGJt4ZtCyUGFIoSERERERGRTUvBqOPc2WefTUp92+7RaMT973//DV6RiIjINWutCfNQ1ErdzcdXGAOVtxTOYk0/aqKLiWZ282G1CbQpsTwomLYRa4w6R4mIiIiIyCFrQl971LOuUTElcu5H0q01+9YmhtJbCmewxuCsYWXasVC4vpYxmUkTGPqCDKzUgcXKkwBvDYUF6xxLVT96zxgDORNSImUw9Zi/euET2HHRtznxlBvwkjf8FVu3bWfSRiAzaft1DMu+o3zlnUJRIiIiIiIismnpbt5x7sMf/vD889vd7nYsLi5u4GpERESuWV1M8/F5+4aiRqVjWLr5aIl1g8KxkDPTNjJpI02XWKFjeVAwbsI8SCUiIiIiInJlUu47QaWUCTERc6by+4eihqVjUOxfmywPClLKOGfYOe5ICdqQSSmw5DzOGAyGNOssNSodGEPhLW1M1G1iVxvIQFdPOO+FT+Lib36VrSecxB/8xTs4+ZRTmHaBnGGthsWBpyosg6IPRo0qd63/rkRERERERESOFN3JO46FEPjMZz4zf3yrW90KgJQSf/M3f8P9739/Tj31VAaDAdu3b+e0007jN37jN/YLU4mIiGwmk2bv+Lz1Gw/LQ89C5Q8IRa2zxrBQeZaHfZ686dK849T6+URERERERK7MLBdFzlB3CYuhCXtrk6VBwag8sDax1hBSv2FjadAHp4yBaRvYsdbQxsRaE+hCxlqDsYYuJHaOW9qQSCnRxsR4MuUvX/TbfOtLn2W0tIWzXnseN/2xGzNpIz/Y0zBtI21MFN7MR4cvVF6bQURERERERGRTU8eo49hXvvIVptPp/PENbnADvvnNb/LIRz6Sf/7nf97vtU3TsGvXLr74xS/y+te/np/92Z/l7W9/Oze84Q2v7WWLiIhcJSllmtnIiuks2DQqHZU/tN3PlXeMysykjUzbyKBwNCGSktdYCRERERERuVLGABkyeR5Aqtu+NhmWjtIfPIC0Nut6C1B6R0iZmGDcRWj6GqVyjuWhp0qWpkuUtj/XtIvkBJXLvOfPf58L//tfKQcjnvHyt/DDN74Z3lqaru8mlXNmceApZ0GoYek0PlxEREREREQ2PVW2x7FLLrlkv8erq6vc5S534dvf/vb8uS1btrC8vMwPfvADmqaZP/+JT3yC29/+9nzkIx/hFre4xbW2ZhERkatq2kUy0IZESBlj+gv9h2NYOqZdJKRMGxKlt0y7yIJuFoiIiIiIyJWwxhDJdDGTc2baBmICY8x8bN2+Us7sHnes1B05Z3auNeyedEybQEqZwhiMtyQyMe8dG+5mGzcqb7HApAt88HUv4Ev/8mF8UfCMl72Bn7zdT1EVjlFpyQZsNgxmG0fakDhpySsUJSIiIiIiIscEVbfHsd27d+/3+CUveQld1wFwxhln8OxnP5vTTjsNgK7r+NCHPsQzn/lMvvCFLwDwgx/8gAc84AH853/+J4uLi1d7PT/4wQ8OCGtdma997WtX+/uKiMjxoQn9eIp61jWq8vZyx+ddHmsMpbM0IVGHSOn7zxeqI75cERERERE5xlTe0sXEehWy2kQG3jIs3H61SYiJuktMusDKtL9Wt2vSMp5t0vDOsVhlQsx0KYHJGCxYgyHThEwXEmvAqDB84rxX8l8ffg/GWp7xktfwC79wd6rCslj14/KqIrJWh76zlLcsDRSKEhERERERkWOHKtzj2Nra2n6P10NRL3jBC3jOc56z39eKouDe9743d77znbn73e/Opz71KQC++tWv8ud//uc861nPutrrec1rXsNZZ511tc8jIiJyMCnn/mPqPxbu4GMqrsx6GGr9POvnFRERERERuSLDwjFuAt5ZvDXEmGlILA/3hqImbWA6G69Xt5E2Jr6/u2bnuCVnSDn1o8EzFA5iBmMszlmGzuK9ozRgqn7k98fe+QY+9u5zAHjaC1/O6b/yK3hjGZSOnPvxfqWzjErHQulZHhaHvYFERERERERE5Gh21e4IyjFhMBgc8NzP/MzP8Ad/8AeXe8zS0hLveMc78H5vpu7P//zPybopLCIiR7n1P1XrH6/qxf71wy57PhERERERkStiraHyjpzzfHRe3UVC7LvbrjV7Q1FrTeB7u2u+s2PCpWsNISWaEBi3kZTBOUPCUDhD5Qylg6qwbF8o2TIqWR4V/OcH38k/nPtKAB779OfzgAc/jOssD7jetiHbF0pOWCzZvlCyPCwYlh7n+mJHuSgRERERERE5ligYdRxbWlo64LknP/nJmCu5+vGjP/qj3Pe+950/vuiii/jiF794xNcnIiJyJK3/eVv/eFU7Pa0fdtnziYiIiIiIXJlR5TDGUBWOsugvza5MAzvWGqZtAGDHuOV7uyaM245JiKSUGbeROkYiGe8Mg6IfwbdQearCMfAeY2bPlZ7/+sj7efdfvACABzzmyTzo1x7PoHDEdGAd1M7GjlvbFzfqGCUiIiIiIiLHEo3SO44tLy8f8Nzd7na3Qzr2bne7G+95z3vmj//rv/6L00477Wqt54lPfCIPetCDDuuYr33ta5x++ulX6/uKiMjxwRpDJPcX+2Omi2m+S/tw6KaBiIiIiIhcVYWzLFaePdOO5YGni4m6i4zbgDGwMuloYqIOsX++DkzaQMqZwrl+5F3lyTkTYqAJmcKaWTcqy6BwfOO//plzX/JMAO7xoDP51cf/Dl3KTLvIMDhG5d71pJxpZx2rBr6vjyqvvbQiIiIiIiJy7FAw6jh26qmn7ve4qipOPvnkQzr2hje84X6PL7300qu9npNPPvmQv7+IiMjhqrztw1De0XSJJiQWcj6sYJNuGoiIiIiIyNW1faGkDpEQHYulZ/ekxRrYPWnZU/ddoyZNZK0JdDERYmboHdtGJaOhI2cwGbCQJh1gqLvIsHD81799kj9/5mNJMfLz93kgj3ra82lDJqdMF/pz7WvaRnIGbw2ltxhgeBU2kIiIiIiIiIgcrRSMOo5d5zrX4YQTTmDHjh0ADAaDQz72sq+t6/qIrk1ERORIGxaOcRMovcVbQ0iZaRtZqA797ZBuGoiIiIiIyKFKsy5NTUiknPtA02xfRmEtiwPPat0B4KwlZYO3lpwSMScsfRcobw2LQ8/SwPdj+Fy/OcMFg02GJiambeDrX/pvzn3O4+jahp++2z145h+9gj1tomkibUxkoO7ifH1NiEza/vGwXN/44ebdcUVERERERESOBWpxcJy7zW1uM/98ZWWFEMIhHbdz5879Hp9wwglHclkiIiJHXD9aor/Yvx5mmrSRJsQrOmxONw1ERERERORQdDGxZ9Jx6Voz7/oUUyblTEz9f11MNF3CW4s1hp1rDTH1Y/GGlad0nq2LBVXh8M7isRTWsVB6nO3DUMYYti2ULA0cq9//Fm8/6wk00wk3uc1P8fizXoUvCpzpL/92qa9lQupDWuMmsDLtrwNWhZ2PGR9V2vghIiIiIiIixxYFo45z97nPfeaf55z53Oc+d0jHfeYzn9nv8WXH8omIiByN1i/yD0pHVfRvg1amgXETSDkf9BjdNBARERERkUO11gR2jlvqEMlAGxIrdcfuScuuccvuSctK3eGtIQMJMBa6lEgpEVLCzJ4LEdoQ++cM5JyYtB3jtq9NvLUMSke982Lecdbjma7u5vo3uQWPfeFrmATL7mnHNAS6kOi6fiz4at2vb33TR1VYlgcFAAuVp3C6XCwiIiIiIiLHFlW6x7kHPOABGLO308X5559/pceklPjrv/7r+eOqqrjjHe94jaxPRETkSCqcnY/OWx4U83DUpI3sHLesTDvqru8iVXeRlWmnmwYiIiIiIsewlPqNEDvHLZeuNVyy2nDpWsPOcdtvoEgH30BxMHumHeOmDy3VbWTXuGXPtKPpEl3MhJTpYqbpEuM20oZI00UKa4k5Mw2RNmYmbaSw4B1URV+/rLWRPdPAah2ZNJEYM5W37N5xCX/+u49iz6UXc/IP/yiPecEbWF5awmCo20DdRKYhEmJi3ARyZj4efGng5/XNsHQsHsaYcREREREREZHNQnfzjnM3uMEN+NVf/dX541e/+tVceOGFV3jMX/zFX/D1r399/vhBD3oQw+HwGlujiIjIkbRY+XnHp+VBwdLA97u1MzSh30G9Mg2s1oEmJN00EBERERE5Bl3ZuLsuJtaawKVrDXsmHV1MV3i+tSZQd/2GipW6Y7UJhJQxBgaFZWng2TLs649BYTEGSu9oY2L3tMNimDSRrotYa8jZsGcSGNcd42lkre5YqQM5Z6rC4pzhkh07eNlTz+T73/kmJ13vh3jiS85mtLyNnA0LA481djb6OxNypu4SKfddcY3pQ2EpZRaqvbWOiIiIiIiIyLFGwSjhRS96EWVZArC2tsY97nEPvvSlLx30tW95y1t42tOeNn88GAx4znOec62sU0RE5EjZMizmnaMGhWPbQsmWYd9BqnAGbw2FM1SFZcuwYNtCOQ9T6aaBiIiIiMjmdqjj7tqQyEAd+g6za7NuUJfVzboxQR+Karo+RDUqHdsXSpYGBYPCUfp+LPfSoGD7QslotuGi7iJ7ph3GGPojMzGDm3V5d9aSMmAyMWfaLjNeW+MNv/94vvP1L7P1hJN4zqvfwfWvf30WBxZnDXUI7J521G1i4D3D0rM88CwNHNYYQuo7WOWciTFfafBLREREREREZLNSqwPh1FNP5Y1vfCNnnnkmAF//+te59a1vzemnn84d73hHlpaW+N73vsf73vc+/uM//mO/Y1/3utfxYz/2YxuxbBERkatlsfJU3jJp+tF5pbeU/uCZcQNU3jGqnMbniYiIiIhsYntm47OhH3c37SLhYOPyZiPvvDUMC8egdP1ovZwP2Cgxafaebz0UtTz0VL7fXJFypu4ibeg7NuWcyUAXErvHDWt1IMbM7nFDNmCtYalyVL5k0Dqa0J/XGOi6TKLhL//oyVz4hc8wWlrmaS8/h4WTrk9KGWMMXejX4J3BeYM3lpT7blhdyISYGFaOQeFwzlKHSB0iC5VXZ1wRERERERE55qjSBS666CK6rgPgh3/4hzd4NRvjkY98JKurq/zO7/wObdvSdR3vete7eNe73nXQ15dlyete97p5mEpERGQzKpxly8iSkmfaRZqQSDmTMxgD1hgqbxkWbjaCQkTk8KjWEBEROXpcdtzdeojJGKi8pXAWa0wfIIqJJiRCyqw2gTYllgcF0zZijZkHiFLKNKE/53R27lHpqLwjxMSkjbSxH9ENEGKi7hJtTISYGLeRLkQms4BW6S2YTOUdxmS8hT1TKK3FOoMziXNe+Lt85T8/SVENedwfvYHr3OjHWJm0AH2Ayhq2DUusYRbOMpy4WDIqPVtHBdYYupDZE7pDCn6JiIiIiIiIbGabIhh129veFoAb3vCGvPe9773C13784x8HYDgccrvb3e6Qzn/nO9+ZCy+8EGMMIRy8Jfbx4Dd/8ze5613vyjOf+Uw+9KEPzW/g7KsoCk4//XSe//znc/Ob33wDVikiInLkWWtYqDwL1UavRESubao1REREjg9XNO5uWPbj5fY1KBwLOTNtI5NZJ6gVOpYHBeMmzINU027vOL6QMsbAcBYymrRxfr4QE7smLZMmzDdirNWBJvUBrLWmY6UJLFNgkmFQOLyDkBLWGuqQyDnzzpc/n8994h9wRcHDn/MqTv7RW7JzrSORabtEWVgq24ermpjx3rJtoWDrqGCx8mwZlocV/BIRERERERHZ7DZFhfvZz34WYwxra2tX+tq73vWuGGO48Y1vzFe+8pVD/h45H6Rl9nHotNNO4+/+7u/YsWMHn/jEJ/jud7/L7t272bp1Kze60Y24053uxNLS0kYvU0REjnMpZXV4EpEjQrWGiIjI8eHKxt0djDX9BgrvDCvTQNMlahcZFI5JE9kysjSzsXX1rGtU5S3jJlDPvkcTInUb2TPtaGP/XBsidUisTDsyMG0jIcLQOyZt4Du7poSU2TYqaGPCYGi7yPvf+FL+5QPvwljL4577Cm52hzuxVgemIVF5Q0yJynm8gzokKu84aaniBttGWGPYNirws9Hghxr8EhEREREREdnsNkUw6nDlnHXz4Wo64YQTuN/97rfRyxAREdlPFxOTJtKEflf2fjJE8nwneOUdo8rpYr6IHFGqNURERDafKxp3dygq7xiVmUkbmbZ9MKoJkZQ8afa+IKX+YxcTs/wTa03fmWraRbqUKb2jixFrLZaMt5acM4sDx9qsu1QXYRoiF69McdbgHDhr+ej5b+Rj734LAA94ygu5yU/9PDlByhlnIcSMNZaVumP7QknhDaeeNOS6ywvzn9dfpjY6lOCXiIiIiIiIyGZ3TAajjFGHCBERkWPNWhPmoy+gH1VRh0hK+3SMsoaBd5TeUodIHSILldcYCBE5YlRriIiIbD6XN+7ucAxLx7SLhJRpQ6L0szF6s7x0zv24vC5A4e08FBXSrDvVwDPtEjmDt4ZhYRlVFZM2ElJiUBgmbWZYOHKGSRfZsVZTWMen/+GdfODsVwBw/yc8izvc4/6s1gFrIMR+3F4X+w5RI+/YtlBx8mI5D0UNC8fCFdREVxT8UideERERERER2ex0l1BERESOenumHXW3d/TF+g2JA8RM06XZjQbHoHSMm0DKmeVBcS2vWkREREREjgYHG3dnDzPsbI2hdP3ovDpESt9/bgww26hRd4nCG5qwd1xf4RzeZpqQaGfff6H01F0k5kzdBjCGExYrJjsmtDHjvGXgLV3I/M+//B0feMOLAPjZBz2OW9/zDKyDZV8QYyIXhrqLlM6ybVSyNPQsDz0nLQ+AvlPUFYWi1l1e8OtQjhURERERERE5mqkfsoiIiBzV1powD0Wt1B2rTZjv8h4UlqWBZ8uwYGngGRQWYyCkzGoTWKk7AKZtZG2fblMiIiIiInL8uOy4u6s6brv0dr/zpJz3BqwMtLHv3FTPxuJVxd7v087CWYOi73CbydRdpA39uWKEUeUx1uKBxdLx/S/8Cx/4i+dAztzuXg/h7g9/EiFn6iYSY6IqHLMlccJCyQlLFc5atgwKlgYF20bFIQeb1oNfsDdAth4oExEREREREdnMtOVHREREjlpdTPPxeSt1N991PSodw9IdsMt7UDgWcmbaRiZtv0t7hY7lQcG4CVTeXuWbICIiIiIisjntO+4OOOxuUevWD9v3fFVh6WKCDDlnJm3CAM5aDIac+/F9IfXPV7MkU0x9FykDTOtImyKj0lF5Bybz/S//F+98ydNIKXKbu92H+z3h9xmVnjT7PgZDGxMj31/e3TIqsAYWhwU3PHGBUXn4l33Xu2DtG/wSERERERER2ewUjBIREZGj1qTZOz5vPRS1PPT9zYLLYY1hofJ4Z1iZBpouUbvIoHBMmsiWkYJRIiIiIiLHk33H3cFVD/ysHzZvEmVgWLj5Zg5vDeM6Yg1sHfn5+O/1zkuF2zvCr4v9c4HENERSzCwPHcYbvvr5/+ac5z6Rrm24xU/fjUc840Uk6zEGFgqPNVAWloXSUXjLau2pSsu2Qcmocnh71WqegwW/RERERERERDY7BaNERETkqJRSppmNcJjORunNd1Afgso7RmVm0kambR+MakIkJY+1V22HuIiIiIiIbD7WGCK5rwNipouJQXFodcW+1sfhrdcT1hisNVTekXLfwXbXpKNNiZzTPFh02RF++waz2i4xbjssBmMLfvB/X+dtL/gNmumYH7vNT/HY572K4XBIExIDb9m2UFI6S+EtkzYwaRKlMyxXBYOy75B7JINfIiIiIiIiIpudWiaIiIjIUWnaRTL9zYeQcr8buzy8mxfD0mEMhJRpQyKzN2QlIiIiIiLHh/XxdYPZJosmpMMOD6WcaWddntbPs37eUeXIOVMVjsL3aaJxE5m0Yb/vsx40amPCOcvuccOuSUdOhtI7Lv7ud3jtMx/DZGU3N7jJLXj8C19HVQ0ovMHO6ppJG2hCZLHyOGMYlJaF0jMoHDFlKu/m3agO18GCXyIiIiIiIiKbnTpGiYiIyFFpfdxEPesaVXl72BfmrTGUztKERB0ipe8/X6iO+HJFREREROQotT7urvQWbw0hZaZtZFg46i7SxkTKfcckY+hH1TnLoHDzkNC0jeTcj8srvcXMzgt9J6iFyrNaB5aqfoReztB0iWkXqbuINWa+WWPPpGPXuGV1Njq89Ia1XTs45/cfw8qOizn5h3+UR7/g9RSjESElXDSQDVXpWBoUOGPIOVM4S46JougDWpXvu+M2IbGQ82HVT1cU/BIRERERERHZzBSMEhERkaPS+s7qy46dOFzrYaj181zVsRIiIiIiIrI5rY+7q0Mfhto1abl4pWPgHcVlwz8ZItDFyKTtN1dYC9O2Dw2td7GtvNtvRPfSoKCNCdsYFkuPMRBTog6ZGKFOkS5mRqVjZdqP2yuspSGSmjHnveA32HXRt9l68vV5zAvfxIknn8DQO3KGGDORRNPBuLFU3rJj3OKMofCWxdITc2ahcvsFvxaqQ7/0e0XBLxEREREREZHNTMEoEREROSqt55fWP17VMQ7rh132fCIiIiIicvwYVX0wKuZMHSJtSLShDydlmzH7dIwy1jBwDucMuyZt312qdGxbKBnMwkKjav/QUOUty4OClDLf31MDhm0LFWt1wBpYnWZyyuTcj/EbFZ6uS6Su5h0v/E0u/uZXWNp2Io/5ozeydOLJpJTpYh92akPEJUOXErsmDQulZ9tCSSQzmnV3Wh6WOGsYFo7VJjBpI971gbAr04Q+BAaXH/wSERERERER2aw2VTBqOp3y8Y9//Bp5rYiIiBxdjAHy3mDTVe30tH7Y+nmuYr5KRI5xqjVERESObYWzxJSZtJHFqqBpa1brQMgZM/v6vl1qd8WWlDOVd5TekmavA1io/AEdbdfH9W0dlbQxsVYHIFN4yxZXYo0lpERMmVHp+xF7dcNf/8nT+PaXPstoaZnfftlb2PZDP0IMYK0l5MSk6wNSDjMf/eesoXCG0juaLrFtVHLiYslqHRiUjjYlmi6xMg2MysywdAfdaJJy31lqPRRVFfZyg18iIiIiIiIim9WmCkZ973vf4253u9uVvi7nfMivFRERkaOTNYZI7ncpx0wX0/wi/eFoQz/yYn2381XtPCUixzbVGiIiIse2tSbgrGFQWC5Za8AYqtJhuoSxfTDKYkj0tUeXUr/JIiRKb1isCuousVBlFg8yom7fcX3LVYHBkFLGmUgbE8PSsVonpm0kkSFF3v2KZ/HV//wE1WDI01/2Fk680Y8BsFQ5jDF0MZIjOAyj0lEUjuVBQektORu6kHHWsDDog1rr61oeFKzQ0XSJSRuZdpHS2X5Enuk3j7Qh0cY030hSFX3HKzh48EtERERERERks9pUwSjob0RcEbPPzc4re+3BjhEREZGjQ+VtH4aa7YJuQmIh58MKNqWcaWMfjBr49ZEQusAvIgenWkNEROTY1MXEuAkAZMDN/j5vGRYMlh0p9eP1cuprCFt6MJmcoYv93/zVpuM6SwOsMXQxHTQ4tD6ub9+uTd5ZEnDSoMDN3hasTTve+rI/4L8+9kGcL3jCH76GG512G3Lu32M4a2hjovAWby2FtfMOTguVY9pEDBnnTF/nzN6WbF8oCSlTd5HlQUHtItM2ElKmCX1NdVneGoalm29CGZbuoMEvERERERERkc1q01S5h3rj4VBfd3WPERERkWvW+iiK0lu8NYTUj3lYOIyL9NM2knN/sb/0FjM7r4jIvlRriIiIHNsmTT8qrm4jTZcYlZ4TF0u6mFmddrQxkXLfSckYyGQKa6m8I+RE22UG3uJmXWgnTWTL6MBgVOEsC5Vn3IR516aUM/U0cclqw7QLTJvAW1/5R3zygndhrOVhv/dSfuhWd2DaBBYGBYWztKHfIOKMwTvDsPQYYFQ6locFC0VmpemIqa91gHmtY63BWcO4CQyKPvDUhkQdIinl+c9obR+qKvfZOLJQeYWiRERERERE5JizKSrd5z3veRu9BBEREbmW7TuKYlg4VpvApI141z9/ZZoQmbT9DZBhud4tys1H6omIgGoNERGRY11KmSb0dcG06z+WzhAThJgpC0fGzDrNZjKQMrQxY0gsDT2LZf942kYGhaMJkZT8QWuLxcoTU2at7iBDiAln++BS3Sb+9q2v4SPnnw3A/Z70fG5y+59nbRrIpacqEtAHspYGBVVhKWedqQaFm28SCaml7iKFtQxKR8r71zqLlafylkkTaUKk9Ha/ANS+DP2xo8ppfJ6IiIiIiIgckxSMEhERkaPWwUZRrEwDozIzLN1Bx+ql3N+wWA9FVYWdj4VYHz8hIrJOtYaIiMixbdpFMtCGNOtCG0jF3loixkzICTObR2cNGGsYOEfhLV3MpJxpusiw9LQhUXrLtLv8brbOmvnoutL33yvExHnnvJV3v+FPAfjFRz+d/3f3X2FQOGLKdCmxWnecvDTkxKVqHoiCfqPHqPR996kuslb3tY73/aaRnPMBtU7hLFtGlpQ80y7ShETK+3SMMobK23mXKREREREREZFj1aYIRomIiMjx6WCjKJouMWkj0y5Sun7nszH92Is2JNqYWJ9cVRWW5UEB9GMhtANaREREROT40oQEQB0iq02HwWCNoekidRcJ6SBjb2Om7RLeGgaFoyocMcFa0/VdnLylCYmF6sBD90w76lloKuXMJasNu8YdH7ng3Zz3Z2cBcPeH/gZ3eeCjsNkQI/OapnCOlDOTNtDNaqHhbITfat3R7VPrFN6yXF15rWOtYaHyB12riIiIiIiIyPFAwSgRERE5qq2Poqi7yPKgoHaRadvfwFjfhX1Z3hqGpZt3ihqWjsXL2c0tIiIiIiLHrjRLEq1NA22XWBx4VuqW1Wmkm43PK5ylcBZrwDuDs4YuZkLKrDWBNvVdotbqyLjuN22sn3dfa02gno3rW6k7do1b2pD473/9J1753KeSc+YXHvAI7v/Y36FuAyGDMX1Qa1B4Sm8YN4HCGZaXC8gw7RJ0e2sebw0UljJbjIVBYVmabQYRERERERERkQNtijuEzvU3NW984xvzla98ZYNXIyIiIte2LcMCZ/ubBIOiDzy1IVGHSEr7jIOwhoF3lH7vbumFyisUJSKXS7WGiIjIsSmlzLSL7Bq31F3ke7untDHyg7WaHPsxdKPSU/n9R3TH1IeprIW2y0zaSJ5mMECGSRsYVY4tg3K/79fFxLgJQB+KunStoe0SX/rMv3HWU36dGAJ3u/f9ecKz/pBEX9vknGeBq0CICWc919ky6EfrxcRi5ee1zvp4P+cMuycdmcy2UcnSoKDy6owrIiIiIiIicnk2xV3CPNuBlQ+yE0tERESOD4uVp/KWSRNpQqT0dr8A1L4MUHnHqHIanyciV0i1hoiIyLGli2leM2SYd32adoHdkw5MP7K7xJJSoHHgjJ2Hj/y8W1Q/ts4bQ8z9aD1jYGQ8O9ZaUoJBsbfmmDR9p6i67cNYbZf4zv9+gac99mE0Tc3P3O0ePPvFr6TLFj/rThVTxllD6S0r08Ck6de8ZVgQYsY7y6jc//LttO07Si0OCraOSgwwnHXKFREREREREZEDbYpgFPRtpUVEROT4VjjLlpElJc+0izQhkfI+HaOMofKWYeGwVu8dROTQqNa45uWc+frXv87nP/95/u///o+VlRVGoxHbt2/n1re+Nbe85S3n3btERESuqrUmzLs2AbQhsVZ3fHfnmF2Tjj3TQDawZdZRtqUfUVd5y6Bw1E2gCQlnLKXvR+pNZl1qp20i5YRZgmnr2DrM1CFSh8iwcDRhNkKv6Zi2kYv/70KedOaDmKytcevb/Qx//Oo3s3VpkXETaENiaVDM17pYFXhr2TPtMKbvWJXpx4kPCjcf80eG5B1Da1ga+NnaVfuIiIiIiIiIXJFNE4wSERERWWetYaHyLFQbvRIREbk8q6urvP/97+d973sf//RP/8Qll1xyua/dtm0bj3rUo3j605/OKaecci2uUkREjgUpZS5erVmZdqTcd21qQiRm2LFas6cJ1DFy6VpNSJluoaSsHQsDx1JVYE1/TJpNzKtDYGWasMYwrBwxJVabjsJbYsis1F3fLar0DErHjnFDTJnKO9bqwMXf+w6/9cgHsHvnDm56i9vwqrPfwfblJaDv7tSGROksnbe0ITFpA+Vsg8e064NYpXcMC8+wcCwOPNM2Mmkj1hqqog9yAYwqBYtFREREREREroiCUSIiIiIiInJEra6ucvLJJ1PX9SG9fteuXbz85S/nnHPO4U1vehO/8iu/cg2vUEREjgXrY/N2Ttp596XVpqPt+k5QbYjsGLesTgNrbf/1whusMZSFmY/Zc60h5sTSoMRaQ+oykUzK/Si+0vVjvCvvcLPjU06sNoE2JVLKdDH3oajvf5+nP/pB/OCi73HDH/0xXnXOO9m+bdt8zd5ZhqVj2kYWSg/0HaTakIg5E3PuA1Cmw1tDTH3nqPUOl1VhWR4UACxUXqPDRURERERERK6EglEiIsexlLLGkYmIiMgRF2M8IBR16qmncpe73IWb3vSmnHjiidR1zf/8z//w7ne/m0svvRSAnTt38qAHPYh3vetdCkeJiMgVWh+b18XEuAmEmNgxbpm2cfaKzLQNGPqOs3UTaGNmYTa6te0SGUNrIykZBqXle7unLFaOUeUZlZ4uJWLKNCFTeUvOEGJmoTQ0XWL3pMWa/rmto5Jvf+8Snv6Yh/B/37yQ61zvh3jZ2e/kutc5+YC1j0pPypmmSyyUnsIlmjbijMEAkzaQAYPBLhqchaVBwbB0805Rw9KxWOnSroiIiIiIiMiVUfUsInIcWt9V24RIvuwXM0Ty/OJy5R2jymkXqoiIiBy25eVlHv3oR/OoRz2KW93qVgd9zctf/nJ++7d/mze+8Y1AH6p6zGMew53udCdOPPHEa3O5IiKySeyZdtRdH4DaNe5YmbZM2sh41hXKmExMMA2J3dOWPZOO1ToyKPu6tg6JylucgZVxIBvogsVYw2oNi4OCQWmZrAV2jltCTJTekoGUEksDj3eWUelZrTv2TDtW1tZ4xm88jK9/5QtsP/Ek/vQt7+IGN7gB1hx8s9FiVWBNYNrGviPV0FJ4S0gZMjhjSWSqwjIsPdsWyvmxC5VXKEpERERERETkEKmCFhE5zqzvql3XhkQdIint0zHKGgbeUXpLHSJ1iLrwKiIiIofMe8+znvUsnv70p7N9+/YrfO1oNOINb3gD4/GY8847D+hH673mNa/huc997rWxXBER2UCH28l4rQnzUNSeScuucUMGmtAHjApnMMYw7SJdyEy6SJcy1maMgeVh0de/s/M1MRIzrNWB0cCzUGQuWa37TUO5/37eWQbGUsdI3UV2jzv2TAMnLkYwUNcNL3naY/jKf3+a0dIyZ732Hdzghj9ypRuMRqWndLZfa0xYYxiVjmFpMfQ//2JV4GzfSUobl0REREREREQOn6poEZHjyJ5pNw9F1W1k17hlz7Sj6RJdzISU6WLfzn/PtGPXuKWejSEYN4GVutvI5YuIiMgmsbi4yIte9KIrDUXt66UvfSlmn64af/d3f3dNLE1ERI4SXUzsmXRcutawNhuJF1Mm5UxMfRfjtSZw6VrDnklHF9O8szHAyqxTUwYKa1moPIPS4Z2lcJa6jXhnGLj+a9sWKwaFowmJ0cBTFRZnDUtDjyEzDZHd44ad45a1JrBSB5oY8Q66ELloz5S1acek6zcX5ZSZtJE944aXPvtJ/Ne/fJRyMOSpL30zW653YyZtxHLlo+m9sywNCraOSrw3FNZQWIs1BmcNhevDUicuVmwZFQpFiYiIiIiIiBymTdX6Yzqd8vGPf/wa/R53vvOdr9Hzi4hslH131a7UfRgK+p24le8vHFtjSLm/AN2EREiZ1SbQpsTyoGDaRqwx6hwlIiLHHNUaG+9617seP/7jP84Xv/hFAL7+9a9v8IpEROSaclU7GYeU8dZQt3G2wSexNChoYsQmQ0gJZy3trKaFfmRdkRI2wZ6mY9pGVqf9qLouJZyxYCCnTGdhaGDcdHjnIBhCgknbj6EfOUdhDRlwxuANvO7Fv8+n/78P4nzB4876c25w09sw7SLTLjBuO7b66pB/L85YFgcFVWFpusSWYR+Yctbs1zVLRERERERERA7dprqz/b3vfY+73e1u19j5jTGEEK78hSIim8xld9Wuh6L6Fv0Oa/a/wDooHAs5M20jk9kF5xU6lgcF4ybMg1QiIiLHCtUaR4fFxcX55+PxeANXIiIi15Q9026+aaduI9OuDzwdYNbN2FvDsHCUhWX3pKXylhD711fFLDjVhfkYPoCmjWQylbdYA9NxxFhLjJCBLiSKgaVrE8YbupD7kFQ27JkEUkpsXSyZRlgcOkalo/CWrcOCUVX0I/sKw5tf8Uf8w3vOw1rLr//By7np/7sTKWXanGlDYqUOLFYF/hDq57qL5NwHv/pwmGFYOYADanYREREREREROXSbKhiV80EukoiIyJWaNHsvOq+HopaHnsq7yz3GGsNC5fHOsDINNF2idpFB4Zg0kS0jBaNEROTYoVrj6PDNb35z/vl1r3vdjVuIiIhcI65OJ+NUZ6wxrNWBNiYWqr01bc7Qhj5UFFMm5IzBUHrLuIk0Xca7yEJlmY47xg1goOkSa01iXEdiSmAsXUhkEjElhoUjxowBBs6xOCgYeMeWUcF73vJq/ubc1wHwxD94CT/9i/dhddqRDRAya03AO8OkDSwPyyv8vbQhMZ2NsS8Ly7SNlM4xKvpLt5VX/S0iIiIiIiJyVW2qYJSIiBy+lDJN6C+wTmcXoEelu8JQ1L4q7xiVmUkbmbZ9MKoJkZS8WvmLiIjIEfOJT3yCH/zgB/PHP/3TP72BqxERkSPt6nYyXq0Dtp96R9MllgYeTB+EMqY/v7V9sAmg8oZ6Nm6vKgyTJmKNJWXDNASmawFLPxYPk2lDxplIAirrmLSZFCPeWYaloyORZp2t/uk97+CcV/4xAL/21D/gzvf5VULMLAw8XUw4AyFkxk3kktWGUeXx9sBwU8qZuovzUFRVWHLug16LVd8NywDD4tDqdxERERERERE50KYKRm3fvp3f+q3f2uhliIhsKtMukul3oIbZBeNheXgXVYelm483aEOi9JZpF1moNtWfERERkculWmPj/cmf/Ml+j3/1V391g1YiIiLXhEPtZLweFmpDIuW+q2NMiZVpizUG5wyFtcSUKZwhAsYa8qzLVJ6FlwyGLkYKb1mddZkqXKawZhawsqQQWe0iIfbf01qDt4ZxCpQp0jhL6R2DwrFUepqY+J9/fB+vfuHvAfDw3/htHvzoJ7JzrSXlzKhy1C14Z/v1pMzuaYfbNebEhSGFNxgMmUwXMm1M866VVWEpXb/WYelYGhb9895pU5KIiIiIiIjI1bCp7mhv376d5z3veRu9DBGRTaWZ7ZatZ12jKm8P2Il7ZawxlM7ShEQdIqXvP1+ojvhyRURENoRqjY31l3/5l7z//e+fP77NbW7D/e53vyN2/h/84Adccsklh3XM1772tSP2/UVEjneH0sk4xMSkjbOw0P7HO2tx1jJpA9NxZMuwYKF0DBccXcwMnCPTd40yQEyZRMYYQxciKWVK34epvIOBd0y6QB0SbUjE3B8TEhibiUA0MACMMcSUaEPm2//5MV531tPIOXP6GY/mMU/5PWLuR/flnFkoPYW1jJvAoPRM20hMmd3jiLftQetxbw3lrFPUah0YFI5tCyWDWZeoUaVuUSIiIiIiIiJXx6YKRomIyOFLsyvK6y3/C3dg+/5DsR6GWj9PuuyVahERAWDnzp1s3759o5chsml84Qtf4HGPe9z8sfeeN77xjdiDjBy6ql7zmtdw1llnHbHziYjI4bmyTsbjJjCZjZODPiRVzwJNOYMxEGedo2KCSRvZNe2oCos1lsJbvDW0MdPFTBMSpTNkEl1KFN4QIjQx0sXMpA3kDIV3+JDJOWGNwRjAWkxKGGuonMM5QxMyX/7sp3j783+LGAN3/qXT+c1n/+EseJXwFlIyxAxbRgWj0rLaRJYHBVhou0jK/bq9NZTe4iyU3pEzTNtIzv3vZNtC2R8HLFT+KtfwIiIiIiIiItJTZS0icoxbzy+tfzzcblHr1g+77PlERGSv97///dzkJjfh7W9/+0YvRWRTuOiii7j3ve/N2tra/LkXv/jF/ORP/uQGrkpERI60K+pkvFp381BUEyJ7Ji17ph1Nl+hiJqQ+7JRiou4y0y6w1ga6mFmtA13sz73eYanvdNx/fb1wLZyljX0oa9JFYuw7RDVdmj9feoczlpT6EXjTNjLuAqWzjL/zVc77w9+iaxtu9dN347F/8FLaCN1sBJ+3lqqw5JQpnOXEpQEnLJUUzrBUFSwPS7YMPIuVZ1A4rDHkbOY/Y+kcJyyUXGd5MA9FDUvHosbXi4iIiIiIiFxtqq5FRI5xxgB5b7DpqnZ6Wj9s/TxXMV8lInJMatuW3/u93+MVr3gFAG9+85t52MMehtH/LEUu186dO/nFX/xFvvWtb82fe9zjHsfTnva0DVyViIhcEy6vk/G4CdRdH2xaa/owFPTj60pvKZzBGkPKmUxm0iXqYJjWgT2uZXE2Zm7SBpaGnmmIUEcmbaTrEkVhIUPKCW8NKWVWpy116ENTXcgYa2i6SM6GLgYAMobC9sfuuehbvOeFT6CZrPEjt7wdD3nmy9lVJ/bUKywNyn70fGFw1pKBYeFIGbYNK5bKhLWGEDMLlaPp+k5YOWfAUHnLsHKMCk/p9+5fXai8QlEiIiIiIiIiR4gqbBGRY5w1hkjGWgMx08U030l7ONrZDl9rzfy8IiICF154IQ9+8IP59Kc/DcBTn/pUXvziFysUJXIFVlZWuOc978n//M//zJ972MMexmtf+9pr5Ps98YlP5EEPetBhHfO1r32N008//RpZj4jI8eZgnYxDTPNOUfuGooalm3dV2lex0Hd9iinRzTo97Ry3bF+oaGPCGcNS5Rk3ATc1rDaROO0YFJYErE5b9kwDky7ThsjAW4w1FBaSd7QxUeBIs4UW3jDddTF/97InMlnZxXV/9Me53+++gpVgSNOuD2zRccJCBdmw1kS2Dvs1dzFROMvCwDMsHCFmRqXjirYpGaDyjlHlND5PRERERERE5AhSMEpE5BhXeduHoXy/O7UJiYWcDyvYlHKmXR9P4N38vCIix7vzzz+fxz72saysrLBt2zbOOecc7nvf+270skSOamtra/zSL/0S//Ef/zF/7oEPfCBvfetbsfaaeX9x8sknc/LJJ18j5xYRkSt3sE7G652imhDnoailQbFf56R9WWOonGVQOLYuQtMl1urAat2yNChpY6RwlqF3bBkWrNaBtSbgTMFK3bF7GlipWwwwKiylc0xCwpBxFipjsWSs6ztF7d55KR9/xVMY7/wB2653Ix70rL/AVqM+xNUmlkcFhsi2YaZOicJavHPsmrSknBmVnoHvQ07bRn1AatpFmpD6Dliz34c1s85RhZtvRBIRERERERGRI0d3tWfW1tZ405vetNHLEBE54oaFwwClt3hryBmms125h2raRnIGb/txBmZ2XhGR49V0OuUJT3gCD37wg1lZWeGOd7wjn/3sZxWKkoNSrbHXZDLh3ve+N//yL/8yf+6+970v5513Hs7pvYWIyLFqfWPOevCnCXG++aae1afD0l1uKGqdm51naVCwNPAYYMdax6QNFM6ydaEgk/tOTWUfotpdt+yetLPv4XG2D0WlDCZBHRIJQ86ZJmXaLhHbNf7l1U9n7ZLvsHjCdbn/s16LHW2lsAaywVhwru/ytDrtqNtITBnINCERYqbp4n71s7WGhcqzfaHkxMWKk5YqTlys2L5QslB5haJEREREREREriHHfTDqk5/8JI9+9KM55ZRTePzjH7/RyxEROeKsNVSzLk/rYaZJG2nCoYWjmhDn4w2G5Xq3KO1kFZHj15e//GXucIc78LrXvQ5jDM9+9rP56Ec/yg//8A9v9NLkKKNaY3/T6ZT73Oc+fPzjH58/90u/9Eu8613voiiKDVyZiIhc09Y7Dq93IF6ZBmLKhJgIKWOMudKR7ylnEjAoHAPn2DYqGVWOkBKrdWDXuKXrMttGJSlnDNB2iXGTiLk/fr1rVZcSbQxgMpV3DL3tA1PWYlLLR175u+z+zv9SLW/nTk9+OdXWE/HWMKo8ywNP5SzeWBYGfZirXK+1m8CuSdcHvAyMm6D6WURERERERGSDbZpRejnnI3auiy++mLe+9a285S1v4atf/er8/OYwxkqJiGwmo8pRh8igdLQp0XSJlWlgVGaGpTvoWL2UM9N2byiqKuz8QvWoUkcHETk+nXvuuTzhCU9gMplw8skn87a3vY173OMeG70suZpUa1zzmqbh9NNP55/+6Z/mz9397nfnPe95D2VZbuDKRETk2jAsHOMmzDsZr4+TS7O/waW3Vzruve76TsZLlcc5Q9slTlocsGvSsHvSUjrLWhMw9IGkLvZj8goDLf04+XHX0cXMqHBUVUGMmZQTMWUqZ+m6ho+/7ve59GufoxguctvHvgSWT+HS1YaTlwZYMktDT8qwMHBU3uK9xTtDaS3jNlI4Q8r9hqJJG7nuluP7PYCIiIiIiIjIRtsUwahvfOMbAFdrF3FKiQsuuIA3v/nNfOADHyDGOL8BcrzfpBCRY1/hLAuVZ9wElgcFK3Q0XWLSRqZdpHS2b/FvIGdoQ6KNifX7xFVhWR70/w9eqDyFO+4bDorIcWZtbY0nPelJvPWtbwXg537u53jHO97Bda973Q1emVxdqjWueW3b8oAHPIAPfehD8+fudre78bd/+7cMBoMNXJmIiFxb1jsZ1yEyLBw5Z6ZtH46yxlC4K/572YY4Hwk/KB3OGGLMTLtIzH0nqkHh6HKitJbCWry1tCnjnWGLK+hipouequjP17URjJl3dwox8M9vfgEXfeHfcEXFT/z6H7N0vVNx1pCBZDJrTWLgDc5l1urItIksD0sKb1hY9IyAqnSz8Fdk26ikCxmUARYRERERERHZMJsiGHXDG97wKh/7v//7v7z5zW/mbW97G9///veBvTu2jTHknMk5c4c73IEzzjjjSC1ZROSos1h5YsrUXWR5UFC7/sJySJkmJJqQDjjGW8OwdPNOUcPSsVhtij8dIiJHzOc+9zke/OAH8+UvfxlrLWeddRbPetazcE7d844FqjWuWSEEHvKQh3DBBRfMn7vTne7E+9//fobD4QauTERErm37djIuvWXaRsZNxDvD4uDgdWbKfQ27HooqC0tMmbU2sGVYUDg763TcAf3f4LIwZAOLw4KtXeTi1Yami4xKz/KgYE/dEVOmcJZB6RkVjroL/NNbX8r//ec/YZ3n9r/+R1Q/9ONM24TBULjMyrQlxUwcFpgOQgosDRxbRiUD7/DGcOLW4fxny/Qbi5oQSclrnJ6IiIiIiIjIBjkm725Pp1POP/983vzmN/PJT34SOHA8Rs6Z0047jTPOOIOHPvSh3OhGN9qAlYqIXLu2DAucNYybwKDoA09tSNQhklImZzCm38078P3F6nULlVcoSkSOKzln3vCGN/CUpzyFpmm43vWux1/+5V9y5zvfeaOXJhtItcahizHy8Ic/nPe+973z5+54xzvygQ98gIWFhQ1cmYiIXJtS6js7NSFRd5FxE4gp08T+sY2wa2xYqHzfyRjI9J2Mu306GZdF/7VpGxmWjphyf66cKb0jpEwd+0DS7rWW1SayVgdCSIwqhyWz1kaYdZEalJ5to75j5L/81Wv48sf+FmMsP/vY53PCabdnXHfUqV+Hd/2IvLXcUXrLsHQU1jCc1c3DynHS8oCFypNyxtB3sWpD6oNSXWRB9bSIiIiIiIjIhjimKvJPfepTnH322bzzne9kdXUVOHDH9mg04slPfjJnnHEGt7jFLTZ4xSIi177FylN5y6SJNCFSertfAGpfBqi8Y1Q5jc8TkePKnj17eNzjHsf5558PwL3udS/e+ta3cuKJJ27wymSjqNY4PDlnHv3oR/POd75z/twd7nAHPvjBD7K4uLiBKxMRkWtLF9O87lyPEA8KRxsTKUPlLIU3rE4jKXVYY2gvp5PxoHR0IbFn2mGtoZ5Emi6xWrdM28So9JywWLJ1VLI48KzVgUjNnkkflgp1xtp+TaOqwFqDmSWw/u1vzubf/uYcAH7mzGdy/dvejRgyWxcqmi5Qd/0OopQhZqhKy6BwOGfZMqxw1lA6y+Is2DUsHdN2FgSb1dxNSCxU19qvXkRERERERET2semDUTt27ODcc8/lzW9+M1/60peAvTco1nduO+cIIQBwvetdjxe96EUbtl4RkaNB4SxbRpaU/Hznbsr7dIwyhspbhoVTu38ROe78x3/8Bw95yEO48MIL8d7z4he/mKc+9alYq4Do8Ua1xlX3iU98gnPPPXe/57797W/zEz/xE4d1no997GNc//rXP5JLExGRa8FaExg3Yf74gE7FwLgNDLwjDyDGzLgLjArHwDuMAWMNA9d/vlZ37Bi3VIWji4k2JCZtYNxECm8pvWGtCYTY/302JlN5Szf7ux1SIsVMGxPeWSpj6WLmP//+fD7+9lcB8NMPeTI3vfP9MAai64tjZwyGiLWGpYFnVDqWqpKYEs4ass1sGxYslJ6lgaeajaGPvh9Zn1K/nnSZ7pIiIiIiIiIicu3ZlMGonDN///d/z9lnn8373/9+uq6bP2+MmX9+y1vekjPPPJMzzjiD613vevOviYhIz9p+XIF2roqI9O8fX/nKV/KMZzyDruu40Y1uxF/91V/xUz/1Uxu9NLkWqdY4MmKMBzz3ve9977DPs/77FxGRzWPPtKPu+r8DdRuZdpGQ9g8GLQ48ddd/rW4izhsKa/HW4p2dj52btIG6i7QhsTQomHaR3dOOaROIKZESdLEPYFnTd4HqJokmJMj04aWUaLqEt5ahd6ScSSnxxU/8Ax9/60sAuNW9z+Tmv/gwrIHKW5qUiSFgrcEVBpPBmtmI+YFj4EsGpWNpUDCsPEtDTxPSPBi1/rZgPQ+lXJSIiIiIiIjIxtlUwahvfOMbnH322Zxzzjnzi+qX3bF94okncsYZZ3DmmWdym9vcZgNXKyIiIiKbxY4dO3j0ox/N+973PgDuf//78+Y3v5mtW7du7MLkWqNaQ0RE5Opba8I8FLVSdzRdPxrPzAJHhbNYYwgxMZ4Gpl3EuT5MtVoHTlgsGUWPtczG1cLysODSlYa1tuOS1ZbVuiWERMyGJkacNTRdYnHg2TosGFWemDLjJrBYefZMHNOQSTkzKEsKC1/+j4/z0Tc+D3LmZnd7ALd7wBMYeEsGQoYYEzkbKm+wtg9tDQvH0HtKZ1kaFAwKi59978o72lmHKGvNPAi1HpBSflpERERERERk42yKYNQ73vEOzj77bD72sY+Rc57fmFhXFAW//Mu/zJlnnskv/dIv4f2m+LFERERE5CjwyU9+koc85CF85zvfoSxLXvGKV/CEJzxBHYCOE6o1rhl3vetdD/hdiojIsa2LaT4+b99Q1Kh0DEuHNYYuJqZt3wFqWDlG0eGsoYvQpcS4iVTecelay1LpWBwUXLra8IPVhjpEVpuWcZsYFpYYEqWzOGvB9N2hxk3E2D6E5Waj8LYOPTkl6phIKfK9r32Ov3/VM0kxctOfuSd3+bVnUHpLVTjaLpEB4y1dyGAyW0pPyBmLwTmDoX+PuDQsqLuINYYYM9Yb6i4yqjxt6H/29dH0Vu8rRURERERERDbMpriq/4hHPGK/ndrrbne723HmmWfy0Ic+lG3btm3Q6kRERERkM0op8ZKXvITnPOc5xBi5yU1uwvnnn69OQMcZ1RoiIiJHxqTZOz5vPRS1PPRUvh8vN24Ck3bvqNWcIdN3ZxoUlsm4Y9JGUkrEDOPSE3ZP2TPpcM7QhsS0i+QMdRcJMVN5x6h0LA89hbM0IbFrnCicofCWlMFYQ+kdhXNc8s0v854/fgqxazj1J36WX3jc88nWYoxh4B3DwtGERB0MKUdiylhjKI2hdH0kKpPxrn99iJlBYaljpPCWNiYGOdPG/ucfzH72yttr7x9CRERERERERPazKYJR64wxXPe61+XMM8/kkY98JDe72c02ekkiIiIisgldfPHFPOIRj+DDH/4wAA972MN47Wtfy9LS0gavTDaKag0REZGrJs3G1n1/pSblzO5xS8yZhcoRoyPZzFob5mGppot9sCllnDEY04+rWxwUrNaBS9caSufYudrgvGHaRKqy7+A0qSOD0pEzFN7incE7Q8oQInhjCDn34aY2MiosqzUUzrLjom/wt3/yW7TTNa7/47fl9Ke9lMFg0IejZ92sQsy0IeMs2JxxzoEB7yxkQ+H6kNVC2V9S3TL0xAQ59QHrlGHa9uEtbw2ltxhgWLiN+ucREREREREROe5tqu1KOWd2797NN7/5Tb71rW9pNIOIiIiIHLaPfOQj3OY2t+HDH/4ww+GQs88+m7e97W0KRR3nVGuIiIgcni4m9kw6Ll1ruHTc0MVE00XamEgZnLWM28h3dk24dLUhxMRq07FSd6w1gbWmow6RqrBUzlE4i7fgrSXkxGoTmLYRDLQhU3eBQelYqjzDsu8UddJiyVJVYICYEyFnUu67PDUhgTFU3rJ66UW8+w9/k+nKLq7zIz/Or/zun+GKAU1IJKB0jtJ5BqVjVFm8NxTekYAU+85WZWlYGHhGhes7TBWO0Swgtf62oenSvCvWsFzvFuXmI/VERERERERE5Nq3aYJROWeMMdR1zTvf+U7uda97cYMb3IBnPOMZfP7zn9/o5YmIiIjIUS6EwHOf+1zufve78/3vf5/TTjuNT3/60zzqUY/CGN2sOp6p1hARETk8a01g57ilDpEMrNWB1abjktWG1WlH0wXGbWDa9uPz2pD4v10Tvrdrysq0IwOj0jPwDm8to8qxbVRSOEdMmfE0YK2hjQlnLcOyf91C2YeMRqVn+0LF8qhkVDkWB36/cXV1Gxl4RxsSplnhr1/0RFZ3fJ9t17sRD33ua1heXqbwlmHhSDlTFoaloWfrqGChLCAZCudYHjiGpSXGzFJVMPB9aGp54FmoPOsx6kxm0vZhL4CqsAxmXaJGlbpFiYiIiIiIiGykTRGM+vd//3ce97jHsbS0RM55/t9FF13En/7pn3LrW9+a2972trzqVa/ikksu2ejlioiIiMhR5rvf/S4///M/zwtf+EJyzjz2sY/l3//937n5zW++0UuTDaZaQ0RE5PDsmXaMmwD0AaRd45Y90462SzSh79oEhrZLXLLasjrtuHSlZue4Za0JGNOPtpt2idU6zP+rQ2LgDYWzWGf7sXZdIudM5fsOURZL5fqg1KDYe1nTrndwKhzWmFnHKgj1Gm941mPZ+b1vsXzidfmVZ72aanErbej/3g8rz9KgoPQGY6BLGe8NWxcLTlquOHlpSOFt3yUKS8j9WLxh1Yeu1urAuAmszLpbWdOHopYHBQALladwm+Lyq4iIiIiIiMgxa1NU5j/5kz/J6173Oi666CLOOecc7nznO8+/tn7j4r//+7956lOfyg1ucAPue9/78td//de0bbuBqxYRERGRo8EFF1zArW99az7+8Y+zuLjIeeedxxve8AZGo9FGL02OAqo1REREDt1aE6i7flTcSt2x2gRCyjALBI0qx1JVsDT0lN4QUmKlCVy82jJpI9YYVqaBS1Zr2hAJKc3/a0NkTx1YayOkzLBwLA9Klof9+LrlYYF1hi4l0qzb42UV3lJ5S+EN4/GEtzzviXzvwi+xuPUEfu0P38RJ170epbd414epAEKEmGBQWJaqgq3DklOWhyxVniZEKu85ZeuAE5cLlqoCZy2TJrJn2rJ72tLGRGUd3pq+i9UsFDUsHYuVv/b+cURERERERETkoDZFMGrdcDjkkY98JB/96Ef56le/yjOf+UxOOeUUoL9pAdB1HRdccAEPfvCDOeWUU3jiE5/Iv/7rv27kskVERERkA7Rty+/+7u/yy7/8y+zYsYPb3va2fOYzn+GhD33oRi9NjkKqNURERK5YF9O8U9RK3dF0CYBR2Y/BG5UecmbaBSZNZK3pR+mN645pCKzWHat1R8yZJiS8NSyUnsXKs1B6SmdpQyamxKQNTEOYhZwcky6AMdjZOrqY5n+fL6v0lth1vPGs3+Jr//NphotLPP5Fb+L6N/xRhmXfwalwjsXKsWXoWR56lgcFC5XnussV19lSMSgd3hmWhgUnL1ecuDTghIWKExdLtg77tcaU8cYyKj0nLJZsHZVsGe7tFLUekBIRERERERGRjWXy5V1F2CRSSlxwwQWcffbZXHDBBYQQ9vv6vrvHcs7c+MY35qtf/eq1vUy5hnzhC1/gFre4xfzx5z//eU477bQNXJGIiIgcDb75zW/ykIc8hE996lMAPPnJT+ZP/uRPqKpqg1cmm4lqjeObag0Rkf3tmXTUIVK3kdVZQGp56HHGcNGeKZM2sdZ0tCFRekcIkV3Tjmkb2TNpmXaJhcpx0lLF8rCg8gd2VPrq91fYsdZy6aSBBFsXSq6zVLFWB7yzVIVlrQ0Urh9Xtx5E2leMkT/5vSfx7x/5O8pqwDNeeS4n3fhWLFYFTUjsXKv7kXnWUPm+s1U1G3fnfR94yrkPWA0Kx9KgwBlw1rBtoQ+AtSGyWve/g8WBp/KOge9/tlHlND5PRERERERE5Ciy6at0ay33uc99eO9738t3vvMdXvziF3PTm950v9fsm/365je/yS//8i9z3nnnMZlMru3lblr//d//TVEUGGPm/931rnfd6GWJiIiIHODd7343t7nNbfjUpz7F1q1bee9738srX/lKhaLksKnWEBER6aWUaUI/Qm86G6U3Kh0hZnZNOjL930RnDJMmsmvccvFKw7gOrExbupQYFn0XpkkTaUMixH4kHkBMmdW6Y6UOZAMD70lAzJmYMtYZJl2gjQlyv57VOjBpw/wczNbwhj/+ff79I3+H8wWPOevPufEtf5LFqmB5WHCd5YrrLA84eWHAlmFByomUMmttZE8T2DPtIGcWKseWUdGHuAaeExYrTj1pkRMWS7qQ+rGA1jCs+nDXQuX4oe1DtowKhaJEREREREREjjLHVKV+8skn84xnPIMvfelL/PM//zNnnnkmo9EI6C+MGGOIMfLBD36QRzziEZx88sk89KEP5f3vf/8Bu79lrxgjv/7rv67fkYiIiBzV6rrmSU96Eg984APZs2cPd7jDHfjsZz/L6aefvtFLk2OAag0RETmeTbtIhj7QlDLGQEh9QGjdWh2YdpGUM22MrNYddRfZOe7YPe5mI/YSa3Vg11rLWhNoQ2LaRVbqjrUmYEw/Zq+LkWkd2L3WcNGeKbunHSH1QanKO2KCpous1WEekGpD4q2v/GM+9J53YIzhQU9/MTf7yTsDcMJCyQ9vH2GNYXFQ8MMnjLj5KVs59cRFrr91yA22Djl5qWJ5WLJQFYzKvgMUgLd9ZyyAuksU3rJ1VHLdLQNuuH2BraOSk5YGVIW71v9dREREREREROTKHVPBqH3d8Y535C1veQsXXXQRr3/96/mpn/opcs7zHd05ZyaTCeeffz6nn34617nOdXj84x+/was+Or3iFa/g05/+9EYvQ0RERORyffWrX+Wnf/qnefWrXw3AM5/5TD7+8Y9zwxvecINXJsci1RoiInK8aUICoJ51jYop0Yb+795a0zFpIhgwwKC0tCFTh9h3eAKSAWvouy2FyFob2TVp+eala4ybwLSNXLLasGcSaEIkxIyxMO0Sl45bdq91rExavr97yq5xw6iwWAurTSDETBczf/2WV/O3574WgAc++fnc5k6/xMBZFgrHtlGJt4aTFiuuv23I8qig8JYbbB/xQycucMrWIaeeuMiNThixdVjgncMaw9A7FqqiD2KFRM7grWFp4Fke9GP8huWBIwFFRERERERE5Ohh8r6zH45xX/ziF3nTm97E29/+di699FIAjDHzGxjru7xlrwsvvJBb3vKWTCYTTjrpJFJK7NixA4C73OUufPSjH93Q9X3hC1/gFre4xfzx5z//eU477bQNXJGIiIhc297xjnfw+Mc/nvF4zEknncS5557LPe95z41elhxnVGsce1RriIjsdelaQ0yZ3ZOWaRvnnZvWmo6m68NPpbPsmrbUXeSi3TWXrjWsNX3XKJsNVWH7v4c5szgoWKo8XUwMC8taG7HG0HSJaRdYawJ5Nr6vTYnCGkZFyaC0xJQZlp4tA8+gdBTO8KkPnM+5L3sOAL/yuGdw5wc+imHpWBqU/esKz9LQMyo9VWFZLD2TNmCtmY3x68NZzkLlHVVhsdZAhpzBGLDWMPCO0u/dZ7pQeYWiRERERERERI5yx2zHqIO5+c1vzstf/nK++93vcv7553PPe94TY8xGL+uo9rjHPY7JZALAy1/+chYXFzd4RSIiIiK98XjMYx7zGB7+8IczHo+5613vymc/+1mFomRDqNYQEZFj2fq2ypz7cXIWQxPiPBS1NCiIOVG3ibUmEmIihtR3g2oie+rA7knHrnE/Gu/rF6/y1Yv28H87x3xjx5TVacfatCPljCHjjCECdejPOW4STexH5hXOQM7smnZcutrwyX/4O972p88F4BfP+A1+6YzH4pzFWUtKmQSMSjcPRS0PCqw1XGfLkB85cZEbn7zET/zwNm73I9u52XW3cL2tQ7YvVGwdlmwdlWxb6D8uDwpKb/uuWN6xfaFUKEpERERERERkEziuglHriqLggQ98IB/4wAf45je/yVlnncWNbnSjjV7WUefss8/mIx/5CAC/8Au/wMMf/vANXpGIiIhI7/Of/zy3v/3tOfvsszHG8PznP59//Md/5HrXu95GL02Oc6o1RETkWLSe9c1k2phIZOq274Q4LB2rdculay3WQhsjq3VHmxJtF2liokuRSReoQyQnWGsCPxh3s/F5Lat1x7jrg09NoA8/Ac4YcoYQM9M2stYEJm1kZdoRQubr//UJ/uplzyTnzJ3uewa//OinUoeEMwYDbF8s2TIs2TIqrnT8XeEsW0YFJy5WLFaewlmcNVhjcNZQuP+fvTuPl/yq6/z/Ost3qaq7dHdWIGAiDKiEXYKAAhMmiOKMMCjC4LBJQAEJmyBCCKCiIAwYQQJEGGBQRBB3BYYRA/4QlD1E2QmEkKW7b997a/l+v2f7/XGqqm863UnvfW/yeT4eeXR1961vfau+Velz6rzP56NZqCwnL1Qs9wsKc6v8WlUIIYQQQgghhNhybvUz+DPOOIMLL7yQb37zm3zkIx850aezaVx77bW84AUvAKCuay655JITfEZCCCGEEJBS4tJLL+W+970vV1xxBbe5zW346Ec/ykUXXYQx5kSfnhA3IHMNIYQQtxgJxq1n16hjddxxzZ6G3aOOYevYM+7YNeoA2NN0ufpTF0hAYQ1KK0gK52G9zeEnFyMuBBoXWR13rI4dE5doXUAz7V2nciDKaMVSzzIoLaUxhARdiFzx+U/xZ695HjF47vagn+Ixv3ohC7WhNAaNYlAZjFEMSsP2QUld5LHioNobkNofrRWDyrJjUHLyQsUpixUnL1TsGJQMKptb7AkhhBBCCCGEEGLLkHrPG5x77rkn+hQ2jWc961msrKwAcOGFF3LHO97xBJ+REEIIIW7t1tbWePrTn8573/teAB7+8Ifzzne+k1NPPfUEn5kQN0/mGkIIIbYiFyLjNjBsHaMuEEMipMSw9VSFhgh7xp4QI6MmsNY4IolttWXcBawyqOQxOre0Cx5iTPgYUSiCSrQhEVNCG9BlSSISPBQo+pXB+URdGgaVZaE0pAT/fvmX+L+//3x813L7ezyQhz79Iq4fOXxULA8KlnslJw0qAIxWrIw6FquCkxZL+qV8HSqEEEIIIYQQQtyabJlvAmKMXH755fPfLy4uctZZZx328b71rW+xvr4+//3d7nY3lJIdXwB/+Zd/yfvf/34A7nrXu/Jrv/ZrJ/iMhBBCCHFr99nPfpbHPOYxfOMb38AYw6te9Spe8IIXoPWtvgCqOApkriGEEELc2LD1jFoPQFUYVsaOsQ9MusD6xLE2AXSi8wnnIruGDW1ILPcLNIqQEgs9g4uGxiUGBVgFk87TeE0bIjolrNF0IdK6RBs6Kq1Y7uWKTgtlge0pYgKFoguwds2V/O3v/SpuMuKUO92DHz//t2iCpnSeFaAuDLFMrE0c2/oFvdKwVBdorVhvPDFxozZ6QgghhBBCCCGEuOXaMitJl1xyCfe61724173uxX3ucx++9rWvHdHxvvrVr3Lve997fsx3vOMdR+lMt7bV1VWe8YxnAKCU4i1veQtFceDy4kIIIYQQx1JKiYsvvpj73//+fOMb3+AOd7gDH//4x3nhC18ooShx1MhcQwghhLih1Ymbh6KaLrA6drQu0rlIAtY7z/dXG3atOa5fbbhqZczOkSMEWB07rl2bMGw8nQ/UlWVQGUqrOXmx5uTlPtsHJb3CgFIoIEUYdYEUEj4ltMot77RRVKVhW7+gtprJ7mt490VPY7y2wkk/cBd+/BmvpsOy3jgaH1moChZ6Bms11miqwuBCYnXiaLoAwKj1rDXuxL24QgghhBBCCCGEOK62xGrSaDTila98JSklAF760pfysIc97IiO+ZM/+ZO89KUvJaVESomXvexltG17NE53S3vhC1/I1VdfDcD555/PAx/4wBN8RkIIIYS4tdq9ezf//b//dy644AK6ruORj3wkn/vc57j//e9/ok9N3ILIXEMIIYS4oWHraVwOEa01jvXW42OiV2pSShRGUVpFiIFd45Zdo47do46m84w6l0NKIeF8ZOQCw2mVJms0WikKpeiVhspqCq3QSmOMhpgwWtGzhhABBYVRpBQprEZ3a7zn5U9nbec17Ljtmfy3F/4BC4uLGKPQRhNzWSlGbWCxMpy6VBETjFqHj4n1DYGoSRcYToNfQgghhBBCCCGEuGXbEnWj3/e+93HdddehlOIOd7gDL3nJS47KcV/ykpfwzne+kyuvvJLvf//7vP/97+fxj3/8UTn2VnTZZZfxtre9DYDTTjuNV7/61cf18a+77jquv/76Q7rP17/+9WN0NkIIIYQ4kT75yU/y2Mc+lu985zuUZclrX/tanvWsZ0k7MnHUyVxDCCGE2MuFOK8UtdbkKlEA/dLgo2JQWSbDls5HXEg0XcSFyLgLQGLiAorcei+khAYKoxn5QGU0pi6YdJ6Q8nGVUlijUUCICUWiNIqJCwwqy0JlUUbRjYZc+pKncf33vs3Sybfh8S9/C3b5ZIaNo7KJsjAUVtEvNGWhGbaRQEe/MISYz1UrKDpNionlfsmo9TmcZbbEvlEhhBBCCCGEEEIcpi0RjHr3u989v33RRRdh7dE57aIouPDCC3nqU58KwDvf+c5b7WJF0zScf/75853yb3jDG9i2bdtxPYc//MM/5BWveMVxfUwhhBBCbC4xRl772tfyG7/xG4QQuOMd78if/umfcp/73OdEn5q4hZK5hhBCCLHXuM2VopouzENRSz2LD4nOJ6xRjLpA53J1ptZ7QkyUVgGKcReICULy+AgpJhZ6lkFliREmLqKNIgRFCImQIsFDrTUBcoBJK0qtUEqhjCK0De985TO4+hv/zmDbDp78W2/jpNNvy56xo9CaujLUhabQhsoaYkist45EwoXIQmnzORaGcRcYtZ7ViaNXWkatZ7EuUAq0UlRW0ysMWksYXwghhBBCCCGEuKXY9Fui2rblE5/4BABVVfELv/ALR/X4j33sY6mqipQSl112Gc65o3r8reIVr3gFX/3qVwF4+MMfzmMf+9gTfEZCCCHE1hZjYtR6do86dg5brl9v2Tls2T3qGLU+t/oQN3Ddddfx0z/907zoRS8ihMBjH/tYPvvZz0ooShwzMtcQQggh9oox0focjJpMW+n1S4NROfA07jzDNmC1QilQ5LZ3pVH0S4NWitJojFY4H4kJtFGkaRWqRML7QOc93ucAlFaGGBMuJayCwmqsMgysBRJt0/Env/NcvnX5Z+gNFvmV3/kj7vif/hOF0ZRGs1BbdgwKtFK4GHAhUlpNYfM5rwwdO0ctw8axMu7ofGR14rh2rWXXMP/nYyTEHKIatp6dw5bVscOFeAKvhhBCCCGEEEIIIY6WTR+M+sIXvoD3HqUUD3nIQ+j1ekf1+P1+n4c85CEAOOf4/Oc/f1SPvxV84Qtf4LWvfS2QX48//MM/PMFnJIQQQmxdLkRWx46dw5Zh63EhL7TElGTB5SZ87GMf4573vCcf+tCHqOuat73tbfzxH/8xS0tLJ/rUxC2YzDWEEEKIvSYukIDOR3xMKAW9MldZ8iGyZ+zwIeJDoldqtvULtFa4CErNWtIprFEUhaW2CgM0PtG5hPMBbTQhKFBgtIKYSNOxsiJhFJRWU1pF5zx/efFL+Mq/fZyiqnn6q97CHe78I4QQaX0kpkhpNC7mNnyFMXQhMmwCnYtoBSFFJm1gvfVcu9aw2nQMm1wxanXScd1awzeuG7Jn3LHWODofSUDjA7tHHcNpW0EhhBBCCCGEEEJsXZu+ld5XvvKV+e173etex+Qx7n3ve/OhD31o/nj3ve99j8njbEYhBH7pl34J7/MXPS972cs466yzTsi5POMZz+Dnf/7nD+k+X//613nkIx95bE5ICCGEOETD1jPasHjS+UjjAzEmUiK36NCK2hpKq2l8oPGBQWVZqDb9sOyYCCHwW7/1W7zyla8kxsgP//AP8773vY+zzz77RJ+auBWQuYYQQgixV+tzYL+ZVo2qbN5P2YXIxAU6H3EhUheatQlU1rDcL+hiIoTEqPM0LlBaTTdtw7dY50pSAC4mdBfQClLKIagQ8zG7GFClpQwwbB3LfcPH3vFqvnTZ32Os5Rdf8gbudPZ9iEDrEp0PJKVQKKJPKKVIJFofKbVGKcViXWA7z9hFUgSrNU0XmXSBJgQabzlpULJn3FFaTb+0tC5itaJXGOrS5EqvKbFUF8f/ggghhBBCCCGEEOKo2PQrcCsrK/Pbp5122jF5jI3H3fh4twavf/3r+cxnPgPA3e52N57//OefsHM59dRTOfXUU0/Y4wshhBBHYnXiaKYtR5ouMHEBv792eSHJgsvU1VdfzeMf/3g+9rGPAfCUpzyFiy++mMFgcGJPTNxqyFxDCCHErVmMiYkL0+pLiV3DlphgvXEoFIPK0LhAmP6cjzEHnhRUhSGkRG0NMSR8zOGjpMCHSCShgZhAaXA+EVICIv3SoFJChURhNV2IuAijNqCVp19q/u+7/5DPfeT9oBSPvOBV/PB9H5SrWbnIqPP4mCh0DkOhIEyrWCmlGPQsS3XeeND4QEqJqBUKICXqUtNOAjElIDEoC4xWWA0hgY+J9dbTxchSXTDpAlqpW+1GBiGEEEIIIYQQYqvb9DP64XA4v32sWqlsPO7Gx7ulu+aaa7jooosA0Frz1re+FWs3/VtCCCGE2HSGrZ+HotYaRzvdIa9U3mlfGI1WiphyK7122p5ksy247Ls4Nq9ypRSV1fQKg9bqqDzWP/zDP/CEJzyB66+/nsFgwCWXXMIv/uIvHpVjC3GwZK4hhBDi1siFyLgNtD63zpsJkTxenY5V94zVtBV0oHG5PXQXIsZotvdLrl1riCTqQuPaXCmqDYFp4SmU0nQ+omMeP8YAgUTrAqDoW4O2GlpFShGXctWpb/3Vn3D5X/1vAB7ylBdzu3ufy+5xR+0MVit8iKQEmhx2SgkgYbRmuTYsVJbKmtzOerpRYdJ6CqsxSrGtX1BZQ+cjoIgkKmum97dMusC4C7QusoZjqS4YtX4+rhdCCCGEEEIIIcTWsulTMNu2bZvf3rVr1zF5jI3HXV5ePiaPsRldc801jMdjAIwxB7UY+b3vfW9++1Of+hR3utOd5r8/77zzePOb33z0T1QIIYTYxFyI8/Z5G0NR/dLQK/e2DpmpC8MgpU214HKgxTEAUl7Amj3Pyhr6lTnsc3TOceGFF/LqV78agHve85786Z/+KXe+852P7EkIcRhkriGEEOLWYhaA3z3qGLaelHL7OR8iCSiMYnXiSCkx7gJa51B/4wKr446JC0xcDkxVhSLGhDWKXmlZqAJtiPSLHKQath6jFSrlgH2hFaBonKeLCbBYA2uNx/kAJEqtGbvI9z/1V3zzLy8B4G6P/GXOvP9/ZRIiZYiMQz7nSKIwChcTdWFoXaAuLXWhGVQlRilKqxl3AUVub+18pLCaXmmop6EpPR3OzsbvXci/DiqLNYq1iad1kcYE6sIwbgPLfQlGCSGEEEIIIYQQW82mD0adfPLJ89tXX331MXmMjcfd+Hi3Js45vvGNbxzSfZqmucF9zj777KN9WkIIIcSmN273ts+bLaos9fIu9QPRSm2aBZdh6+fBLsgLR40PxLihYpRW1NZQWk3jA40PDCp7yNWtrrzySh73uMfxyU9+EoBnPvOZvPa1r6Wu66P6nIQ4WDLXEEIIcUs3C8BPnOe69Zb1Joei2g1VQgujqQpD5wNGK7oYcV0kxIjRipigcZHVSUuvsMQEISWs0tQ9g9EwcYFRF7BGYY1GqRzGSgoCQEx0IUCCCR7lFSlBqS2qymPQlc99jG/+5cUAnPmfH8cPnvs/GLtAGRO1AqU1dWlIMTHuIv3agEooraitZjANR80C/D7m0JfzCUWu5FoajZsGoHqFxcdETAkfItZoGhfol3ks3y9zSGzS5XF66wMx2qNWQVUIIYQQQgghhBDHx6YPRp1xxhnz2//4j/94TB7jYx/72H4fTwghhDiejmcbM3F0xJhofQ5GTaat9PqluclQ1EYnesFldeLmLQCbLjBxAR9vVDMKQqJ1EasVvcJQl4ZR64kpsVQXB/VYf/EXf8GTn/xk9uzZw/LyMn/0R3/Eox/96KP5dIQ4ZDLXEEIIcUs2bD2r445xF9gz7lhvPI0PDFtP5/KYzxhYKA1GK0jQhVy9yRPz+DblcW5MiXEbUQTsNHi00DOECKUx7Fio8KsNzmis9viQsEbjfKJNuSppoRWdTzRdorCJXmHpV4oQS77+uX/ma+97NaTE7e7/X7nTT/8SSkGIEa8UE58obWKtcSxWFjQ0LqAVLNYFtTUs9QqMVlSFppu222tcIBApjKa0Gki4kJ97rjYVMRoaH1gwufVfv8yvX6808/Fx5yOl1Uxc3iAghBBCCCGEEEKIrWPTz+Tve9/70u/3GY/HfPGLX+Tb3/42Z5555lE7/re//W0+//nPA9Dv9znnnHOO2rE3u3ve856ktJ/Fz5tw5plncuWVVwLw4Ac/+AYLPUIIIQ7P8WxjJo7MvuG1UesZd4EQE5POUxe5fd6hOFELLsPWz0NRG1sAKsW8nZ9WuYWKC5HW59Yp662ni5GlumDSBbRSN1k5qm1bXvjCF3LxxXn3/znnnMN73/tezjrrrGP6/IQ4GDLXEEIIcUu1OnHsGraMu8Cwdexca2l8YE/j6FyEBFVhqNG0PgeeCqvpXEAVhrrQJBTDJoecRl0OSQ3bgJ1WbqqLHJYftR6jya3pcr4qt7wLCZ8iMUJKuWJU62Le+FEUKA0kxfVf/wKf/aMLSTFw+x99KPd4zHMx1lIYhdZqet9IrzAYpQghj8u10ZAUzieWa4MLEaMUTRdofAQF4y6PdxdKOx3b5vOzWmO1IlmF0YqUh8Js3COglaI0+fVpfKC0+fagOs4XUwghhBBCCCGEEEdk06+qFkXBgx70ICB/ifKyl73sqB7/oosuIqWEUoqf+ImfwNpNnxUTQghxCzJsPbtHHc00FNX5yFrj2DPuWBl17Bl3rDWOzuc2EI0P7B51DDe0PjteYsxBoN2jjp3DluvXW3YOW3aPulw9aH+Vhm4hXIisjh07hy3D1uNCJMSUd6DHxLB1jLuQF54aP2/PcTBmCy6Qry9A6w/+/ofDhch64xh3nu+ujLl2tWFl3NH6vOveaEVp8676ujAs1gU7BiX9aeirdfl9CjBqD/x8v/71r/OABzxgHop6wQtewMc//nEJRYlNQ+YaQgghbomGref69YZxF1hvHd9fnbBn4lgdO7xLlEazfVCy1LMorRi7mP9+0uFCHuM204pSldW4GPEhEElMnGetdTks1QZAoVHzarfeRxSKiQusjDsmrad1ns4HOp+ISRGAznnGref73/wKl73xhQTXcvu7P4AHPOVlbF+oOX2pZrkuuc1ynx2DkoUqn6tSikSiKnKIf+IClVVUhcJqTWE1LiYmXWD3eptbRqf88z5EwnSDYFXk8XdpzXwzAHCjDYS5yhTzuU48xA2GQgghhBBCCCGEOPE2fTAK4IlPfCKQv5z44z/+Y/78z//8qBz3gx/8IO95z3vmv3/Sk550VI4rhBBCHIzVictf1JPbmK2MOlYnuXKPCwkfc5uH1kVWJ46VUUcz3fE8av08mHKsHSgUFFMixFxNaNh6dg5bVsfukEJBW8HNhdfWJh1rzaxdiKL1kT3jvdf2YBzPBRcXItfsadg96tg97Bg1nhATg2kLwBBh1OYA3trE4afXUyvFoLIs9XKwo3VxXnFq3IYbPc573/te7n3ve/PZz36Wk046ib/5m7/h937v9yjL8pg9NyEOh8w1hBBC3JK4ELluraFxkfXWsXu9Y33isUZRFpqlfsGpSzWnLFZs65Vs6xUsVgZrFJPp+G7cBRKJUeepS41RGj9tP9f6yK71lhDzGLHzgdZ7VkYdKyPH2EV8nLaXLgwxJVofmTg/bW8XKTUorWh2fY9PvPF5dJMht/uhe/Ezz3sNpy33OXWhpjCafmXYsVBw8qCitoZ+qdneL7BWoZVmqVdQFZpxF+Zh/VGTK7pOnKcJEefzfGVt7Gh9ypsSrJlvTKhsbl+tVf5VqRu2s579djY8l1yUEEIIIYQQQgix9WyJYNQv/MIvcPbZZ+cy3DHy+Mc/ng9+8INHdMy/+qu/4vGPf/x8B/fZZ5/NYx7zmKN0xkIIIcRN27eN2Xrr8TGhFNSFZrG2LPcKFmtLXei8+3raxmwWiJp04ZhXjtpKFa2OhZsLr7lpeK2bLjytTxztLCzUBdYPMrx2vBZchq1n53rLWuNICdYbx6gL+JB31a9NOoZtDkOllBe+VvYJeVXWzCtHTbpZhaswD3WNx2POP/98Hve4x7G+vs5P/MRP8PnPf55HPOIRx+ZJCXGEZK4hhBDilmR1nCuZti6wMnIMW0e/tCxUBYPKMqgMi7WlMLk66KCybOuXbOuXDEpLSInWh3lbOp9gW9/ShcSw84zGnokLXLc+4fq1hqt2N6xMHI3Lresg4UJgvQn4GFHoaZtmQ22nt63Bre3kU296Pu1wD6ee9UP8/It/n22LCyz2ShYHBWds63HSQkXPWk7f1uOUpZJeYUEpFqoCY8Aa0FqhgNYn1hrHauNYGbVct9awNsrVqtqQ/46UKK1hMB3L9kpDStNA1PQbUn3DXNR8XD4br++TmxJCCCGEEEIIIcQWsCWCUQCvf/3r0VqjlKJtW37u536OJz/5yXz7298+pON85zvf4Zd+6Zd41KMeRdM0pJQwxvD617/+2Jy4EEIIsQ8X4jxostbkkA3kXdU7BiWLdUFdmCNuY3aktkpFq2PloMJrdcFCbamm4TUXEsPWs97m5964eFCVo47HgsvsejYu0PjA9esNeyYOFwJac6PruTptrQfMWwTO9EozD+vNQnETF7jiiis455xzuPTSS1FKceGFF/L//t//44wzzjj6T0iIo0jmGkIIIW4JYkzsGXdAHvt1PmCMYrlXoHSuilQYPa+ONKOVolcYlnsFlc1/P5ujEOGUxYpCK0i50tOoDXzr+jHXrDWEFAghEUKiXxo0Cq01RiVSgghoo7BGU2hNv7LoZpV/veTXGK9cy7bb3IEnvOwSduzYTmk01igWSstSr+C0pYrt/YKlXsH2QUW/sixUhkJrYsiVoLZNq0ZpDZFE5wPjNtL5RBcjMSnaLlJM20TPgk91YagLQzedS9U2z7VmlVxnummLa61vWFlKCCGEEEIIIYQQW4c90SdwsB760Ifyute9juc85zkopUgp8a53vYt3v/vdnHfeeTz0oQ/lnHPO4ayzzmLbtm0sLCwwHA7Zs2cP3/72t/n0pz/NRz/6UT7ykY8QY5zv3gZ43etex7nnnnuCn6EQQohbi1nbsaYL8wWHpZ6lmn4Zvz+zNmbWKNYmPrcxM4G6MIzbwHL/6Gad9w0Fzc5TKaY7vvOCSUx5QaL1cV7RqouRpbpg0gW0UixUW2a4MXdT4bVeaeYLIk0R0EGxWFvshu3lnYus41isCsZdoJy+ZgdyrBdcNl7P3eOOYeMZu4ACFqq88LT3euawk4+JYeNxRWShKpi4gFIwqGxuQWI0rY80PlAYxdvf8Q5e9LwLmEwmnHbaabznPe/hoQ996FF9HkIcKzLXEEIIcUswaj1tiDgfGXd57LZYF3kO0QQmXaRXJnyIKBRagbWacjq2t0ZRWc3KqEOhUFoxbDxKJZb7BSPn6YJi4qANCe8jo5RIKVEUis4nIFEbjVWWnlK5Eim5VXSKoPyYT17yQobXfofBjtN4zIVvZuGkkyimYarKGMpC41JksSgotGGxlwNMpyxWjBqHNwlUgdGawmpiVJRWYxTowtAvYKE2tH4238rBLGMUjQss17l61rjzpJSwOv993gCxd04WU7pRcKqyW2aPqRBCCCGEEEIIIaa21Erls5/9bFZXV3nFK14x/7MYIx/+8If58Ic/fFDHmC1SzP57+ctfzq/+6q8eq1O+xTnUXfNCCCFuKMY0r8IzmQZV+qW5yVDURrmNWWLcBSZdDkblNmZ2Hqo5UgcbCpqpC8Mg5VZs42nYaw3HUl0wav08SLWVHGx4rbQaFwK1NbQuopSiX2pGbaBzkdYEKmuYdIGit//X4FgvuOx7PWft72qj0YVhqVfc4HlVFmKZaFx+j+Xn71iYhrwqq7HT1iutj6ytrfHil7yAD7zvvQCcd955vPvd7+a00047as9BiONB5hpCCCG2utVpu+Rh5/AxYjT4kGhcHgOGlEhJkzsgJ0IC1wWGyZNi/jcskYPyky6QiPRKy3d3T0jTeYz3iX5lGZRQFIpJG/EpEWMipkRpdW7B3SoMsFAaolK4EPFtwz+/5cXs+e7X6C1t57Evewu3ue3t0QpcjFitKaxCoUBBTKBIhJioCz0Neyn6laFXWKxVGBRjHUgkUIptvYK6NMSUGLYBDaxNPH4aGDt5sQKVNybMx8XTyrzlPtW0Jl0gJbA6B68U0CsObt4mhBBCCCGEEEKIzWNrrVICF154IX/3d3/HKaeccoOd2Gm6Q+2m/gPmO8BPOeUU/v7v/56XvvSlJ/LpCCGEuJWZuJAXCqYVeZTKbckOxYHamB0tBwoFzSoF7c+sotVSL2euWxfnFYpmx9sqDiW8Vhf5WlijsTqPMWLae01nrQU7H4kx7ffxjvWCy77XMyXm7Rq1UuRHvCGtFP3SslgXQL6eG9vqQa4e9h9f/iKP/skH84H3vRdjDK961av4h3/4BwlFiS1L5hpCCCG2stn4u+nyWDymPLZNCULKQaC11jFsPKPGM+4Co8YzbDxrjef6tZbrVjuaEBi3jpVRbsU86hz9ylAbQ0iKzkWsVtTWUBea5dqyUFsgUUwD/saANoCGQisskX+59EJ2fv0LFPWAn3rB77N8+h2IKeZW3S5htUbrHHZSKNy0quqkjfkYRlFYTW0NvcpwUr9iqV9wu+09bn/SgB39Aj+taFtbw45BwbZ+wSmLuUKUC4kQYW3iWJ3kloNVoefj/P6GeVnrw3zcOxvbV9Yctc0oQgghhBBCCCGEOH62XDAK4GEPexjf+ta3eP3rX8/tb3/7+ULEzMZd2hullLj97W/PG97wBr71rW9x3nnnHc/TFkIIIWinX+4305BJZfUht02btTHbeJzZcY/U0alolX92tgM7V7TafyhoMzqU8NrGa1FveN5aqXl4zU3Da81+wmvHesFlv9ezMjmANX2IfHb7V1p945BXiIQYeeelb+Hx/+08rvzmN7jt7W7HX/79R3jxi1+M1ltyeCnEnMw1hBBCbFXTIqSsNo7WR0pj6GLMbZS7iIuRzkVCSviUWJ04dk86dg9brl5puGat4Zq1MbvWGlbGHdevd1y32rJn6Ll2raXzkaVKc+pSybAL7Jk4+qVlobIUWtOzlsXSMigsPasxWk1DWZ5PvuM3ufbL/4IpKn78Wa+hPu2ODDvPsAm0LoCCwigSYC1Abr0HOdTlQkKh2N4vWO4VLFaWXmkYlBatNdt6BTsGFacsVJy8ULFQF2yrSyprWO6VGK0Ytp6rdo9ZGXc0LlAVmoUqbwTolwZrNDElRq1nbZIrrlaFnrfX61dSLUoIIYQQQgghhNiKtlQrvY16vR4XXHABz372s/nSl77EP/3TP/HpT3+aa6+9ll27drG+vs7i4iInnXQSp512Gueccw4PfvCDudvd7najRQwhhBDieInTBfZZUOhwW8zN2pjNjhPT0QkeHa2KVhMX5hWtSquZuMCg2hrDjkMNr/VLQ+sjlTW4Iu94H7WeMH39mhAorKYLkf70PnFD60E4dgsu+7ue/dIQIiitIOQd9TcVfKsLQ+Py/X2IjIdrPP9pz+ZDf/tXAJz7sJ/ijW95G6edcspRO28hTjSZawghhNiaEuPO46fj2VHnCCERUqI0GpVy+Khf5jbQMSZWJ57VcUeICVJCK5UrK6VEqcGnSAjQrHvGrScCi7VluWeZdIGJ88RkKXQex0Zg3HVUhaEHOB/4xLv/F9/51/+L0ob7POWVLJ95NybO50q4lUXrPD4edZ6TBxUpQYJ5kN/5iCkNRinqIo9ll3oF2/sl1uh5lcdt/bzxoOnyXCQAIeUW0UZpINCGSBk0jc+VVFsf6JUGoxVrE0cX8p9DHqMvTSuoDiq75dqDCyGEEEIIIYQQItsaK5Q3QSnF3e9+d+5+97uf6FMRQgghbtbsS/bZr4daLWpmdrd9j3ekjmZFq9ZHGh/mIa5BdXTO8Vg71PCaNZp+aRh3Ybrj3NFOd+KPG48LkdJoQtQ0LtD5eNwWXPZ3PY1SjLpAbQydi7nNX5lusk1ivp6Bz/zbp7noOU/je9/9DrYoeN5LXsEzn/VsqsJQWVkoErc8MtcQQgixlcQ0rV5qYDwJkGBx2uq6qDXjNhBSonORcefz2NQFtIJRFwhAZRQxJlxILNQ5iNT6XLHJTQNWqxNPVRoKqwkRWu/RSlFog1K5nV7TeTDw2b94K1+/7C9AKe7zhJdyyo/8GM4ntEq0LjLpPAvTDRQpMg/ja6Ooyry5IEyTUpXVxDhtQW001uQqqCctVPNNB5XN1W59mM5FjEYrSCQUBYWBXmHnmweMVsQI642fv45WK3qlmW9c6JVmfo5CCCGEEEIIIYTYemRWL4QQQhxHSgFpb7DpcCs9ze42O87RKlCyWSpaxZiYuJCPkRJp+ppppaisplccvXZz+zqc8NqgssSUaFxkoSooTGBt4vKCi8vtS7RSmA3nfDwWXPZ3PUujGXe5ipXVCh/zLvp+eeDHNjrxp29/M2/9X79F8J7b3eFMXvfmd3CPe92bqjAooFdIaxEhhBBCiBNqOvbTKHyMNB5uU9U4O6sSqhm7wHXrLTEmxs7ThUDTRozOd48x0YY8jm9az9q4w8WEUXnc6Fxk2AZKqxhUlkFpaV2kXxu6GAgxURlNqxWf/Zt388W/fScA9/kfL+AuD3gYXYjo6bF8TIy7QASWgEIr1hoHCZb7BSQYd4HF2lCYPI5ufWT7oJi3sc7Bp3wulc3j3C5ErNEsTOcyi72C1XHL9XRYpVjqlxil2LFQoJXaO9fQitrmttMzg8pKKEoIIYQQQgghhNjiZGYvhBBiSziRQZmjSStFIOVznbYxqw8jUNJNKwHNnvPhVp7a1/GqaHWg6xliIsSEZtrq7QYnB4H8mo1aT2UN/coc9ZYWhxteW6wLtPLznepLvbxrP8a8sx6VW5cczwWX/V1PrdU8uFYXhmHrmXQh77zfT0u9ld27ePEFv8w//+NHADjvEY/kua98Lbc/7eR5m8XKbo3PnxBCCCHELVWMiarIFZSsVhg0ilyBqVcYXIi5wlPjpu3mIutNDj2hchVUkxSd83Q+onWuorTe+dwWerrpobKGBDQ+t462JlckTSGRlEKR29f9+z9+kM994E0A/NgvPIsfeuijGbceq2Zj4JQrOcVplVUXGVvPtoWSRG7LVxeGqtAMakuKuarVjkE5DUFN21BvaPttjWapp6cbFnKl1twhMDGoimk7adjWL7Bas2NQ7ve1VHDM5hpCCCGEEEIIIYQ4/iQYJYQQYlNzITJuA60P3CiecpyCMkdTZXUOQ1lD62JuMZcO3MZsf2JKdCEHo2o7C6Ycned8rCta3dT1HDU5VAR5MUIrhVL5vvvbxd34QOPDUQ8VHUl4beNO9WHjctioMixWBYVRbOvvXXw5HgsuB7qevTK3RKkKQxcjnYusN55emagLM38//tu//DMvetb5XHfN1RRlxTNf/Jv87GOfgDWaqtDz16VfSbUoIYQQQogTaeICvdLmcZxSVKXC+8T3VyZsG5SEGJl0ecwXUg5FjX3EuUBdGAqtMRr2dJ5RF0gpEaPCx0CIuZVe6yKhTFSlxnWQbGDUegqj8UGxvV/iga996h/4l//zGgDu9TNP4D7/9YnEBGYanIopkVwed0egdYE2RFzQJKUYVIa2C5w0qACFVppxyG3xBqWdtq/OoSi7n3G0Vop+adkw9GZt4uZj2IXKEmKiMHpLb7oRQgghhBBCCCHEwZFglBBCiE1r2HpGrZ//vvORxgdiTMc1KHM09QrDqPWUG9qYTbp8zgdr0gVSYlrhRx/VNmbHsqLVTV3P9cbT+ZCrRE2rLPm4N8Qzb/M2XZCxWtErDHWZX8+YEkt1cYTPPjvS8Jo1moVa0fiA6SJ1oTFaURcGo9VxXXA50PUsjKZfmtyapCpYx9G5yKQLNC6gSbznrb/PW1//amKM3P4H78Tzf+cP+U8/fDZKKerSzF/vQWU3dRhRCCGEEOLWoPW5RZ1RMG4DhdE4Hxj7QBp3LFSWLoY8vu0SYx/wLpIS+JRQIbBn6Bk2gdZ7Utq7UcGHvMHBxYhyiRANCUXbJJTybKsNq23CaMVVX/wkH/nDl0FK/NBDHsWPPvqZaACdW9cZpRi1Hms0WgFJ5V/J4+QuRspgMFrTr3J1KgVs7xcURmONIqbEoLQHPYfad2OJVoqlfnFIczAhhBBCCCGEEEJsXfINgBBCiE1pdeJoXK4e1HSBiQvzoMwNHIegzNGktaKyhsYHeoVhvc1VkqxR83YQN6X1YV5V6Vi0MTtWFa1aF3DTP9v3eo673MoNYDTJASmrcpBooVdMw0Q5gONCPicfE+utp4uRpbpg0gW0UkclEHe0wmsKxWJt2T4oUcDJC9Vx33l+U9dzUFlCyp+fxaqgNYGmC1x77bX89gufwWc/+XEAfvKRj+FJL3gldX9Av9As1HbedqRXmk0bQhRCCCGEuDWJKTFqPS7mNng9nZvp7Rw17FoPrE0cLuR21muNhwghRjwKgmfSQeMiMUUiCaMURivStM7roCwoTKT1IT8GeaODHwViKKhLw9cv/wwffv0LiMFzl/s/jHOf8uugNMZoTILSavqFRaPY3lekpGi8py41MUaaEDFKc/piRa80hJC4w44BRkNdWlbHHT7mFnwL9ebYWCKEEEIIIYQQQojNT1ayhBBCbDrD1s9DUWuNo3U5UKNUDnoURue2Cykdl6DM0davcjCqLnMbs9ZF1iaefpnolWa/IaSYcjhnFoo6Vm3MjkVFq3Hr5+e67/U0CoxWLNUFa00HJJQCazXG5IWYylpighATi3XBYMNr0brIGo6lupi2U9RHXL1os4fXDsXNXc+lumCk8vOrrOEz/99lvPjZT2P3zuupe32ef9Hv8p//68/ThEi/MJy8WKMU1IXZ1JXZhBBCCCFuLWLMYafv7hoz6jzrk4CPkfXJdN5gDKnILe+aaYXQ9UnHeudxPmCMJsZEjLnKaEwJo3K43mgotaYscvWmEBN7RrnCFClhp63oRl1g55Vf5f974/PxXcsP3OMBPOwZr0RbQ4rkNnrTsXAXItYo6sJSGEUYJaxOaGUofaK0msV+yUmDglOXas48ZcDaxNGFyHKvmG6uULQ+bLmxuRBCCCGEEEIIIU4MWc0SQgixqbgQ5+3WNoZo+qXZb2ioLswxD8ocbYXRDCrLqPU5EER+nuNpJaXS6LyTWUFKeSd2F3KbC8ihqGPVxuxoh4J8yKE1rdV+r+ew8VQ23w/UvCXGLAjWucg6jsWqYNwFyun1HFQWaxRrE0/rIo0J1IVh3AaW+0f+emzm8NqhOJjrOagsmsirf/s3ecvFryOlxJ1/+K783pvfwRln3on1xrFgcqUoBSxVBScvVJvucyWEEEIIcWviQmTcBlofcsvqzhNiYtw5QoSqyBVDtYKFsiCPXj2row4XIjFGXEw0zqNU3rSQwnT+ESO9wlBohTEqj39RGKMpi0DsIm2MpJhIJIbXfZdPv/nXcJMhJ93x7tz/qb8J2hACFFaDygErEviQqG3e6OJiYrlfstizLFSGYevxMVIYxbZBSWlzS+pTFismLm98mc0ptuLYXAghhBBCCCGEECeGBKOEEEJsKuN2b/u8WYhmqWdvMpQzawt2LIMyR9tCZQkx0bjAUl3QmMCky+3lWp+rYO3L6rwoMftC/1i1MTuaoaC1iaNXmv1ez40t95oNYarZ87Nasd54OhdpTd4RPukCRS9fz8oa+mXKgbIuX+/WB2K0R7wDfDOH1w7VzV3P73/vKn7ll57Ip//lkwD8jyf+Ei942W8RTcmo9Zjp+25Hv6QuDCcvSihKCCGEEOJEGrZ+vpnEh8jq2DF2gdVRy56Jx/vIYt9y+nJNFyKrjaMdJ0pjGNSGiQustwnvIz6AsVBqQxc8qFyFqnEBisSgLFFK5Sq9KWG0QikgJVxMjPdcxxcueQHdcIWF296R+z71txlHy+rEsVAVtC7SLzWl0bQ+UhUQp0NJg2b7oGDHoJxXkd0zcQxKy2mLNaU19KaVSu30OW/1sbkQQgghhBBCCCGOPwlGCSGE2DRiTNPKQTCZttLrl+agKhXBsQ3KHAvLvQKjFaNpq7m6MHQ+0vhAjImU8s5trRW1NZR27xf4x7KN2dEKBcVpe43CaIZNB9zwejYut9ybVZVSSs1DUUBeCClz4KqZtnrrfJy3+YAcpJq4HCjrfKS0mok7tNZ/B7KZw2uH4qau59//7d/w0uc9gz0rKywuLvG7b3gj5z3ikfPrWVkjC0lCCCGEEJvI6sTN2443XeC69SZXzu0CYxfRWlEUmhjBxTxmNUoxqDR7Ro5xGxl1Ibe2U4rGO/AwVoGUEhHQKJSBlkgILSFY+kWuHupCQiuFNZpmbTeXX/oi2j3X0Tv5DH7oSa9iomoIkVEbqApDpTVdiITkKYxmoS7pgDPXLQABAABJREFUlRqDYqlXsFDnsXJVGPpFriSlFTQ+37/1kUF1yxmbCyGEEEIIIYQQ4viTbwOEEEJsGhMXSOSgTQ7K5C+vD8WxDMocCwuVpbJ63gajtPoGAaiNFNPwV2WOeTjlaCw8KHIQ6kDXs5seo5mG4cppS42N6sLQTK+n85HCahoX6E+vp1Zqvvu8mb5+s8WTo2GzhtcO1b7Xcy1M+O2XX8g73/omAO56j3vxe3/4Dm7/A2fOr60sJAkhhBBCbC7D1s9DUWuNY9IFJi6iFBRWMSgNdWFpQ67WOmw8aXbfxjPuIl2MuBhR5AASKGJKKJVIKEIIhJgojCVG6BKoNpCSop7OVXwIhMmQz//RrzO+/rvU207lR3/5NcTBDkKELkQGgHMRXcI2WzGoLYPSsNi3FFrTKwz90qIVLNYF2/olo85TF4kuRlIErXJl2plbythcCCGEEEIIIYQQx5d8IyCEEGLTaPcJylT7CcrcnGMdlDkWCqNZ7mtitExcoPWRmDZ8sa8Ulc2LB8ez8tWRLjx0PuJCPOD1jNM1jji9UZj9P7cQE6M2MPGBQWEYtobtIVKa3K5vdo1nx9m4eHI0bNbw2qGaXc8v//tXefpT/idf+NxnAXjS05/J837j5RRFKQtJQgghhBCblAtx3j5vrckVQFsXqQuN1YqU8vi6VxiqqFlLjtYHCq25enXCzmFHimCnc4vRtIW51qCTJsSQW+QpSErRhoQmUReaBNNKvAlFomtaPv22l7B21dcoF7bxoAvewODU29O5wKj1xJhwIYICqzQnLVaculRhtGKhstSFoV8YiukcxxpNTNP7ALXJbbdLo9l3aH9LGZsLIYQQQgghhBDi+JEVLiGEEJvGLNCyNyhzeF9eH+ugzLGitWJQ2U0V4jqShYedrgUOfD3T9LrMLs/G0JQPkYkLuGmbPR8jyiuiNfgQcSHhQmDchfnPW21ucLyjabOG1w7V3/3ln3P++eeztrbG9u07+P03v5WH/dQj9vuzspAkhBBCCLF5jNu97fNalwNEVaHQyjBsHQBLdUGIidLkoJRWip2jhmHjUCTWmoALgfXG03QeqxWFgomPdD6ilEIbhbVAgkii8YmUYp4TeE/nHJe/8yJWvvlFbD3g3Oe8ntue+YNMuoBBEWKeh1ly9dd+ZSgLhQuJ5V7B9n45b6+9cdw8a7NttUJrhZ622d7fPplbythcCCGEEEIIIYQQx4cEo4QQQmwas0DL/oIyh2J2t32PJw7P4S483Nz1VEpBSvPrNQuwjTvPZBp4AvAxMu4CanospRXGKGqTd5m3PjBs/IbjHv5zjTHd7HPcbOG1gzGZTHjuc5/LW97yFgAe+MAH8p73/DEnn35bWUgSQgghhNjkYky00yqsk2krvX5paL0ixDTfiNArDS5EVoaO1gXWGsc1KxPGLrHetKw1AQ0kcotq5yNojdKBCKQYKbSGCMZqdFJ0IdGkmDcqpMQVf/pqdv77v6CLkgf/6mu4413uSq+y+F5iOHYUJrHeRiKKkMBazY5+yUJlucOOPqW9cav0zof5+F8bBSmHqmYBqQPZjBtLhBBCCCGEEEIIsflIMEoIIcSmoRSQuFFQ5lDN7jY7zpEEZcReh7rwcHPXUysI0+MS0rQKlJvvgO9CpO1yCz0XIlYpfEqYCJ2LdC5itcJPF4IaH1hvHDsOY2XEhTivinWjd12CQJq3L9lqVZT+4z/+g8c85jF86UtfQinFi1/8Yl7xildgbR4GykKSEEIIIcTmNnF5jNr5XE1VqRyCaqYhqZRm7afzZoHGe9oQGTeBiY80Lt+v8ZE0bVfnppWdXEgYraisofMB5xNBKWoVCSpvZvAx0vrIVX/zJq7//P9DacOPnf9b3O4u90ZrTWk0RsG4CPRVSUwuB+9jpFSKLkQqa2h9vEEwKqZE4/aGoqxVhACJxLZ+AeR23EIIIYQQQgghhBBHQoJRQgghNg2tFIG0ISgTqYsb7yi+OZ3PX/bPqt0cbuUpcWRu7nqWVuNCoLaG1kVWxx2l1WilGHV+fh1dSBRa068Ni1WBVlAVms5HuhBZmzis1Sz3ennRZ7rYc7CGrZ8vIkF+/zQ+EOOGKkpaUVtDaTWNDzQ+MKgsC9XmHkq9613v4ld+5VcYj8eceuqp/J//838477zzTvRpCSGEEEKIQ9BOx8XNtGpUNR0zJ2DiPNcPG4ZNoC40lTWM28D1aw3XrTc0PtIFTxsSpUo4rehCIMSEVorC5A0JVkPQGqtyYClvPlAoFQkx8b3/+06u/fTfgFLc4xd/gzPu/kCMViilqEtD2wUs4FOiMAqlNMZotNasDB2nLvQYtX76d4rOR1yI800tZaExSuF9YLEu6FcWBfQOYz4ohBBCCCGEEEIIsdHmXs0TQghxq1JZncMz06BM6yODlA4p2BRTopsGY+rpbmTZZXxi3Nz1rAvDuAtYkxt6zHbCx5TmoajSahIJhWKxLLBa0S8NvdISy8TKqCMBKcLEB5asJqQcwjqYik6rEzffad90gYkL8wpUNxAS7bRCVa8w1KVhvXEMG0dpzSG1ojuYdn1H2sJuOBzyzGc+k3e9610AnHvuubznPe/h9NNPP6LjCiGEEEKI429WeXXWMk8BaxPH6sSxZ+wYt5GQEqM20LjEdWsNw9bTuLyJwPtIiJGYFJ0PeB8xRqOMRgNtSPgYSURAw3TMHlUiJsW1n3g/11z2XgB+5NHP4fR7nQspojBolau5NtOQk9ZQWUNd5CqrRoPRitYHQsohq42bJazOwSqFYr1xVIXmpIUSyMeR1s5CCCGEEEIIIYQ4Ups+GHXuuecet8dSSvHRj370uD2eEEKIG+oVhlHrKa2et0ibdLkyz8GadIGU8hfspdWyy/gEurnrqZWiNJrW790pvt44AAqjWagKfIwoFFYprFEo8gIJgA/5TguVza1FXCRVeRFn3AaW+zcdjMqLRTkUtdbsbeGnVA51FSbvxI/ToFU7bV2yMu6I40RlDSlBvzR736M30XbveLXr++IXv8hjHvMYvvKVr6C15hWveAUvfvGLMUY+B0LsS+YaQgghtoLZWDklGHce5zWF1fgQGbWOsfNct9rQhURdwHXrLTEmRq3LYapZa2sSMUVCghQSpYqgFKVRaDQduVpriomkFDrBdZ/5O6768KUA3Omnn8odf+KRxJRQShPJVayUUoQQsEZhtGWxMngSC2XBoCzoVZpIotCGmMhVo7SiNgZj1LSdnqdXGrYPynlwql/J+FUIIYQQQgghhBBHbtMHoz72sY+hjkMLpJTScXkcIYQQB6a1orKGxgd6hWG99dOKQmoehrkprQ+Muxx06ZWzalGyy/hEOZjr2S8NExfQWlFaw7DxhJRY7mliivPgUjW9noXVoPKC0GR6rRdqi1Yq/366aNT6QIz2gNd+FkCCG4aicjUqc6MqZXVhGKTErmHL6iSHt9oi0rOG69YdC12uZnWgtnv7Ohbt+lJKvOUtb+E5z3kObdtyu9vdjj/+4z/mQQ960EHdX4hbI5lrCCGE2AqUAhKM2jwGNrViddJy9cqYnaOOcRNYbxwuJFYbGE08TYjsGXd0PmK0JoVIUhAiuJQoFPg4DSkpKI2isJZR5/FOEUJi15c/zpV/eTEAt3vQY7jDQx6L0aCSRqmEAoKPOBVQaAZ1rhSVK/cmti1YrDK0LuF9RJV5A0JdWBKJ1kdcG7FGsdwrGNSWpboAYFDZw9okIIQQQgghhBBCCLGvTR+MgryQcLA2Ljjs73439/dCCCFOrH6VgzR1aehipHWRtYmnX6b9BlYgt5aYdHtDUVWhZZfxJnFz19MajcndOqhtrtDkU2LcBVYnjsKo3DYvJtY6h9WKXcMu71IHqlLTLy2FzQs6KEXnI6XVTNyBq42N273t82ahqKWevckAXg5SKRZry85hx3rjqQpNaTQpORanizj7tt1zMdK4SF1oCq0PqV3fqPXElOYLRAeyurrK+eefz5/92Z8B8IhHPIL//b//NyeffPJN3k8IIXMNIYQQm59WirXW0cU8br1mtWF17Jj4QNNFhp0nAZ5E03omLleSWp/ksaTRERcSSuWqqymBV0CMgMJaDQl8iJRGoxLs+fdPceWfvwZInHyfn+KM856Cj3s3F2hdUuhIVNCvSxaqHIg6eami8ZEdvZIztvcYd549Y49SEGJiPK0oq1WuEtsvC0qr6ZVmPofrleagNwcIIYQQQgghhBBC3JxN/y3DE5/4xJv9mfF4zAc+8AFSSvMFiG3btnH22WdzyimnMBgMGI1GXH/99Vx++eXs2bMHyAsXWmse/ehH0+v1juXTEEIIcZAKoxlUllHrWaoL1sjVfMZdYOICpdG5RZ7KYZrOR7qwtxVbVWjZZbyJHMz19CGhFaw0HQnQkFt+kHexTzrP2sRNd5fnxRKrFFVpKI1m3Hl6yWCNwodciam0uUXfoLrxOcWYaKdVnCbTilT90txsKKqZBqi6EIkp4WMEl1isC0qjWKwsKG7Qdu/a9YaQEotVwc5hi1aKfmlvtl3feuvpYmSpLph0Aa3UAReH/vVf/5XHPvaxfPOb38Ray+/+7u/y3Oc+F63lvS/EzZG5hhBCiK1AKxh3gdoYvrcyYdjmMbULER/z2FQD3kXGLrLaOCadx03nSS6k3D4vRhK5SpRVitIYksrjY6s1aFAhMfruFXzzfb9Nip6lH/kJTv3JX6bzCaUjKSm0htJ7RiqxUFn61rBUF5yyVFFZzWmFYbEqMFpRF4bbbbdoBdV0LL+tV96oYurMoVRMFUIIIYQQQgghhDgYm/6bhne84x03+ff/8R//wc/93M8RY0RrzZOe9CSe9rSncb/73e+A9/n0pz/NW97yFt71rncRY+TLX/4y73//+7nLXe5ytE9fCCHEYVioLCEmGhdYqgsaE5h0ucpO63N4ZF9WK9llvEnd3PVcbzwxgQ/gY6RfGHpFrjDVuEiK0CvyokkXI4XWoNR0MSixrWfpV5bW5ypTiVxhKR6gWsvEBRI5VOdj3jk/a724Pz7EeTWy2SJUNQ3nlUZTGU1hNTEl+qWdt91bnzh2Te93bdtgp239tvUKFnvFAdv1zaqftS6yhmOpLhi1fh6kmkkp8YY3vIEXvehFOOc488wzee9733uTYyAhxA3JXEMIIcRmE2Ni4gKtz4GnlGBt4libOEadZ9LmTQOzzQXdNBwVphsLYkwwDd2DwoVATIkYc1tXrRQpgVGKBCgUpVG4kKiNYff3v8kV73wpybUs3ulHuf0jn4cxBhSkCCkXl8JqRb+wnLZUc/JSyY5BycI0DLVjULJQW4xSrDUOUBRWsVAVFEaxrV/e4Dkrcgv0fmVkY4sQQgghhBBCCCGOui29Yrxr1y4e/vCH893vfpdTTjmFD37wgzzgAQ+42fudc845nHPOOZx//vn87M/+LFdccQUPf/jD+cxnPsOOHTuOw5kLIYS4Ocu9/KX6qPXURQ48dT5XA4oxLxDILuOt46aup9UKBQwqQ1loFkpL6yM6JfqlQSvQSuNjxGpNAkLKt2urcSGxOu6YFUgat4Fh41nq7b/93CxY10yrRlXTFn4HMgtFtX5v273lXknrQ34OIVBYTRci/el9tFIotbft3rjzDCrLSYNqviC1P1opBpXFGsXaxNO6SGMCdWEYt4Hlfn6Su3bt4slPfjJ//dd/DcCjH/1oLr30UrZt23aQV0QIcXNkriGEEOJ4ciEybgOtzyH+mTjdYBBS5NrVhrXGs3vUYY0i5GEq/cLSEhgT6FeGYWOoiogm0AUIIY+fSblKlI8JFxP1dG9AG8EoGF5/FZ99y4sIzYjFHzibOz/upZiqR/CRsjRUWqNNDjGV1rLUKyhMbqEXAVRix6CiKjSVNcSUWO4VKKWopvO1XmGmY+U89q2szn+mDzweF0IIIYQQQgghhDgSW3ob1gUXXMB3vvMdtNZ84AMfOKiFio1+7Md+jA984AMopfjOd77Dc57znGNzokIIIQ7LQmXZMSiprUEBpc1t8rb1S7YPSrb1S5bqIrfWA2prpjuVJRS1GR3oei73y/xfr2B5ej17hWa5N7u2ipgiRisGpeHkxYoztvc5fbmmX1mUUviYGLaBURdQKleFGnd+v+cxqyQ1a9d3U7vSY0p0YRqkmgakemUO4s3CeGm2Oz/d+H6lzcEuAJXyc+58nD/2gVTW0J9WsZpsCGbFmPjEJz7BPe95T/76r/+asix505vexJ/92Z9JKEqIo0zmGkIIIY6XYZvDTo3fW9l0rXHsGXdcvWfCtasNV69M2LnesGfcMukC1692rE4cMSSMTgxqS2k0MSSsSVTWUE3bRZdWoVUu9RRjpDB5Y0KKuc2ed57xyrV8+s3PpxuusHi7O3Hvp76KwWBAbTV1aaiNprSKhdKyrV/SLy3VtM15GwKD0mC1xhhYqPIGBa3AaE1pdJ7D9UvO2N7nlMWKkxcqdgxKBpWVUJQQQgghhBBCCCGOqS0bjFpZWZkvNDzsYQ/jx3/8xw/rOD/+4z/Owx/+cFJKvP/972fPnj1H90SFEEIckcJolvsFJy9ULFSWwmiMzhV3jFYURrNQWU5eqFjuF9J6YZPb3/UsTL6ehdUolfAhsmNQ0SsNgzLvRD99uccPnDTgNtv6bOuVeaHH5naJ2/oFvTJXoOp8YDKt6tS4MG0hckOzDnuzX2+qWlTjAinldnp+2n5k1q5xdq99j7fv/fL7FYxROB9J07+/Ob3SoBT4mOh8JMTIb/72q3jIQx7CVVddxZ3vfGc+9alP8YxnPAN1E89BCHHoZK4hhBDieFmdOEZtDvQ3XWBllANPo2llqGtWJ+xpOlYmjpELDJtAigmloXWBPZOW9SYwaj0+JFofAEWKiRgVpITWCkOuaBpSovV5zB1jIqbE+uoe/u0tL6RZuY7+yWdwztN+l7K3gNWafmHZPsgbGRbrkh2Dim39km39goWeZaE0WKNxPuXKpyqPlXM11zxGnbWtrqxUhhJCCCGEEEIIIcTxt2VXjy+77DLatgXgoQ996BEd69xzzwWgbVsuu+yyIz43IYQQR5/WucXYjkHJyQuV7DLe4jZez9ss9zhpoeT0pR6lydeyDXvb1i3WBf3S3mT7ubow8/YcpFxdqTSacXvjANLsMLNfYzpw9aZun7Z75Ya2e7N77Xu8fe+nlZqffzPtd9LtJ7C1v+dVToN+V139fR733/8bL3/ZSwkh8PjHP55/+7d/4573vOfNHkcIcehkriGEEOJ4GLZ+HphfaxzrrcfHxKTzND5SWp0rpCZF5wNNF3Ib6YkjpkhdGGKE9cazOvGsTFpaH1EKQkyEmEP6Vmus3bvBBBITF1hrPcO1Vb7yzpfQXP9diqWTucdTX03qbyfMxqtasa1XsK1n80YUO93osFiyvVdRTTczgMJqlVufp0ic3r0q9HxjQb8yx/9FFkIIIYQQQgghxK3elg1GXXXVVfPb27dvP6JjbWw9893vfveIjiWEEEKIQ9Mrcms9a/IO9pRgdezy303b1t2cxoVcPay0WKNou0BdmHn7uY1mwaZZmG5/VaVmZnfd23Zvb/ppFn5S0+NszObte7/ZItD+2u7dlNJq/uUT/8TPPvSB/NM/fpRer8fb3/523v3ud7O4uHhwBxFCHDKZawghhDjWXIjzSlFrjZtvCggpUhW5MioJxm1g5Dwx5ipMVaEwRuNCrk7aBWi8Z9R2DBvPuIs4nwjT8WavzC2aC6MoDVijKZTCaI1rW776npczuvpr2P4Sd37C76CXTsFPx8fLvYKT+gUJhbWW3rSa61JdYI2iLDSV1bgQab1nddIRU6J1+cGrIrfOBhhMq8UKIYQQQgghhBBCHG/2RJ/A4RqPx/PbR7rAsHHhY+NxhRBCCHHkYsw70lsfidPgk1I5oFRZTa/IbfF2j1tqq9njAsPWs1BZthflzR6/84FJl3faLw8KJl1EaYWPuW3IxAUG1d4hz2zxpraG1kVaHxmktN+KVGlaTWrftnsxpXmgqjY59FRuWOjZ935GKRxpv233ZsdrXKDzkZjy/UMIvPF1v8PbLn4dKSV+6Efuytv+9//hx+97z5t9TYQQR0bmGkIIIY61HGLyrI1zpagEFFoRUh5XdjHgfZpWN005FGUNhUlU1rDe5jDVsOsICZrWY4zGR0/asA8yxEhZWBaUYb0B3wWCUhA93/6z32Z05eXoqs8P/uJv0zv1DGJMlCa3uS6swSc4aVBQaMVSXTDoFeikqApFaRTOT8f2VtH5hFGKmBKLtZ1XiuqV06CXEEIIIYQQQgghxAmwZbdq3fa2t53f/uAHP3hEx9p4/43HFUKIW5IYE6PWs3vUsXPYcv16y85hy+5Rx6j1N6qqI8SRciGyOnbsHLYMW48LkRDz4k6IOVg0bD07hy0uRsatpyr2ttfofKRx4YCt7mJKjDvPepN32peFpldYSpPDVrP2d62/YUWoWYWq0mqsVqTEPFi1LzUNQu3bdq9xgZTA6rxopGC+8LO/+4Xp/fZtu+dDZG3ipp/D3BolxMTV3/seT/r5n+Gtv/9aUkr8t1/4n/zp33yUO935LjfzqgshjgaZawghhDhWXIisjDq+vzph1OYNASEmrMrjVh8i1w0bdq61jFpPaTULVUGvMBitiSlvLqitpi40isSkDay3nrWJY+LTtBJVpLKGqiiwSqGVprSKfmWJMfKtP38ta1/7V5QtucsvvpLFM/4TRims1RTWYq0BFVmsLCcvVCz3S3qVZbEynLGjxx1PWeSU5ZrlnmWhMpRaow0s1QVLvWI+Nh5Udl41SgghhBBCCCGEEOJE2LLbtR74wAfOb3/xi1/kD/7gD/jVX/3VQz7OH/zBH/CFL3xhv8cVQohbAhci4zbQ+sCN4iUJAmnexqGyhn5lpMWBOGLD1s9bg8A05DRtazevGKUVtc2t8kJMND4Hp3qFpvGaQmsmXZi3ySunAaQ0PZ4LcV55qSw0i1VecFnuWULa28Zu32CV1orK5uBUrzCst55xF7Am//kNflZBmN6HkHAhodhboaoup9WirJ635tvf/cZtfg4b2+6Npo8740N+jT7x0Q/zWy/8VVb37KY/WOC5r3gtj3jUo9FlwerEsVAXsuNeiGNM5hpCCCGOhdkYedx6YoJx51ltPCmlPH6MucKTCxE7Hf+GlOhCpDAGcKw3Ha3RKAWty+PnECMk6ELAGo0xCk3+GU3CJwgxoZTCqMTVH3ozu7/0MZQ2/PDjX8apd747LgJK0y81i7WlV2iW+yXLdYlWCqVgobbUhaWymn5lCNFAyu2ilVYUWlNYDSlRy9xSCCGEEEIIIYQQm8SWXVU788wzefCDH8xll11GSonnPve5rK6u8uu//utYe/NPy3vPa17zGl72spfNqzo8+MEP5swzzzzGZy6EEMfPoYZTGh9ofG47JsELcbhWJ47G5cBP0wUmLuD3V5EsJFoXsVrRKwy9wrDaOEZtYKG0VIUmhISPic5Hun0qP0Gu2FSXZh5oqou8gLQ28QdsWwfQr3Iwqi4NXYy0LrI28fTLRK8085Z5pdW4EKitYdIFVsddDkEpRVno+eP2yhsGqva937jzLNbFvO1e5yIu5BNrfcivU9Ny6Rt+hz99+x8C8J9+5O4873feyOm3P4umC5RGMyjLXOEtJdl5L8QxJHMNIYQQR9vGMfJq4xk1jj2Nw/lIoRVdSCRyi72QEoMyh5kiiT0jx6RzrIxb9owchdUMakPrI42LtD7gYr5dpkRdmPm/Pz5FnI8kIIbEN/7h7VzzL38NSvEjj/t1Tjv7/pASVieMVlRlrvBUW83JCzW10Qw7T680LPdKlmpLf9oab9h6jFJ4lVtHl4VhUBoGlWW5L2NVIYQQQgghhBBCbA5betX7jW98I/e5z31wzhFj5KKLLuLtb387T3ziE/nJn/xJzj77bBYWFuY/PxwOufzyy/nwhz/MO9/5Tr797W+TpqulVVXxpje96UQ9FSGEOOoON5xSl0aCF+KwDVs/f9+tNY7W5TCTUlBZTWFyqCimXKms9REfU67a5DyLVcG4ye/XhTq35XA+0oRA2hDoU1pRG5N3pE/1p4sws8fft23dRoXRDCrLqPUs1QVr5HMdTz8r5axClYLOB1qfK6+5mBeVlvvFvEJVv7zxTvi6MNMqVHraPhBCSBRWM+lydTYFDNv8uN+/6kpe+bxf5t+/+FkAHvfkp/HU519IEzQxJbRSjBrP4jSwOOkCWikJMApxDMlcQwghxNGy7xh52Lg8RgyJlBI+MK8MNXEBFwIhJoadp9SGwiiunjiaLoJKrIw6hpNc/bfxEas1QUUUoJLCeYXRcTqOBB8SMUa+8/H3c9XH/gSAuzzq2Zxxn/9CSglFLndaGkXf6hxysnsrQC2bkkFlmI14rVFUhcHHPE7tYqTUmoXa0q8sVqpECSGEEEIIIYQQYhNRKe2vjsLW8cEPfpDHPe5xOOcA8hc6G1ZAq6qi1+sxmUxo23b+57OfSylRliV/8id/wqMe9ajjfv7iyHz5y1/m7LPPnv/+8ssv5653vesJPCMhNoeNlaIONpwy+9egKvQ8ECWVo8ShcCGye9QBN3zf9UtzgypMG8WUphWVAqsTh9aggHEbWKwL+qW5cQvIDRS5OlNvQzhpbeJofZy/lwuj2TEo93v/GwQIXW6Rt2+AcNh42mk4qnOBqjScNKgoraYuNIsHCBCuTRzrjWPnsGPc+bxzvi4IKbFYF/NQ1D996G/4vZc+l+H6GovLy/zm697ET/yXn2K9yZ/hfmVI0/Yni3Vxg8/ojkEp7UmEOIZkrnHrJnMNIcTRsL8x8vXrDSnBqHHkkWgCFKMu5D+LCWMUnU9ooIueq3Y1TFxkZTRhdRIwRrHcs6xOApPOEWKkdQmtwWhNaRQhJULIR7/603/L1//89QDc6aeeyp0f9osUJs8JY8rjcqt1rghVW07uV5yyVGGtpraaqrCklDh5oWKhstSlnrfyizGHpU5frtnWL1moLAOZRwohhBBCCCGEEGKT2PIraY961KP48Ic/zA/+4A/eYKEipbzrrmkaVlZWaJpm/mfAfKHiTne6Ex/5yEdkoUIIcYvhQtxvKKpfGnYMytzOqzDTUIdhsS7YMSjpT1uBtS6y1uQF4FHrceHG7cuE2J9xu7dC2ex9t9TLiyL7C0UBaKUYVJalnqU0mm56P6MVIUa29QsGZd4lb7RCq/xrYRSD6Xt6qVfMw0FxutMeoJ62uavsgYc7y71ivmhTF4btg5LlXg4fFUZhtWKxNpSF5pSFipOXKkqjWW8ckA644BOnY471xlPZHJ4qjWbnsIWUmDjP2nDMG17561x0wS8xXF/jHvc5h/f9w2Xc/9yHz0NRZaHpFZZ+aTl1qQLyZ3QW5pq95kKIY0PmGkIIIY7UvmPkcZdbPhut0FrhQ2LYBEaNZ+d6w8rIEVIOG8UQ2T3uuH6tI6TIqHV0AZROhJhYGztiCGgFIYIxKm+CmY6JZ1O5nV+6jK9/8PcB+IGHPIa7/8wTqKfVVsvCgFb4GAkx4mIOSJU2t42ubR4jW6UojZ5XYx1OQg7vh4Q1ikIrluoCBfQKs59XQgghhBBCCCGEEOLEuEVs33rQgx7E5ZdfziWXXMKll17Kl7/85Zv8+ZQSd73rXTn//PN5+tOfTlVVx+lMhRDi2DtQOKWyB/5yehZOsUaxNvE5eGFCbgfWBpb7Wz5HuyXEmJi4XJkoB2tylS+tFJXV9AqD1vsPGJ1oMSZan997k2lop1+am3zfbVRZw/ZBwcSFvLiiFZ2PTLrAYq+gf5DnMenyAo3VKrfC4+YXZhYqS2U14zbQ+kBp80LQRr3SM+7y31UmTheEFLtH3Q3a7qUEnY90IVdh65WGkBInVQVrTYdxii4kvnTFFfzuC3+Zb33lCgCe+MvP5pcu+HWSNky6/PqVhb5Bu75BZVHk85h0+fPZ+kCMdtO+L4S4JZC5hhBCiMO17xh5vXW5TZ1RrIwd1w9bmi7Q+IBSsDr2aAVxEkEpNIoY85wuxRy+N1rRtwYXE2OX202j8sYBFyIpKVAKRf43aedX/41/f++rIEVOu+9Pc8dHPJ0YobIKq/N4uXNxGnrSGKOorWbHQsmgzuNkqzVVTxFiIsW8GWc2HmU6DF3qlWitqOzmnbMIIYQQQgghhBDi1ukWEYyC3Mbiggsu4IILLuBb3/oWn/70p/mP//gPVlZWGI1GDAYDtm/fzl3uchfud7/7cdZZZ53oUxZCiKPuaIRT+mWS4MVx5kKch3Ju1DYuQSDNK4FV1tCvzKZrnzZx+dybLrDeOFxMKAWNi9NwF5QmVyk70HtpUFlKq2ldDiD5mFgZd5SFPqj3cOtzSz7IgSTgoBdmCqNZ7mtitPsNp23rl/SKfGyt1Q3a7rU+t6Pcl9WK05ZqXIg0LrJYFVTW8Ofvey//66Jfo5mM2bbjJF786jdyv584lwgwDXXVGz63daHnlal6pWHi8uN2PlJazcQFaVUixDEmcw0hhBCHYzZG7nyuyjucODqf+N7KmNXG40PezNL5SK/UFAYmXcIHUFrTtwZjFL6NdDGidG6PV1mDTtNxaIqkmIgxUZgcyp9tENj5jcv593e/ghQ8O85+MHd+5AWQEoXJASgX83hyUFlaF9BGsVDkNnkxJQqTq0BVhSYlxVrTMXGeNuRKV9ooFkpLVWi2DaaB/kqqRQkhhBBCCCGEEGJzuUWuop111lmyGCGEuFXa+MW7nwZTZgGRgyXBi+Nr2Pp560PI167xgRg3VIzSitrm9oeNzzvKB5VlYRNdk2HrWZs4do9aGhepCkNKkEjTcBe4EOZVl3rljcNdWimWa8t1LoCCqtC4EFmbePplolea/bbkiykx6faGoqoiB7Dg0BdmtM7V0wYHKPAyu151YagLc7PXC5i2rISrd67wW7/xa/zFn74HgHuc8wBe8b8u4eRTT0cpUFpRG0OxoVrVrFLUxteoNJp2+rilzbcPdL5CiKNP5hpCCCEO1iw8v3PY8NVrhoydI0boQqDzYV5taeQDoy4QSZAUS7XlpL6l9ZHOJdYmnuF0zlBohdYwKAo6n1vqdT4SE/gQ0UrhfWRy7bf4wh+9mOgatt35R7nLY16ENQZrNSFFthUVGNCASnkjQ1UY+pXFB9BojM7j8QSMO89a40hBURSKqtDzUNSpizWFyQGrzbaBQwghhBBCCCGEEGLzrKgKIYQ4YrMv3ptp1ajK6v0GSW6KBC+On9WJo3F7Wx/OAmk3EhKti1it6BWGujSMWk9MiaW6OM5nfWPD1rN71BFiXpjxIYEKxBjnYaGNoZ9ZhaV9Qz8A/crSaz0+RBZ7JROXF4DG09fnptrWQQ5FzV6TY7EwczBt92YUzCt8feXfr+AXfu7n+dpX/gOtNU94xvP5lef+Gv2q3O/9DhQeY/p3rY/E6Xslpv28Z4QQQgghxAkXU+L69ZYvXLXKepPb6K1NHMPG04U8dwshMZ54UAk1DSK13lOVeS43q4oaSAQXKQuDSonGBayGxcqyHjualFvpaQ1+91V89q0vxDcjtp15Nmf/4kVEa+lSokjgXAIFPWNY6hX4EBl2AY3i9KWaqjBsGxQ0LsznK5M24FKktoZ+mTdpLNSW5V7BoLL0SrOpNm4IIYQQQgghhBBCzMg3FkIIcQsyC0jMAhOHGwqR4MWxN2z9fJFhrXG0Li+MKJUDbYXJCyExpeniSK4Ctt56uhhZqgsmXUArdUIXIGbhrpQSrQvsGTu6EFnAwsb3X0h003BXXRiqwjDuAjElFjeEu5SCfmnnr82gLBhU5qDa1vVKM68UdSwXZm6u7Z5WispqeoVBKbj00kt59rOfTdM0nHb66fzuxW/jrj96f+rCYLTacL+bbzc4e42AeRhMPp5CCCGEEJvT9/ZM+N7KmEkbGLeRlVFDF3KLusIoXMhVfotCsz5xuBjymLC2XL1ngp22qvMhMmw9IQaqmDBGUxdMdyBAWVpCF1Bo/Pr1fP7SX6dbX2HbGXfigb/yu7iiR9NFQkr4kDcoKBT9ylAVmlEbGJSG07f1MFqxXBWctFjhfW71FxJ0NtDXJdsHBf3KstSzbO+X02qrm6uarRBCCCGEEEIIIcRGt9hvLSaTCd///vdZWVlhPB5T1zX3ve99T/RpCSHEMbVvUOJQq0XNSPDi2HIhztvnbQxF9Uuz33ZxdWEYbGgX17rIGo6lumDU+nmQ6njbGO4adp5JG4jTkE9pcysNjSKSw12zFo/DabhrsSpoXEQrP68cNXuvLda52lPr4yG1rQOO28LMxrZ7MaYbhKTGXeC6XSu84IJn8efvfx8A5573MH7/zW+jGGzDhcRibedBrkMxe41mb5PD/JgLIY6AzDWEEELcnGvXGlaGLesTz55Jy871Dh8ThVbsGJQs1hYfYWXcUrSa1gWCz63R1yYOqzUpJXbTMXGBUefRCqxJaBK9oqBX5o0KyitSjIRmjc9f+us0K9cyOOUMHvis17G4vI0uRAodcT63vO6Xlp7VpKQgwUmLJYXVLFYWrRXb+iVWaxb6eUw9cYFeabBKsdQrKK3h9KWapbqkX+2/yqkQQgghhBBCCCHEZnGLCkZ985vf5JJLLuEjH/kIX/7ylwkhzP/uTne6E1/5yldu8PNt23LxxReTUsIYw/Oe9zyUrC4KIbYwpYC0NyhxuJWeJHhxbI3bve3zZqGopZ6lsgcOyWiVQzjWKNYmntZFGhOoC8O4DSz3j+9ihAuR9SZXi9o16ti13uJCIpHQ5PferOoV5JZysUyMO8/q2LPeeFYnjkFh2DPOiy+D0sxbimwMHdXWHFLbuuO5MONCnLfV2/hp+8LnPsvTn/w/+fa3vokxht942St40i8/O1fKcgFCDosdTjCq83tfIzj8AKQQ4tDIXEMIIcTBGnee69db2hC5bjhh3Hg6H+kVhjNOqlnu7e1T7n2kNBGlIjtHjkkXaGPC+cDEB3yIGAWzid6sqm8XA1ZpSq0oe5bYjfnXS1/M6NorqbedwgOf+b/oLe0ApaiM2VCNdlqFNSaWjCIm2FZZ+pXFGs2Ofsnpy3UefxtD4yIhJiqj2T4oWe4VbOuXnLZU32SVUyGEEEIIIYQQQojN4hYRjBoOhzz3uc/lHe94B2m6mp/2CQPs+3uAqqr4u7/7Oy677DIA7n73u3Peeecd+xMWQohjRCtFIOUvqDcEL2JMNC7QhUhM3GzrLgleHDsxJlqfF9Mn02pL/dLcZChqo8oa+mWuSDTpcjCq9YEY7XFbmHAhcs2ehrXW0XSBUevRStEvNUop1hvH6tgB+f2lFDgfGbu8S72LkUkbKYxCDXLwab1xxJRYHTusUQzKGoCFaWuOg2lbd6TPf9+qTzf3GMPWzyt/Qf7cTJznnW+7hN975UtxznHbM27Pmy59J/e///0Zt56VsaOYHqP1kUFKh/T5iilNP8eJGBN7xh29whBiOuqvhxAik7mGEEKIQ7VrvSPGxHDiGDeRmBSDalap6YZfxVWFJgFWW7b3FaUJ7E4toyaSUsL7SJfy3E3lAk8ADJtIZRMK8F3Lv77txaxf9VWKwTL3+5XXsnzqbahLS11oNIqVcUdpNTEBCoZNx3LPYq1mobYsVgU+plz1VSuWeiUpJfqVZcdCSVVolqYtsHcMShlrCiGEEEIIIYQQYsvY8sGo73//+zzkIQ/h61//+n4XJJRS+/3zmV/+5V/mn/7pn1BK8Sd/8ieyWCGE2NIqq3MYyhpaFxm2nhATPiRu9H/CBAFwIbdnK62mVxqMVvOqPfU0rFMdoEqPOHQTlysLzdrKKQW98tCqBvVKw8QFfEx0PlJazcSFeTu6Y2nYetYnjrXGkYD1xjF2kUIrGhdQQOcDJNg9BGMUky6Hh2bVkVICFwNrk8Ceccf2Qcmg0IRQTQM/MOoCKMUpC3k3/cYKUkfbgao+5ZOFMG0FmNsW5qpU4y7M2wg2XWDiArt27eZlL3gW/+9DfwvAuT/5CF752jeyvH07K6OOymgU4GKidYGqMEy6Q7tu6xPH+sQTUkL3ChRQ1DpXhzvAuUprEyEOn8w1hBBCHKquC1y33rA6dly/3rB73JAi0+qqgd3jjsW6wBqdNwqgKAtNvzQoB40LVNbgbCQkhTUanyJKKSI5jGvVrDqwwqbEx956Idd99fPYus8Dn/laFm9zJjEmaqsx0ypThVFEFEZpQh464kIiJlifBLb3S7b3C0JK7Fxvp3MUxbZ+Qa8081DUoLIyvhRCCCGEEEIIIcSWsqWDUW3bct555/G1r31t3pbih3/4h3niE5/I/e53P0499VTuete73mTLikc84hGUZYlzjo985CPH69SFEOKY6BWGUesprabzudVZV0b6pcX5SBMCKe6thKO0ojaGwurcTsFH8lfkCqsVpc1Bjt5htPsS+9dOq3E106pRldWHXJFLK0Vp8jVrpi3mWh+PSWhoo9VJbp3XuEDjA2sTx+rE5XBXUeBCDtW1PrFn0mFQVKUGFM5HUnLzNnsocCkSomK98aw1iV1jx45+yUmDEgAfIsPOzxdhjoX9VX1qfCBu+JxoraitobSaxgd2jVogLwqtNY7WRT7/mU/zwmc8he9/7yrKsuQlr3gVT3jq0/ExtyrxMeFjwPlIMQ0ajqeBMWvUQVUMWxm1XLuWH3uhtvgQSYkcUjvAuTY+B68WjkNoTohbGplrCCGEOBSzsP339ozZM+n43p4xK42nC4leoYnTn1kZd8QI/crQaYVzEWUUxmjwgcJolirD6qhDpVwNuDYWYq48VReGXmUZtwGjEp94+2/yvS/+M7ooud/TfpdTz/phQkyklP9rXR6LajS9UlFpg9GQlEIZqIzGGAgJjNGsTfIGCGs0tVUURs3H473SyLhSCCGEEEIIIYQQW86W/jbjNa95DVdccQVKKbTWvO51r+PZz372IR1jYWGB+93vfnz84x/n6quv5sorr+QHfuAHjtEZCyHEsaV1DlhcN2yY1YhaHTtGjd9/q4OQ6FzE6vwF+6wNWlVobrPcA3LrNmmTcPTEaWWRGPOvh7vbehaGmh0n3kTFkqNh2Pp5haTd445h4xlPK0QtVJalXsFCZbl6dYLRObi1MmoZr0aqwlAYRUiJ0mjKQlMojUIRQ2KCxyqN8z4vEMXEeuvY3u8z6QJaqWOyADMLesHeqk8+7ud1DHlByWpFoRWTabhtbeLQCt7x5ov5g9f8JiEEzvrBO/KWd7ybu9/zXjlc5QJawdgFxm0gxIgLiW2DAh8jPkTWJp5+meiVZr8huZgS16+1rIw7ABKJpsvnutwrcCHt91x7haEuc1gypnRMA2ZC3BLJXEMIIW6dDrW9MuRx4a5RS+cj37h+yM71ju/sHuXxn4sMHSidiCkRgiamlsZbFqdt65ouYLWi8XH6eIq61PgWSpPQ5D56LkKYttdLKfHpP34D3/iXD6G04QFP/U1O/6F70U17p+eKrh6FAaUoS03PGKpC0SssRaHz8yktC3VBrzB5DFkaXEyURrHcL+fjUwnbCyGEEEIIIYQQYqvast9oxBi5+OKL579/05vexNOe9rTDOtY97nEPPv7xjwNwxRVXyGKFEGJLi+RgRGUNe6JjNK1K0ysNi7XNQScUcdpyq/ORLkTW29yea6HM/zSEaUCkX0m1qKNpll+a/Xqo1aJmZnfb93jHwqw1G+TqRJMuh4lqo9GFYalXUFnDuMvt21LK759dw5ZIYrXpsAYWywKrYbGyKKXwTWTdB4xTLPU123olC1XBxAV6pWHsAktGT9vC6aPasmNj0GtW9Qny6zp7LK0UMeXPyazq0+5hRxtyy73vXX0Nv/+y5/CZf/4YAD/zqJ/jdW94I/3FRdYmjs7HeWu+yhoUOXgYUmTP2FFZzVpwLNUF4y63WSyNzpXaVL6mnY/smXSM23yuPiasVviY6JeGhdoe8FzXW08XI0t1cUwDZkLcEslcQwghbn0Op70ywDWrzbyC5+5hyzV7Jkx8YGXYMeoCMYGPfl5hUKtASgYfYNR5BoVFWxi3kZVRS4w5aNU5T0JRWIg+4VJCK/BBsTrxfO3v/4iv/OMHQCnu9+QLOf1uDyBFSDESYsIUhjYkFkpFr7RsHxRoFKct1xRG4UOi8YGFyrJc500OdWnoV5Zh47E6Vw8ujGbHoJT2eUIIIYQQQgghhNiytuzq2Cc/+Ul27dqFUop73vOeh71QAXDWWWfNb1955ZVH4/SEEOKEmAWd+qXh2vVm2g7PoBWURuMDaBKFBYWiMJoYYdLtrZzjbeKkqmDcBbbLF+BHnVJA2htsOtxKT7O7zY5zmPmquZvaGd+6AAo6F2ld3sW+WBdMOj9ty6HwITLpAr3CTNvTORangak9k46UcjsObTSTLtKvDJXVtE6TEhitpi35zN5WgS7SmEBdGMZtYLl/dN6L+wa9ZqGofmn2W7WpLgylD+watuwcNkTgc5/6BH9w4QWs7LyOqqp58W++hv/+uP/Jqgvs2j3OO+6NvlELSx8iISWCz9WzlFK4mF/z0poNLS0zP12gy2GoXAkKYPug4JTFer/nOkiJSRcYd4HWRdbI4atjETAT4pZK5hpCCHHrcrjtlXNr5Dweu3rPmGvXWq5Zb1kdt+wad5AS5bQSk1KK1kW0gcZHTEgUhabtOnxKKBKr447WBRqXiCQUENF4Fwkp0i8LtEp85aPv5av/8C4A7vGY53LGvR9KSqA1BJ/nGIlEqQ1lodHkceXpy3229QqMyW3T3XTcGVPC6ByW6pe52mtdGHYMSqyR8aMQQgghhBBCCCG2ti0bjPrKV74yv/2zP/uzR3Ss5eXl+e21tbUjOpYQQpxIs6oyRinU9Av605cqEsxbb7U+sOE7f2Aa/LB6Xo2m9YFtvTK3bBBHlVaKQMrtN0LedV4Xh16Vq5suYszaeBxu5amb2xnvYmT3qAMF49ZTGE2/mi4IufxjkYRz+d6tj+jpwlFPawwKKAnTxRY7TYYZpagKwzalpqGovBBjtGJbvyTE3CZw97CjX+UqVI0PGK1uso3JwZh9TpppcAhgqZerqe3PqPWMu4APuZrUpRf/Hh94+8WkGLn9D96Zl77uEu5297uxZ9wx68Q3bP00fHjD89Na4dtcSWrcBazJLe/KwuTXx6gbLMB1IbfAiySGTT74aUs12wflAZ+fVopBZbFGsTbxxyxgJsQtmcw1hBDi1uNw2iu7mAghsjpxKJXHflfuGjGcBNbGHSECJHwC5XPVKIUClVhvI4XJLdAb71GAUppRF+hcYuwCPkRcAJUSqVNorUgxUerAdz/193z1ry4B4Acf/hROO+dncDFSFZbKKmKEkKbzQa2ICfo9w2mLNacvV9SFwajc5rou8zi7LjTb+iVGK/plHpcWJj/ukW7AEEIIIYQQQgghhDjRtmww6vrrr5/fvsMd7nBEx0rHsv+QEEIcJ3EaeoLckmuhsixUhtkO5soafMg7n1PMu4K1UigNtc3VbcadZ9IFFLBQW1ofiNEeVvjk1u5AFZiaLuBinFdEan1kML0WB33slOjyagv1NMxT2UMPuxzMzvjW7T3/cRdQKjCYtg1R03BX63NoaHYM53P7NgWsjB2lVSSVY3bVNABUWIUPimSgsJrKaAqd43w+RMadx/kEKp/H7P3ZL+1+25gc7C72fT8nkCtFHSgUtbGi1Le/811+8wW/wpf+7ZMAPPCnf55nveS36PUHrIw6Oh+xKld2mq0gVVbPK6/NWliGlBi1nkQOMY5bT780hJiorGapX+RzTQk/vRZr447Sak4alCz3DxyK2qiyhn6ZGHeBSZeDUfKZFuLgyFxDCCFuefY3Ph93ub1yaXSuvhvy/7Nvqr3yrLW0D4k2BNbHjitXRoyaQFlonIdJ8IQAjQu0KLTJY9x+ZalsDkGtTTx1aSi0JiSfN7KEhPOJSZfb4SUFBjDGUBnFVZ/7GJf/2esAuMODfp47/OfHQUrElNvAEi39yjDxAZUUVuf/eqVhx2KV5x6lmVetLY2m9ZFC57H0rJUzHPkGDCGEEEIIIYQQQojNYssGowaDwfz2aDQ6omPt3Llzfvukk046omMJIcSJMnG54k/nIz4mlIIdg4oYczCiCxFrNAsHCJAoBcu9gspqjNZ0PlJazcQFBtWW/efiuLu5CkxGK1YnuTXdpMsVmCbdob3Gky7k1nQ6t8BQ5BZ0h+Jgd8YPW4cLicYHFIqlniXGXEWpNobORYZNfh4xgY/5/dcrDU0X6ZWGBW1xPs4fozCKEHJ4qLaaHYMKaxTOR9ZbT+NirpxEIgbYNeroFZpRq9nWjzdqY9L4/PotHMRruL/PSa88cKWoWSjqIx/+B17+vGewtmc3dX/A4577Cv7Lf3002wYVKSUaF9BasdZ63PSzdtKgpLJ6WuFq72Ns75cYlXfvKwUuJsadx2jFsHEs9QoKowlpb/WthTq3PFnsFYd0nXulmb/u8pkW4uDJXEMIIW45DjQ+9yGy3uRNAivjhm46Bs0tnw0uJDofpu2lc4hoUBpGrSemxPdXxzQ+snO1YU/j2N4vGXUeH0MOzBtF8kCMxJSro+4ZObTK5+RjpPVhOjaGLkR0yn+nNPNWzEnniqsrX/8Ml//JqyBFbne/n+aOj3g6IUFIuUWzVnn8vFgX+Elud72jn8eVS1WBC5F+aemmVVqt1liT531VMQ1GkebhsCPZgCGEEEIIIYQQQgixmWzZVbHTTjttfvvLX/7yER3rM5/5zPz2GWeccUTHEkKIE6Wd7uxtptVwZoEMbRRLPU2chjc6H4kpV7BQSuUv+a2mLgxaKdYmjnZaOai0eQfxoDqRz2zruKkKTCHkYEog0bpAiHnRY9J51iYFdzipT6+8+X+WWx8Yd/kazwI9lT20lnLD1s9DURsrIu1vZ3wO1QS8j7iYqKxie79iz7gjkfAht9rTOrftcCHgfG4x4mM+bml0fj9qhVWaQW1wIVIYjVV7w11eKZrOE2yiRDNuA4lEoTVWK2KKuLz6M29j0isM9YYFqqX6poNDB/qc7MuFyLgLOOd43e+8kve89Q8A+MEfuisv+N03s3zaHShNfo1IitJorM0hN4BS5/YkWikmXa5CYKehRIUipbwYZ4xi3OUFsYXaslBPF696BXvGHSElJs6jUfStOeQd+1qpeSUA+UwLcfBkriGEELcMw9azPt0Q0E0rPjUuEFNi1AZUAqX3huYrq3Eh0SsT/dnYPEEgj3OHjSMBw8axMnEMx4H11qOU4tpRS9fmVs1pOm62TtHFhA4JrfJY3vu8QSBMq1ARc2vtmB8KbSDFXGFVkcdyw6v+ncvf9XJS8Nz+3v+ZH338rxGSpou5kuy485w8HeB13lNbQ201y4MKoxTW5sqshVGMOs9CZamKHIoqjMZMx6mdDxTGHNEGDCGEEEIIIYQQQojNZssGo+573/vOb//VX/0Vb3jDGyjLg2sts9H6+jof+tCHALDW8sAHPvConaMQQhxPs3YIcVr1Z9/WYlop+qXl5rpwzYITs+NEaQF0UA5UgcmHXCnJ+TjfoR6mVbxKq1FasXvcMe48t9nWY/ug3G9bt5gSk25vKKoqcpgNoF8d/GLFrAUd3DAU1S8NvfLGwZtBmdt9dC7gOo8PsNZ2tCGyMu4ojcaHRPBxHrYDReMj4+kiUW01Wu3dhe5DpHF5Eaaahrt8SrOuj4wbj7OaGBPG5EWhhdpitWaxtvM2Jj4m1ltPF3PrvkkX0ErdZOWom/uczEy6wNVXfYcX/MpT+NLn/o3/n703j7fsqsu8v2vae5/h3ltVCSFhHmWKDCptkEYREAcG8VVoBO1m9m0nFHBgEARkaLoBwVcU0FeZBERBjQp2C3waBLr1BTGEBpQxQEKGqjudc/awpvePtc+ue6vuTaqSSiqVrK8Wdc+5Z++z9nBSa53f83segB99wpP52V/7Tbqoqa1LkSU+4olIwNpU1JoWGhcj1gU6lWITa+tZ6d9r0Tm2GouR6RoaFZj313a10kiRhIutC0ghUvyij0Mn/8mSP9OZzMmT1xqZTCZz5nN41nKkjztunE9RdTvmQ0uR0+FZS+ciByaasycVPkSumrUYZRkbhRApQrpQks4nh9PLNhq8i2x3HfPW4UOg9QEiVJXBeDG4UVnnCZFBfOQiECPe93F5wKJvppBCDm5RUsrkmvqtL3PRHz4P3zWce89/x/f/zIsRylDbgHIOEETAhuTW2tnA6qigMhLnAtOxYVJofIxsN8mlVIjkPrsIgWmpkxOsS+Mx6to3YGQymUwmk8lkMplMJpPJ3Bg5Y4VRd7jDHbj73e/O5z//eS677DJe/vKX85u/+ZsnvZ9XvepVbG9vI4TgQQ96ENPp9NQP9gwixsiXvvQlLr74Yr7+9a+ztbXFeDzm0KFD3Oc+9+Hbv/3bUSp3C2YyN0aWWofl3yfrLLNkudmx+8vsz34OTHXn8PGoI1drPbPO0VpPYz2bi0BZSAolaVzgss2GzdqxNtIcGBcIkc5/5wKdD8O1KI0cnJEmpd5X3LMXi/aoeGs5ztWR3lOMBfTRISlSJAIL69huUzd9hBTRFgJN51m0Hq2S2KhCJVekGNhqHJVJrmUuRHyMKCEwOh277wtUAlh0qShktKTQikmpqHSKM1FSUBlFZRSTHUKx1ga2sKxWhnnrBtervTiRz0kIkff/9V/xgmf/HNubm0xWVnnBK1/Hgx7+SJwPuC7FCtqQimxaSbr+mIQQTCo9uBG0nacYSWwvTFpYx1ZtgXRutmtLIBXEYoTGSrQSvdAu9M4CASUFTReYKce4VCfk/rbzGu517JlMZn/yWiOTyWTObC7farhyuwVSNPS88TTeQ0xupKEX5bdtEqAHItu1ZdF6qkIzKY4KhUZGgY9sLRzbjaXzSaC/2XTMG0fjksspEUqjWDGSef8YGGKchQ1JPO89zoOPgeADSkpiSA5SLji0BKUUhRTY9cv49Jt/DVvPOPvO9+Z7fubldEEhZaDUgpWypLae9UXHVu36xoxIoRxr1QgpU5T3vPUgIoWC1cpQyCScL7WiUDLNazvPgXFxrRswMplMJpPJZDKZTCaTyWRurJyxwiiAX/mVX+GpT30qAL/1W7/F2toav/zLv3zC27/zne/kFa94xfD413/910/5GM8Etre3ufDCC/mrv/orPvShD3HllVfu+9qDBw/y5Cc/mec85zmcd955N+AoM5nMNSEEEI+KIK6tK8xys+V+rqW+6mbDfg5MPgbKXqDSWs+iS4UKIyWqECgp6XzHvPV0MlIWknnrMEqwsUgRdtNydyycloJRoYZCxahQV+uOdCwhRNo+Qq7uhVzjQu0rigKQIkWHCCmwPmB9cjFadI4YYauPtBNC4EPE9m5Y8zaAiCT/qFSQCiEyKQ26UBRGMl3GkwhQQlA3DusDWgimpcGH9F692RQ7m9WlEExKjVaCrdrR2kCjPJVRLFrP2nhvYdQ1fU7atuWFz/t13vIHvw/APe59P170mjdyj7vdldYGnA+UWjJvU/SJQKB71yylxRBDWGqZolJiKk5pJdhYtPh4NKavUIKoJONi6RIFxggmhYYIUorkONY5hJRURnLldkDNOT52McYh4mXRR/eNC4VWMn+mM5lrSV5rZDKZzJnJVbN2EEUd3m7YbhwuRiqjhvn5dmOpO89GneaoUgIIFr3ra6kFa6MCKQSVSQ0BG3XHvHPUredI3faNCwJrA2WhCCLN+2atTzF5wdNZT6E11lta67EhEgK4kOaRAM1S7B5SrJ8AtI742WE+/cbn0G6vs3abu/CQX3gVphrR+QBeIlWa08t+Lt06T2NhXGgiaV/OR6yPaBXobKSoJEYJZq2jMhqjRHIW7Zs5RqW61g0YmUwmk8lkMplMJpPJZDI3Vs7obzie9KQncf/7358YIyEEnvOc5/Dv//2/573vfS/z+Xzf7T71qU/xH//jf+Snf/qnCSEghOCRj3wkD3vYw27A0d842N7e5pxzzuGJT3wi7373u69WFAWwvr7Oa17zGs4//3ze97733UCjzGQyJ8LSIWYZdWB9uFb76VzYtZ9r6zx1c2EvByYtBUokgcx2a5m1SRQlRO/2NDLccqXijmdPWKk0LgaCj6hefFQaSQzpWhglKI1kbWQ4OCkGUdSk1EPR4kSprR861pfjWcZk7EfRF0Oih84HhIB565m1HiEEWgkEgrMmBbdYLRgbhVYCT6Bzns3acuV2Q9N5Oh8RIjIuFGujNPZCC3R/r816gVlVKpRMBaPlGOrOU3eeI/NuiEXZWHT4EKn6iLm6jxls+yiSvbi6z8lXvvQlHvUD3z+Iop7wtJ/j9W//K25/xzsmsZOR6ZilIPabLbePcRnNd/Rzo1OFjcZ7fEjRJa1LsXkhRLSSjIzinNWSg5OCQku0EJRaMS41hyYmXR8p2Ko7vrFe07okfGqsY9ZatuqOzUXHVt0xay2udxZrXWB9YZm3Ln+mM5lrSV5rXH989rOf5Z3vfCevfvWr+e3f/m3e85738JWvfOV0DyuTydwEmLWO9XkHwFWzhvXa4mJkWmoOjA2rI5Mck7RMYiQi8zbFYPsIB0clhU6id0jz+hBhWhoKJVPEtA/MG0fbBoyGejm/Iw6Rz+vzjs5BEBLrPEqA9xHnYnJLjZHkUwWBJJCP0IvjFbqb8y9v/lXqI5czPec2fO/Pv5pOTZIQPkQWnWPRehofsCE1WSzXEgLwREKEs6clo14sPy4VPkbWFx3bjSMSiSK5vWopOGelHNYXJ9uAkclkMplMJpPJZDKZTCZzY+aM/pZDCMGFF17IAx7wgOGL9E984hM89rGPRUrJ7W53u+G13/jGN7jXve7FpZdeytbWFnC0iHmPe9yDt7/97Tf8AdwI8N7TNM2u5+50pzvxfd/3fdztbnfj7LPPpmkaPvOZz/Dnf/7nXHXVVQAcOXKExz72sbznPe/hx37sx07H0DOZzDGUWmJ9oNKK1qYv5CcxnpQIIsSYOpCBqncRKvUZraE9aUJIbk2pczoS49E4uVInIctSYLKXA1OhBF1fSNluLV0vllo6Pe28HkanAsZ2bZl1DhC0NuBjZG1UALs7tQX0ohl1rbq3214g0/RjLrW8xvujMoqt2mJDcnLaajyt931sHJy3WrFoPTYEVmWBkik2rvUeayPOWVrnCFFwi5WCymiUFBRKMioUQkDnfCoi9YWc1dLQutRF39okwIJIaYohdm+nQ9KyoFVpSecChZbU1jPZo5iz3+fkL//8T/mVX/oFZtvbHDh4iJf99u9z3+95MNbH4VxLkcZdWze4WIXeAUqr40VHRf9ehEjTv5e36VjHRjEtDdNSo6UkBL88rOHvkVH4AkbKcZVLrgRFLRBCMmvd8cUqH2l7B6+qdwJbxjyOC32z/UxnMteWvNY49fzZn/0ZL33pS7nooov2/P33fM/38LKXvYwHP/jBN+zAMpnMTQLrwxB1t91aZk2aXx0cFxycFLvmaSEk59S6k0jpESIJ3IWEkVK0LjBrLYfGJdYFnAs4n1ynpAQfwBNobcRHiN4jo2TW+T7y2KOlApHG5UMECUYIWhuJCGRM/9ZoEQgyCaNEBNfMufjtz2NxxSVUa2fzwJ97DWZ6cNhX7KOptYhUWmEEFFWJc8m1FgmV1qlZQwlGJsUC1tZjtEy/U8l9daVKc8TVkRnmzpNSZ1FUJpPJZDKZTCaTyWQymZsUZ/w3Heeccw4f+9jH+Kmf+ik+9KEPIYQgxoj3nq985St9MTVF43z+858fChRLHvawh/Gud72LlZWV0zH8Gw2rq6s85SlP4clPfjL3vve993zNa17zGn7pl36JN7/5zUASVT31qU/lQQ96EGefffYNOdxMJrMHI6OYty65zkiBC5G621scsh9154kxdUYXWiL6/d4csD6waD2tS65Ku4ip63oZm7cUJ3UuHOfAtNy2tX4QRa1UmmKfuLrKKBobOKAkhRFsLTxNF5iYJPDpXGBc6ONEWdeGZWzc0k3pRMRVUgp8v50AbEjuVqNSUqok9FoZ6eF+a7sAOm03LQVKCi7fDsSYzo8AtJAcHBdoJdmqU0f/VmOTGKgX7WwuOoyWrFSGGCNSwKJzhLBDrCYFlV7GxUU2a4uQcO7qKAmeyuOP59jPyfZ8zkt+7Zn86dvfAsAF3/NAXva6N3POebdic5HGJjl6zisj2agDSgqUgHkXWLQdpZYYneYg40IPnx/6c9Y6T+eS8MtIycrIYJQY3K6W983OuLvKKK6atSglmBjFVfMO6wJnTUukSMK6pbgtxBSTsrwXZ43DmhRFWHe+/0yXN6vPdCZzKshrjVOD956nPe1p/PEf//HVvu7jH/84D33oQ3n+85/PS17ykhtmcJlM5ibDok2ipKbzLFqPC4FpqY8XRcWI6+fDPjBEPC9jjHXvErpoA6tlikTeaiyQoukkAikhukjoXQW3a0dtBJ2Drksi+tY7QtLIpyjnKAgxALEXYiVnqiBBRvARpG+55N0vYfbNf6WYrvHAn3st5cFbYn3EhzQHNSq5lyoEI6PpepH+SqWIUXNwajBSUvZzvkXnICan1wOjgoMjw7jSnLNSAWl+Oy31dWrAyGQymUwmk8lkMplMJpO5MXOT+Lbj3HPP5X/8j//BH//xH/Pt3/7tu34XY9z1Z8ld73pX/vAP/5APfOADHDp06IYe8o0GrTXPfe5z+cpXvsJrX/vafUVRAOPxmDe96U084QlPGJ5bX1/nDW94ww0x1Ewmcw1ImSK44KjwYdH5wdHomlhGdMHReLVSXzchzpnCrHUcmXc07mjU3FZj2Vh0rPeRbVuNHYRQjUuRbkf6mI6lA5ORYojdaOzRc7mfKAqOuhABCAQHJ4bKJHeps6Zliv3oO7iv67XY6Ua0fO9rIsQ4vG8UAj1EiERq6wgxDmKbaak5e6Wg0hIlktBOSsG00JRG4n0cYjwG1624FKUlhy6lBFfOWlxIwqAYYbtx2N4NyfpUyFo+3qwtm4tu+Dd+3jhmjRtEYMey83PyjS//K0945EP507e/BSEEv/yrz+XPLvwA59361sBRkVLYIZXrXBLHzRpH2TsGSJHET1uN5cjMslnbPu6vZbuxrM87GpuKc1IIJlUvdOtjTZb7BRBD3N3uop1SAhcCC5scslaqJKwqdSpelVoNETHLz++scVw1S/doBJwPN5vPdCZzKslrjevOL//yL+8SRY3HY57+9Kfzu7/7u7z2ta/l8Y9/PMak+KYQAi996Ut57Wtfe5pGm8lkzkSWTq6dCzS9+2tlFNPKHDfnTfHXaZ61nMsWveAcwLqIFgIfAo1NUc/z3sW09QEXA6WSRATz1rLoLNZ5vI9Y5+h8aqhwftmYENEakoFUP6+OaV4qAEkSuqvg+Mb7XsX2Vy9ClWMu+L9fxcqtbo9AIAXQzw9jPze1IeJ8oNISLVP09qFpycFRyW0Ojbn92WPOGpccGBdMqnQuVivNgUnB2sigpGBtZDhvbcTZ05K1scmiqEwmk8lkMplMJpPJZDI3SUQ8tq35JsBnP/tZPvrRj/Iv//IvHD58mI2NDcbjMWeffTZ3v/vd+f7v/36+4zu+Y+jwzpwcl156Kbe5zW2G4s/9739//vEf//G0jOWzn/0s559//vD44osv5l73utdpGUsmc2PA+jCIdbYa23/pn2IiRoXaUwgTYnL6WYqiSiNZrVJx8tCkuEl8OX518XhL4ZgUgqbz1NYPYpS90DLFUVSF4si8wyiB74U6WoCLYHthlRBwYFxcowCpdZ5Z4yiUZFJpthvL2igVLAqdOrhPxvlrP66atfgQ2Vh0WB9TdMY1uActOse89WzVHVdstwiSe9Z27dBCMh2lyLaDY8N244jA5sKysI6mv6eqQrHoUoTcwVHBysiwVhkmleKKrZZ569hcOByBlVLjQ+TQ2KCUonOeyqjBhckocZxDUoyp+NT5yFqlWRsXTEvNHc6e7HlMnfP87hv/gOf/yi9T1zVnn3NLXvH6N/GQhzyEUdFHB/o4RCGWRjIuNOvzjvXeRcqFCBG2WksIgc4GZo1HKMHBkcFoSd16bEwuUQdGBQLBpEpCubMmxXBNQ0zXJEZYrdK2k0LhQmTeOq7Ybll0jqvmLUQYF5pDk4JpqTgwPt4WK8TIVm25atYCcHBsOGtaUWrJHc6e3CQ+05nM6SSvNU6Ov/mbv+GRj3zk8Pie97wnH/jAB7jtbW+763X/8i//wo/8yI9w6aWXAiCl5NOf/vRxYrQbkrzWyGTOHOatY9Y6Lt9sWF90zFrHuEgRceUxTQqbtWXWWA7PO+rOYV1kVComZZqzxpgcPm3vOHX2tGTWOrSUXL614Mi8Y955vnbFjMtnzRCZHEKK1fMhuZ0aJTBaIkki9XnrcD7S9c0YWkqEFDjviSFwyV+8ho3PfBipC+7ztFdwq3t8Z3KnUoLgkxyq0P3eIhRGsVIpVooCrQSBiBKwMio4b7XiFisVRks2Fh3ORw6MDKvjgkMTw60PjJlWOs8LM5lMJpPJZDKZTCaTydwsOOOj9PbiXve6V/7C+nrkVre6Ffe4xz34P//n/wDwpS996TSPKJPJLDFKMik189axWhm2SOKoRS/4KZRMEV8idSl3LtD5MDgI7RRFTcoz/4vya4rH22oti84jRBInSZIjkhCkaDS1M6YsFTxciGy3ji4kQU5jkzin0BIbIkIIGp8EQUUfc3ZNLDvHQ4xIITAynffGeQotj4uFuzqh19VF7kkh8PQOUH0n+zUJo5ZORlKmwo6IYBD4Ir1vjClSpLHp3DTWo5VAe8m4EL3bksAIiTEpSq9znsu3PFUj2a5diuqTkVJIOh+4xaRASMl23SGFZFIKIqkj3vnk4LT02Iox0LnIVmtxLqIkrI0LapuEWMfew9vb2/zn//yfecc73gHA933/Q3nF69/IysGzh8+J9wEbIjIKOhdYdI7D8xbrjkYKVkoy6xyVVjgvMErhYqR1kVlrKb3C+YDRCiNFcqrqx7Ja7Ra6NfZohKXpI/gKLVnUFq0ky0t5y5WKrcYRQ9rG+YCScojtW7qd2f4zXRmFjxHd309aSVQWamQy15m81jhxQgg897nPHR6Px2MuvPDC40RRAPe5z314z3vew4Me9CBCCIQQeN7znseFF154Qw45k8mcobT9nHVwcu3F9HvNxWOMFFqm+ZeSSJHmeM5HlJC4GLAx7W85F44hUhSC1qb5/nZtWThP61O8Hb3TZyQODk/L+biUgkgSfIbeWSoIiNEjPEQEl37gjWx85sMgFXd+/PM5eOf74ENE9Dqo1nmUFMQgCBGUgkIKlFS9yygoKThntWKkFQcnBUan+Dzre1csoxiZFGl9cFJcvxckk8lkMplMJpPJZDKZTOZGxE1SGJW5/plOp8PP8/n8NI4kk8kcy7R33GmsZ7UyNMpTd8kFqXVhKBrsREvBqFCDSGZUpFiuM5lZ65i3bnjcuUDjPCEkQY8LScBSaUXtPF3vrnXWtODQpDyuiFIZxWSHu1ZrAwvrGBtNYx1SaBCghSD2jlMnKixbxmEs37PoYzxCv59lLNw1Cb08Sew0bx2lVoxLtWsMpZZJDKUVbd/ZPunFWEtCf+90PhAirM87QoypS14IqkKyUTuMSiK6FAOSik9aapQQdCFwy9IQiLSdZ9Y5BIIQFSCSi4qIaJEiS7ROrluLNrlDuQBbi5ZSy1TUUQLvIzPrcCGJfkR/fkuThEGqE8yc4/AsUmnJWdOKRetZGx89/k9/+tM87nGP49/+7d9QSvGCF72Yn/mFX0ZKSWOPfk5AMG8sEWhtGj/AtDS4mN7fxciBsWFaabZqR916tBBst2mMIUaQAiVTEcqFwMhIVo4RRXUuvS8kZ63l9V8KFl0v7iqMRAvJpIhJ7CRSUaxzYSjY7URLwVnTgrpLgjUtBeNCUVt/StzHMplM5kT44Ac/yGc+85nh8S/+4i9ypzvdad/Xf8/3fA+Pfexjefe73w3AX//1X/PFL36Ru9zlLtf7WDOZzJnNcr68dLZexhXvjFcOMUUxbzUW7yONdTQupKaEPlZvGafnfcCFPmK7tszaJObfqDtmXVpn+BghpnmsJ4mPWEbepTckADZGfIAQAz4EgoAQ+tdFOPLRt3H4n/4ahOD2j3k2a9/274i9I60SMClNimRG0jiPj1AJhZAC7wNRKUoj0FJitGQ60qyOUixejHDWpCAKWB1pRoUezk0mk8lkMplMJpPJZDKZzM2FM7oy9pGPfASA0WjE/e9//2u9n0996lPMZjMAvvd7v/eUjO2mzle/+tXh53PPPff0DSSTyezJ2sigpGDeOiqTBE/HCoNE38VcaTUIcSA5RZ3poqjN2tLYJDbZLx5vu7F0LrBdO9re8ensaQEIFq1nWh1/DqQQTEqNVoKtOsVutMIjpaC2HiUlumBw4JKcmDvP4ETUX4be4GfYT4zXLPQ69no2ztM4v+t6joxi3joKLdFS4EISek1KjfWBuvMpmm7H2HyMhJBcsWrrYB5xUSBJIjAhBWevFIyMRgrB2jjF79WdRyCYrmhuKSu2G9tH+cFIS6SSnLtS4WISe1kfWDQ1rQv4EJmWmqoXCG0sLE0vXJNCoGWKLIwhRfeVWuBi6pIvlGS78YwLx5FFx0qlEQLe8IY38KxnPYuu67jtbW/LO9/5Th74wAcO5/XYz4n1msZ6ykKx1TgKLXAxsDw5y057KQTTwrC+6OhccoiaNZaNukMIUIUiEDg0LhH9/4WYCm9LMRZAYeQQ8zIq1HCtl64Hh8YlznkWHVRKMa00IUYKI4k77gEhBZVSmKGo55ASlEr34rHuY5lMZn/yWuO68773vW/X46c97WnXuM3Tn/70QRgF8Bd/8Rc85znPOeVjy2QyNy2O6p/SnMfIJCJP4qJAY5dOuRHvk9DcKMXCeqRIblFz59mq0+/wEVMoSiXTYwHrdYf3kY15x1ZjqbuAFND1LlGVEdgA1vleHCWIgSH2Oe6cZEvwHo78019w5UffBcDtH/lznH3v78cHQWMDpp871jZgpCZ5qEpEH9UXItSdp1QKHxSllsQYMSqtA1cqk9YvlU7peyFFrKs9nGUzmUwmk8lkMplMJpPJZG7KnNGV7wc/+MEIIbjLXe7CF77whWu9n6c+9alcdNFFCCFwzl3zBjdz/uEf/oErrrhiePyABzzgNI4mk8nsx7TUlFoODkOFlrsEUDsRsKfD0JnIrHWDKGqrSVGCwK54PGJy6hFCsN3Y5KgTBZ0PFDq56gjBvs46pVaMiyQqanph0VZtcSJSmRTFBxCO93U6jhAjnU9jrHphjFESHxj2s93aodt9P6EXAD51wWspGBlF1QtsQoysVibFuWlF4zwjo9huHYteDLVzf9YFGu+JIbIxa6mdZ7N2xBCRSmCUZFwopErv431k26XYt3GhWBsZDozNELOXokNEEo5JQWEkIUSqQhGihCiYt5ZxqYmkWD7fBYSApnHY/vxYH+hswBNRpNi5QkvWF0kgNTKK1nogomTFvHX829e/xfOe9fO8973vBeBRj3oUf/RHf8RZZ50F7P85GRnFxsJC3VEVkq2FZW49k0Jx3lqFVpLWBkoj0X2EJThWRxrnA2epEiEiMQo664kxnYetJjlwLeNbIImiVsoUYTku0mdweTnC4D4miPGoS1f6zB7d7liWcXyjlYLahuPcxzKZzDWT1xrXnb/5m78Zfr7zne/Mne9852vc5kEPehBVVdE0DZBco7IwKpPJXBOizxUudXICNTrN1TZrS62ORuq5PpK6c4HWpQjlmYusjDRdk+KZm164vhoKYhFZn1ta6zkyb1l0nu1etC9IwvwSjZHJDSrGiBNJwhRCmnst4/VC7yol+1zzIxf9d678+z8A4HYPfzK3+u5H4UPflODB41FC0XWu31LggksxyTHSdA4hBCGmoGkXUhSgUQotJYWSVIVCkNY8xqQ5a54OZjKZTCaTyWQymUwmk7m5cUYLoyB13sVT8K3OqdjHzYVXvepVux4/7nGPO00jyWRufoT+i/zWpaiuwSlICMpezCF3dAAbJVkbS0LQJ7XdmcoyRg52i6LGhWJUqKEgsmgdhVYIApNSJ0FUL3QBy7Q0LDqfYt72EYqNCkVVSGrrib1bUWsDjfUIKcCnzvClC9B+NL1oRkuBVnK4Lp6I7F2/rA9Q7C/0kiK5EFmf4vFciGy3ji4EVitD3fnkbFRqxmUSRlWFoguBq2YtnQ2MCoWAXSKp2no2+/evO8dW61DA2qhIkXm2Q6+UHBgVg0MRpPtuKSpbRvM11qFkEjNNS0OhJeeuVoyM4lubDV897FkbGS5ZX7DoHAdGBuvS9RoZNYjdpEqd91IIhAAfAlIInE+d80JC6yLrC8vlX/xnfvXnnsI3v34Jxhhe9apX8cxnPjNF+e1gr89JjJEQAuvzjkIplPKMRYpUbFzEzTsCyXFAyVRsm3cuuUYpwajUGKmYtRaIbNWOykgWXbpfDoyLoVi1vEcqc/S8LeclO6cn1geUFKxWyRFOSYFWyQ3h6GeatN/+M906T23DLvexTCZz4uS1xrVnY2ODSy65ZHh8wQUXnNB2RVHwnd/5nXzsYx8D4KKLLrpexpfJZG4aLNdHm7UdnD+3GkvlFY11WB+JRXI2TfPcNC/yMc21lZK0XeDwrCOSXJg6H2htxPsOoqF1Dd6n+eWstSxsoOnn15WWFCbFVPsY2a4tUgpCSO/lQ5orep9i9RACJSKbn/sY3/rb/weAWz7wx7nV9/6H9DuZXhN6h6fWRaTs96MESiTnVBFgZNL6IQIjZRiXknNXS6pCcYtJyaifV7bOMyoUK/1jceYv+zKZTCaTyWQymUwmk8lkToozXhh1bHEzc/3yzne+kwsvvHB4fN/73pcf/dEfPSX7vuKKK7jyyitPapsvfvGLp+S9M5kbO9aHwdHmuNJqBE8cREF7OT9JmSLgbuoRWov2aHzeUkC0OtLHiZOWDk2NTwWNtZGhUIrtXnhklKfUikXnWR3tLYxKhRBFoTyNT0Kj1qU4uqXzU+cCoYiDIOtYuv71AFWRtllG3EGKqpt3nkmprlbotaQyiklMTlaL/hxsYVmtTH9vyEG0NG8dSogh7O/KWYtzAaOSY5IPER8ipZTMakvrAm2X4gJdDGy3joNjw8J6Lt9uWCk1lVGUJp23EGOK75CCqlCMrKYyKeax0JJpqYcIv0BMUSchDo5GwUe8DEmIZJP3llGSaSnRKhW2Zo2j9gEjJStjw8hIBALnPX/y5t/lLb/zCrxz3P4Od+Rd73oXF3z3v7va+2f5OYkkMdhKZTh7pWRjblFC4IWg857tzeTCpZXYJZwrtaTSkihAiiRYu+VqxcJ6NuepSFb2xatSKVbHR92exoXa5VAmeieB5SWue0GV7sVlAjg0Ka5R0LjUYiz3k6dNmczJkdca157Pfe5zux7f5S53OeFt73znOw/CqPX1db71rW/l+O5MJrOLY9dHEtLcVSmUEByZtxCh9YEj845poXv3JJiWSUAuiIgIbdcys47oI+vzjs4HKiPpAnRBMjaGSisWnaPpJFUhab0khECMglGhKZTH+YjzSSDVRdk3pPTOUSFiiSghWHz103zjff8VYuAW3/lD3PYHn4aQEtULoiohsOGosL1zvTuVEFSlRpDmeDGm+b+RigNTzW0OjDl7pWJUKEaFHhxEpYQQGOaN+61NMplMJpPJZDKZTCaTyWRuqpzxwqhTgfepKK11Ph1Xx2c/+1me8YxnDI+11rz5zW9GylMTu/WGN7yBF7/4xadkX5nMTYlZ6wYXJGDohA5hh/OT7EU6WtI4T+NSvNt0nyi4myIhRFqX/nte9+5C4x1uPLteu3TPGWLK+vi0Qg3xeKVWdD45bO1XPCi07F2AHGWpmFSBtkvXx7qAUoLGesbF7usQYnJRWoqiSiOHcS4LHUuB1DIW5OqEXjuRIol7tBJs1S65WClPZRSL1rM2TqKk1ibx1LQ0tLYhBobIu84HOpferw0BFyOTQlPo5GilevepqlAUKgnCCpWcproQWClNKlTZgFaCWetYtB6tBEYJfFCcNS6AJGYzvVNW5zwjnUR9AoH1kUXXYV3EaMHY6N6ZKw5d/vg07qJ3bepmG7z6Bb/EP37kgwD8wCMfw+++4fc556xDV3P3HGWztoM71Wbj8D4yt64vTqUgFKXAu3QNXZMiBIterGRKw0qleiepdD1GRiHGEAVMS4N1HhsC1gWmlWZU7BYyhhBpO8/COrZbz6yxOB+YlpoD44IQYhLGnYDL2/I65kJYJnP6uLmuNb785S/veny7293uhLc99rVf/vKXszAqk8kM7LU+sj6wXXdJbO9T/N1KqbE+OUrV1nMLUXKLlRItJSE6ttuOLgRsiJRKsNk6WhewPs1PVyqFlLKPhBbpuw8BpRZIkoNTZRSd9RRKEnpRf+eTG2zTeQSSzschRq/55uf40jtfQvSOA/f899z6ET9PiMkJqjIK78MgoheRXnAv0BKQKbZaSdGLnlKzxFmTgkOTkgPjgkmpWan04CCKgCPzDjga213uE6+eyWQymUwmk8lkMplMJnNT5eb17fw+XHbZZQBMp9PTPJIbL5dddhmPeMQjmM1mw3OvfOUr+a7v+q7TOKpM5qbPTpFG06Uv9JduQrvwMYlQZBJhVIVi3iZXm9XKHP/6myC1Td3iyyg4IVLc3V4cGysme9+kpTuRC6nbWyu5p7BpiRCgl0UHYKUsKGSK74jAVm2pO8/BSaDUmkjEukjnwxCrVJoULQcgRWSz9nQ+MDaSeecptGTWOKQQHJyYa4zmW1JqxbiILLokwKqMonWeEDRSCnRfWFmfd4BgpdJUhcS5wMbCoaWkthZJim4r+gJK6wJKCEojIZJi44wenMzq1rNoPEaJFOth1CBUK7TC+ogUgSOLDqOSqEz3cYBGy+T6JAVNFwgR5jbiCaggk5ioO3qMlVYYJWhd5Mi847IvfIrf+Y1f5MiVl1OUJT/zqy/hP/z0k1hdW9117Psxa93wedtqLLPG4kOk0hK3FIVJQWMDPoALAakkAfC9sGzepei8s6cF41JDFClOTwhEjIwLRSfFUNRa/gH6yEKfinshplhE55n1hb9JBS5ENhYdRlVYH3YJqo4lxDi4o+VCWCZz+ri5rjW2trZ2PT506MQEqgAHDx7c9Xh7e/s6jye702YyNw2udn0kBK6fZ0sBl283aJXE82kuHLhyu+2F/Z66C3TOM28cV80bNusUi1woQRTp53HlMDNJaSS1TU0TSqR5tAskuZMQCBGTw6lMzRNbC4+PaU0RYmp+qC//Kl982wsJtmXlzt/BXR/7awilQAoEgkILnEjzdCUko1L2Ivde4C4FkyK5rso+cu+sccltDo05ODLc/qwxa33zwZJ564ami6WQf2RObD2RyWQymUwmk8lkMplMJnNT4WYvjPrwhz/M4cOHEUJw+9vf/nQP50bJkSNH+MEf/EG+9rWvDc894xnP4NnPfvZpHFUmc9PnWJHG0jFICIZINCkEIaYYvbYXBG23ji4EVitD3aWouJuDc1TbO+M0vWtUqeW+7jhLF6blr0Mv65FCUChJ27tuTVUqRhxTXxhYCqsmZXIysj5yi9WSQKTpPF1IzkuXb7VUxu0ak+4j5kqt6JwfBFkxRgojcX2UnSCJvoSAykpiTE5Y+moEMUtGhRqKRZ0LFFpSW8+oF0lNSs2idVivUBJGhWY7WKaVpvMBFxRGQWUKWpci63xI8SCN9fjgkcDauED053W9scN7Wxe5ctYkFyitMDaJviZFRQQ26o5524uoYmSlNJRacnjWDvtoXcCGdMzQR/9JgRYCHwPOQd12fOhdb+LCP349MQRudYc789z/+nvc9i73YL12HJ61rI0MtfW74up2soyihKOftxiXY/CURrFSGhrncCEyNpJSG2KIeEBJqHqRmwsRFyKL1lMaydrIIIVDS8HauOhFYILWhiRcsx7ne0Efgkhk0Tm+tdUQfKRpPUoJWhcY6cjKSONjZGNhj4vg28nO+L1cCMtkTg8357XGzoYKgKqqTnjb0Wh0tfu6NmR32kzmzOea1kcjU7JRW6wPuFj0zlKeaakxSqCEZKO2SCxKCQ7POy7bbFh0jo25o/Npzu0jbMw7Sq1orBsE/J1NEdCFVsytRwsBSJz3ECRGK5p+flwagZIKLdN6YnHVN/nS25+Pb2ZMbnsP7vi4FyBN0QutBEIk0X1pNJWWjErN2Eha63FeoBWURjMtFasjg48QfGBSKbQUHJqUxwnmW5ccYuFow0ipT8x1NJPJZDKZTCaTyWQymUzmpsQZUSm/6KKL+PSnP73v77e3t3nrW996wvsLIbC5ucnFF1/Mu9/97uH5Cy644LoM8ybJ1tYWP/RDP8RnPvOZ4bknPvGJ/N7v/d4pf6+f/dmf5bGPfexJbfPFL36RxzzmMad8LJnM6WYvkQYkccioUMcJfiqjmMRI3aUvv1sb2MKyWhnmrRuEVDdlQq9SCjvi8fajT2BDyFT5sD4MTkxGC1oHMSz3u/977owpW6kMnUsOPgfHBQudRDiH5x1N53E+4oOn0opJpSiUJAJXbDXYEAZHnz6hg8PzDi0F63XA+chqpRAkcUzrwtUKYo4e51LoleL9Ci0HAdnSXQshWBlpDowNjfVsNckVybbJGWpUKNZGBT6G/j5UzDtPiJFZHzcCAk/E9B356/OOb202jAqFEMlRqtQS6yMjlZywWhdorUcpyfqio3OBqtCslJpZ41gET2NT/N6oML0wKtHYJFwTwGz9MG980TP53Kc+AcAFP/hj/OQzX8TtzzubSMRIyWZjCTFdy/3O2aI96jxwNLbQEGPE9udsu03uWqVWrI3UIHTrXGDepc9roSVjKQYHrdam4wwRWheZt2ksa6MC1wsaF/22y3211uNiHKL7JiODD4FZ4zAyxTe2Iom1Fv21WDnGGS4XwjKZEyevNa4fmqbZ9bgo9lEZ70FZlrse13V9SsaUyWTOXE50fdTY5Xy8pLGBjUVHiJHtxiFFahqZdQ7rAuuLjnlr6WxAEIgBhIR54/AxxXTHkJygJEkcJYRgWqY5Zus8lRB0vdhdY9FaIwEtJFKDEI524zD/+tbn4WbrjG55R+76Uy+BYoT1AUl6T60EMQggxWIfGhcgRD9njBQ6RTdbF7EeCg1VZTgwLpIDbd/YMCati5brQkgOtUuH23GZRfKZTCaTyWQymUwmk8lkbn6cEcKo973vfbzkJS/Z83cxRq644gqe/OQnX6t9L6OMhBA85SlPudZjvCkym8344R/+Yf7pn/5peO4nfuIneMtb3oKUp15gcc4553DOOeec8v1mMmcie4s09NXGqEmRvkTXSrBVO1obaFSKUFu0nrXx6RVGhRCpbRLEhBiJvWOTFKLv8L5uoo3j4vH2cYsCKJTEek+lFJ1Nrk6hiEghlp5Eg9Bq+e/EccezR0zZoUlBoSWVVoTY0gC3XK2SA1V3NOajtYHOJcGNEGl7v8zYCII2hNSZriSzxmJDpLYCsegGl6lF7wY0ra7+n/KlGGopGAsx7umupaVEiuQ05nxIblVCcGBs+nOpAEdrPZMiRdhZF2hc4KpFixLJxSkK2G5TlOBIKNZGmrWRZlIYCiMp+/Es3c2UEkPBybqAEtA5T+hdriIRJcB5iVaC1nq8T/F2//K/P8rvvuiX2Fo/TFGN+Ylf/A0u+MH/CyPkEF0CnroTrJSGWevYauxx8ZIhpMIXMMT+jQuF9YEj8w6koOuv37hQTEuDUUfvr0JLfFQ0Nn1ei0ojRIrL26otR+YtRBhXmnGhqUxyetNK0vXxKp0LwxiMTOfpwFhjfSrEzboU6xfpXeF8oAohuVjZgBSOSalzISyTuRbktcb1w7EOUV3X7fPK42nbdtfjYx2kMpnMzY8TXR9pJSiMZD63TEvNSqXprOeK7ZbN2iJIc+C2S40DI63obIrV8zFCPDpfbl0Sty/nuEVIc+bWebQUuBipW48QMUVAx4B2gUmpqAqZxjrb5rN//Fza9W9RnXUr7vHkVyLHq8QYCTEiemfPNBdPAnwlJbPWc9a0wBiJdoFCaUwhKHRasyglWSk0rfUcHBWEmOaxsrZ9bHc6H6WRw9x3UuqbfLNMJpPJZDKZTCaTyWQymcxenBHCKEhFBXE1Re5rs78lQghe/OIX813f9V2nbP9nOovFgkc84hF8/OMfH5579KMfzZ/8yZ+gVC6sZjLXJ/uJNK5OFLWTUivGRUwRXV0SRrXOE4I+LW4x1gcWrU8d18f+MoInDh3gpVaMS3WtvrA/Lh5vH0ETJIetRecxWqaiRkjRcONCE3fE6qX97n3O9ospk1KwNpasVJqrZi3riw4lNSOjcD7ShYAWAhcCnUyuVc6FZGPVv9+BkUmFGY4KyiRpnLPGYU1gWpohYu/qnKOWw98pHFtGBx7rrtUdI5gqjokjnJYaKdKxF0pyaFqyPmvZahylUdTeMVLpWEutODgxTMskrFobm2GcS3ez9QV0NjDru/9dcKyUGikkPqaolMJIKqORErbqjtYFZAz82Ztfy9/9yRuJMXLrO92dJ73gNdziNndibNI9VCiJFKngtGgcs8KyWhV7xkvW1g8OWi5EhEguS7FN92alFOvOEggUercoakmp+6iTkPahJSw6R+M8C5vcAKZCcKRuOVdX0DtuHak7SqmG+w5gWikOTkqkENTW4XzkrGlB49JnunWBrdpSd57OJXHUMv4xRnIhLJO5FuS1xqlnOp3uenysg9TVcaxD1LH7ujZkd9pM5szlZNZHIcJKaVg0ns55xkZzYFRAFHRhweaio+48W7UjhDRf22w6bIgoCd5HfAARoVCKzgesj7gQsASUSo0UWoHz4Pr/3vsY0EiqIonaSyMRruHi//e5zC//GsXq2dzrKa9kvHYQhMDFAL1DlCA1SqxUGq0kLgSMSdHJJgBCEETECEVRCQop+zGkmGspYLuxSCHQfROblsn5dSmQHxXqZhGvnslkMplMJpPJZDKZTCazF2fUtyL7uXbs9/x+aK2ZTqfc4Q534IILLuDJT34y97///U/FEG8S1HXNox71KD7ykY8Mz/3wD/8w73nPezDGXM2WmUzmVLCfSONkGBWK2iaHm84FCi2prb/G6LVTzax1Q+QFpGNqejegwTFKCiqtKLSk6cUdk1Kf9Bf3UqQ4N7kjHm9ZCDjutb2YqXXpNbPWUXep89u63t1DLvd7/PYnElMmpeCc1YqDk+I4YZjzgfWFpTIw66PVBLA2NhycFJRacWTe4UOkNBIpBeNSEWMSJaUuecu0NCw6nxyf9hG9LP+JXNb7hdjfXWsZG3hUMHX8wY8LTaEkjQ1YH7AhCc0KLQikmMADSmN9RPSxc5Nyd+zf0t1stdJcttmwPu8ojWSlTNGPPgZsf443a8e8tYyMofWe9Ssu449e+iy++n8+BcCDHv2TPOZnfo2OJCYrtWRaJBFWoQ2btcP7FAM4l5azKI6Ll9zLQWsQhA1iu+QgsB9Lh6+uj8driMSQ7kdrPdZHKiMxWmF9pNCpEDbSiu3GsWhdin2ZFCgpsT5waFJw1jSNt7GBqUpjbvp7ddY6unmKISyUTCKpyuRCWCZzLclrjVPL6urqrsfr6+snvO3GxsauxysrK9d5PNmdNpM5czmZ9dHyv9mVkQhh0EoQQiQQ8R5aG2m6MDhHeSJaSmIMw9rJ0xu59opzpQQhijR3TlM4rAfnHC6CjxEfIlJ4lDQIPF3bcNEfPZ/Nr38BM17lvk97JSvn3BrrAjYEpJBoneL5SiUZlZpxZRhpxagQGJ3iAZN7qmC10pw1KZi3Pr22UCiZjq00Ci0FSiVB1nJtteTarK0ymUwmk8lkMplMJpPJZG5KnBHfjLzoRS/iRS960XHPSykRQnDnO9+Zf/3Xfz0NI7vp0bYtj3nMY/jQhz40PPcDP/ADvPe976UoitM4skzm5sPVijROECkEhUrCn8b5QQQ0KU/5cPdls7Y09mjkxVKodRw+0tqQxBxGURWKeesIMR4XeXZ1lDqJSSqtaG0Sp0xi3PfcjQpF6wKlUXQh0NnAZm0HIdkyHm9nUeHaxJQZJVkbS0LQQ5TgvHVIIYbIuHGhuMVKyajYKR4iFWV6oZcPkWlp0FKy3VhaGzDKD7F6q6O9hVFLF6ilaEsKkRyj9nDXisPfDK/dCykFSgpijDTWEQPUnSMiODg2jIxGy5Bi5yq9p7gMGO4HKQTbjTsaqecjRis8HfPO0TrJOpYv/OOH+cvfeSH19ibleMqP/sJvcv8HP4IuJA8sKcHHJFwbFRU+REZGQaEgpqi+xh4fL7k8/mMdtFyIGC2ZLbr+/uqFhirs6b60FEYtOouWkhCgdg4bIloLrI8cnCgqkxzFOudBpLFUvZBpVCpWSjNcBykEK5VBCteL4JI7wsQHlBQsWo91gWmRzvNKqal2FApzISyTuWbyWuP64Y53vOOux5dccskJb/u1r31t1+M73elOp2RMmUzmzORk1kei7wIQApRMYvzt2rKwntY5NuuOWePQUtB0DhcirU3z+9Arn5aNBCk1W6CEwBSCGJODqyTShkAX0/zR900fUUHjPTF4/vWdL+XIv/0zqhxzn6e+gvEt74ASUI0M89YihWRcSLRWFEqxOlIcHBkmlaZSCqUErfP4kNxEK6UIwMFJwahUrFaGpgtURg7zR6PEsH4ScJ3ceDOZTCaTyWQymUwmk8lkbkqc8ZWyk+3gzuxP13X8+I//OP/9v//34bnv//7v5y//8i+pquo0jiyTuXmxn0jjZFmKoZb7ubpouVPNrHWDKGqrF/FAEuIsnXqkEISYnJ3avvt7s7Zs1pbSSI7M4YjpemGNoNRyiKrbi5FJgqpiRzxe3e3vkmWUZFwkUdFKadjGsrlIYi7nI5XxlDEyrRSNTZFlnQ/XOqZM9oWZkYk4n0Rq6/MO3Y9jpygKoFAS6z2VUnQ20LlAKCKFlskRrPM0vVCm84GwhwgsxEiXKjqD0Kvs74u93LV2FpKW2+/E+UBjl+chst06tJJIndymtJRMSo3vC0RL9oqnmrcpvqTUkhAj885BhIPTAq3S44NVgQiSjdmMv3vLb/Opv30HAOfc8Z485tn/hVvc6nbMWkuMpMg9lc5hihVJxwWwWhpsSM4Ae8VLXp2D1sgojvQCKWOAmO7vyqg9i3I+pBjLQkU2a5eKVUV67aTQnDUpKbQixEjROwGMS0XnkotZZwPb2BQB0yVRo1HpvJZasug8nQ9oJTlrWqJkR4zJtcv05zIXwjKZU0dea1x77nnPe+56/MUvfvGEt/3Sl740/Hzw4EHOPffcUzauTCZz5nEy66Nlc8Fynrux6Ji3js4GnI80bRJAuSBobEBKQes9NizdPkHEiAsQYkCJFJ3ngiCGSOdBiIjzERGP/jshJSgBzke+9hev5sjnPoHQhns/6SWMbn03Qkyxe0bA2dMKYyRGJbFV0btGGaUYa4VUgnGRIvU6F+hcmvNrIbjNWSMOjkpcCGxJi5KSiUkC+ZFJc79rWjdlMplMJpPJZDKZTCaTydzcOKOFUcvO7kOHDp3mkZz5OOd4/OMfz9/8zd8Mzz3oQQ/iwgsvZDQancaRZTI3P/YTaZwsQxLYMfu7vrE+DPF5O0VRSfyjjjueyigK51mfd2wuLJEkOpqWhlnrMEqglRz2u5/gQ8oU29Y4z8gottvksKNVen4vJqXGx+RYVSqFkg4tBIVJsWQCwazxu7a5rjFlJxoFUpkk2jI7hF6N9YwLTWUUjU3bu14ks/zdrvfqPDGmMRdaIkgFE2Afd63dhSTrI8tDW3QpbnBJ5wNH+hg3QUqZW6sMIULnkiBru3WURrE22u385XxI7kdGctXcI4RAIUAeFc45H4gFbHzly7zl5c/i0i9+FoD7/vATedBP/gIHVyqqQuN8RElQQmJjoIpJsHbFVo31kVGh+3suInu3raUz2TJesv/1Hg5aSWRVGo1tk1ipcX5wnmqdR0s5nNvOBzYWXXKWkgEXAkZpDo4NrQuMCoVWkhjj4OTVOI8UgrVxQaGSc1ZnA23vBlZ3HtO7gWklWR0l8dNSrJdEXgEbA2OVxFFnT8tcCMtkTgF5rXHdOHDgALe73e0Gp6hPfOITJ7Rd13V88pOfHB5/+7d/+/Uyvkwmc+ZwMuujQvfNBVqxsbC01rPZWLYax2ZtmVmHQKJUQPZNG41VRO1xPr2Hi2m+KqUgCoHr37jr596QXF0FASVBRFBSQgxc+oE3cuSiD4GU3P0JL+Tsu34HQkSiEMg+Rnl1VKCkwHnH2tQwNQYbIlUhKUuFJK1/pEjz5XGhWa0MB8aGg6OyPwdwaFKipeDgpEBAngNmMplMJpPJZDKZTCaTyezDTUIYlblueO/5qZ/6Kd73vvcNzz3wgQ/kb//2b5lMJqdxZJnMzZP9RBony3Kz5X6upb7qpFm0R+PzlqKo1ZHeV5w07wVMSkqmlWF93jHrOurOUyhJYx1r44JKKwotaZyncX7PiLBxmYRRVZHi8Vob2Kod4yLuKcoCmJaa1rZsN5ZCSVZWNaVSNN6zUiqUTHEaUophDEuuTUzZiUaByF7M1Pbil1mbhElJ5KT6qMR0LqYqCbnGxc73ORr5NyqSQxERNmqL84EjsxaEGGL9Su12FZLaHS5Vi87T9g5grUvPz1pL119fgABoLdisOxZtoNCwWhnqzh8n/FqOy/pADFBoweqoQJBcvho808rwD3/1Xv7glc+lmc8YrazxE7/0Mr7t3z0YF0Lqml/GA/YRfkKm+LtLN2p8/wGYlLp3Z5IIBIvO862tmkN9ruSkTMKpvR20gAjjQtL6JEiaFppOBdrO43rHs6Uz1ay11DaJpZyPTArFoUmBEgK0YNIL14QQLA21jjofpOs6KuJuN7De9W1nkUsKwbjQjIskoNtukoDwwDgV2XJBLJM5NeS1xnXnR37kR/j93/99ILlAffnLX77GWLyPfvSjNE0zPH7kIx95vY4xk8nc+DmZ9dGyuQCSe5MLkW9t1PgIG4sOgcDIFDW3UmmESHOwpPT3tD4SYoppDgEgpr+jx4fkeBtixCBACIxSOJ/mppd9+E+48h//CoTg237iV7jFPS/A+cDBacnYpHi8zicx1dmTgoDpxVeglUAK0ELQ+YiwgVJLdITVkWFaaaZV744qBS6kNclynl3q7BCVyWQymUwmk8lkMplMJrMfZ7QwKnPdiTHylKc8hXe/+93DcxdccAHvf//7mU6np3FkmczNl/1EGifL0pFm+QX5tXWeOhlCiLS94KfuhTTjQu0ritrpKNVaT2M9NgSsC8wDyEpgW48PHS5ElEhf+leFYmPRsTYynLNSDce4jBybt47VyrBF2v+i89Q2Ca0KLekT44Z4PBCsjUyKZNMyuR+NzZ4xfNc1puxkokBGRXIDKk0SenU2sN04RkVEKcBBDMv9Ht1/3R0VRSlJL2RyrI3MIOLRKomutBRJdGU9ByeaENLvli5V6/NuGM+883TO4/r4Q60l0zJF/QkhGBvNrHPUnWXRpnM87h2ZnA8cGBcpLq4fQ9O7RoWgMCrS2SSmq5uaP/1/fov//ucpOu9O538HT/i1/4ZauQWRSKVkcmWygZVKJ9eukWHeWKwP6VoLiTbJIcr7yOpIp45/HwkqCbyOzLshou7qHLSEFEwLPVy7QkmKURI/Nd4T+vfcXFg6F9CFwMdIQBBjRCjBWCtEf6mlYIgaPNb5ILmBeVyIWBcwuncD20eAd7qc4TKZTOZE+LEf+7FBGAXw5je/mVe84hVXu82b3/zmXY8f85jHXB9Dy2QyZxAnsz6SQlAoyVZtKbTk8KJl3gZi9PgQUUqglCT4mBoNQnJzVVLgAngfCD4SSU5Rond4lUICnqVVqosQQqCIaW532cfey9c/9HYA7vLon+dW3/EDSCkwWqJEEjeFEBhpRdErs7SUQGoUCETmXaTSispIJpUeXFmVSNF4lVYUKgmnILnsLs/DuDz59WImk8lkMplMJpPJZDKZzM2FLIy6mfMP//APvPWtb9313CWXXML97ne/k9rP//yf/5Nb3/rWp3JomczNlv1FGicubAoxDuKTSi+7iE9exHOynGhMHCSnqKUoanuH+1BlJJEI9OKSEKljKoS4mAQtyc3JcNWso7aBQ+NiECpNS43vY+dWK0OjPHWXhCatC4Nj0060FKxUBZVRhH7chU4uS7HvTk+uSqkosbMbO4RIbT2tCyf0+pOJAjFKMi5S1/tKadgmnae689henDQqFKWTCCHYqi2dD8O+fQwQJD4ExoUixiRGC6GPuqstUgqkTMdxZGbxMTIujorPNmtLoVQvLnNDdF5hJJURVEYRAxgtaFxyloq9w1bjAkp6YmXYqh0CgQsB50H37k5GKcxYcmTeMSoUX/jCF3j983+Or3/pCwgh+JGf/s88+km/SBMF27XFuohQER9AKVAaXAxcNWsZGUWIgUXjsTpwVlnS2MC0EkQEnQ3MO0frPIWWjArVxzOmKLxiR2zh0rHMek+lkvhLSZEcxlwS7wkBIgoCyQFKklzFIgJEciMzSrJoPVoGJkVyqSq0pLEBYjzO+UAKgekdwBqfohQ7Hxjvc4+cLme4TCaTOREe9rCHcf7553PxxRcD8Du/8zs84xnP4I53vOOer//4xz/Oe97znuHxIx7xCO5617veIGPNZDI3Xk52fVSZ9HqjBJ31CBGZtUkYJYEkR4KykLR1isxzXQRicgQNEUFECJGcqkhCKdmLpYjQ/w+RyOF//nu+/oE3AnD7hz+J2zzwRwkhomRaC5RGMS0Vo6LCKFifO1yMmCBofcRIQaEUohfxOx0RCAotaKxnUkhWqhQBvlMUtVqluOpJP+fMZDKZTCaTyWQymUwmk8nszU1WGGWtZWNjg6ZpiCdhn3C7293uehzVjQ/v/XHPXXrppSe9H2vtqRhOJpMBRiaJNY4VaezlXrQfdeeJkT52LYk+RtfCdepkOdGYOOvD4Gi0UxQ1KhSVURze7thsOmKMffxYxCjBok3OPDQpsu+sScG8TTFiO+P11kYGJVNMXGXSPjsXaJwnhB3ipT3i8VZG5oTi8awPLFpP6zzH/SsTwZO62ZPw5qjD1MlGJU7KVARpbWClNLQqxax1Lo2BFpQQKCmGgki6bwJKHD2uzh095wACgVaSun+ucT49JwWXbzUpoq3u2KodjYtY7xESxiYVXpSUECLbTRJLuSa5Ro0KxdgofIR544GImreURqFEEmFZHznSpQi/A+OCGFPH/vv/4l28+RUvoG1qVg6exZOe+9+417/792wsLDGSnJR8RIokBIP0HkIIKi1xShIRlCYdmxLpeh4YGcr+c7WwSUw0ax2eyFmUtL2QT0vByCi2+3jHaakQgNnxWXQhslIZZo2lri0xBrwPLKyn9R6jJD5ESiUptaK1PkWuhOS4FQWcNS3oXMDDDueDyPK2K3QSRsXeVSpczS1yOpzhMplMXmucKFJKXv7yl/PoRz8agPl8zqMe9Sje//73c9vb3nbXay+66CIe97jHEUIYtn3Zy152g485k8nc+DjZ9ZELkcoorthq+seezdoybwM2eAqZ5uRlIbEhEn1yRQXAL1s0wPcOoqlhI/Tzz0gguUQpBBuf/zhfv/B1ANzye/4vbvPgJ1AphZORidEoIRBRIITEaIEWkmkVcT6gtaDr4/pWxya5oBrFdGyQQrBoPZVRlKXG+ji4ui7XTJDWTycb7Z3JZDKZTCaTyWQymUwmc3PjJvPtyfb2Nm95y1t4//vfzz/90z9x+PDhk96HEALn3PUwukwmkzlxpBSUWtE4v0ukoZXYN5JuJ607GqO2dGsq9W7XouuLE42JW4pxWusHUdRKpSm0YtY6XDwarxdCiv1cHRm0ElRIZq1ju0kOTWOTnJDOWS2Zt44QI6tVEjeVWg7ipULLXQKonZxsPN6sdczbo/9eXJPoqnF+EG5dm6jE1cowF+k+KHWKJgyxowuBQqYCidEyxWlohfWh73pPkW2qLyAJkcRqRiXB2kqlOTLv2G4clVZ0PgmEYoRLN2qci/gY2Vx0vehHEH1kXPTH0Qvcuj5KTgpQoqDoj2dSSkAwb5N46bBrh/s7hkgTAo11NIsFr3/xr/N3f/mnANzzu76HZ7zwtRw8dDYhNepTW4/3kRhTJ3+lFYGAdZEDI41QYiiW+aAQIsX4HRgV0F9f6+LQWQ9gXWSrsem5mMRJVZFiC1sbemeBVASrTLo3687TWEeMYogFXHQeJQTjQicBVuPQSrJoPF0IKCE4OE7v63xk0ab70Xo/OB90LhCK5Hyw/KReUzze6XKGy2RujuS1xrXnUY96FD/7sz/LG97wBgA++9nPco973IMnPvGJ3Pe+98Vay//6X/+LP/uzP9vVbPFf/st/4T73uc/pGnYmk7kRcbLro0Xr8CFy5XbHRp1ilZ2PaAU+9lF0ErZry8IGfAAXkqBKKJBOEHpRlEjeUSAghNSQEESaV8+//M9c8uf/BWLgrPs9nNv+0DMI9K6tkBYZApQWg4jWBo+WghAkMaYY5XGpWBsbRlpxYFJQaYUnIEVyJJ0UksJIDo0LDoyL4TiXTSGZTCaTyWQymUwmk8lkMpmr5ybxDcpb3vIWnvnMZ7K9vQ1wUl3bN3ce/OAH5/OVydwIGZfpi/+dIo2t2jEuIqNC7ekKE2LqnF6KokojB8HNuLz+3aLgxGLiQoiDy01jjwq4Cq1YdI7WJueiRZucdqaVQAkojcIogexFKlu1pbUp7mx93lJqwdq4oO48UoghxmxtLAlBn1Tc3dWxWdth3E3nqW2K6TsOn1yeli5EVR/bFmPsHY5OLipxUmoKLXthTnKpmhbJHUsryaRUjAuN8ylqr9TJuWjJuFB73ju3OjBiu7EcmXfQpYhDKaBQiu1FAzISSeMbGY1UksYHmjo5ejVdQCuBDwFHEjCVRqVCTaWZNUmspoQgAE2XClWd9RRG8ZmLLuJVv/qf+cZXv4SUkv/wM8/mR574DLa6wGbr0AhKJYkmIGSKoAsBXEiOXdORpjIKF5Pj06RUaLl0bUr3fYhHRURSCNZGhhBTHF9rA41K3fi+jyZZrQxbWFqbYglTnKAEAVu1pe48Sgpa57H9NoWSVL1DmpHgI9hw1M3Jhsi886yNDLX1VCY5FSw7/10f/zgu9OBAdk3xeKfLGS6TubmR1xrXnde//vVsb2/ztre9DUjOUW9605v2fK0Qgl//9V/nOc95zg05xEwmcyPnRNdH89axvrBJ0G4t88axUTuazieBvQt0Ps1fm5ii9Rq/0wE2rT0giaCijBAiIgpiL1ZSUlB/8wt89U9/i+gda/d4ILd/9C8iEQgEnQsYLRFEnE9CrfW+aULI2DdiRBqbGiQOjgrOnpRICYcmBZNS01hPrZKIam1cIASsjsxJN3RkMplMJpPJZDKZTCaTyWRuAsKol73sZbzwhS8cCs07CxXLmJ29ihdiR5UxFzcymcyNDaMkk1Izb90ukcaiF+IUKrkfCZFESF3/Bf/yP2elkYMzzqQXCN0QnEhM3FLUY/v4MiFSp/RS0AMw7yw2BLRI4q7xMRERq4OwJWKkxIbAZm0RUiR3pdYNzkiQhCmTUjMpr9vxzVo3iKK2mnRNlse904kpxOQEtYxo224dXQisVia5H3WecaFOOirRKIkZJQFMYzwhJsEYMV3npSDo0CRFtW33ziSrIz1004eYBDidC4TIDqGWZGNhOTJvATFEzTVtoNKa1VESOlkXUFLgY0yiJ53ERVpIokgxeZURnD1NJ9ubJEhSSjI1kvVeSNS5wPv/7G2843W/he1azjrnPJ798t/hDud/F1sLi+uvrYsRFwJNl0JNYkgxhUKm+D3nIlcuWlbLFJm3OjL4ALPWDv++x/6YYy+e0n2kYamT0KrukjBKK0GhJK1P16pRnnrpiNV5fIhsNW64V10IFEpy1rRkpdLMWkcMAmQkuIBRktVRui5N76jVOM9UpfdVAjxQFYpZk9yotJSDcFAM8XjH3wun0xkuk7k5kdcapwalFG9961t55CMfyUtf+lIuvvjiPV93wQUX8LKXvYyHPOQhN/AIM5nMjY0Q4nGNDY1NDQKFlgQtsC7uWh+1Ls1xr9xu+NZGwyVHFmkOFyNBgkIiZMCQBPu1DRAjPgR8XDZ3CLQGHCAiIkJAgEgiKgE03/oqX3nHCwldw8qdv4M7/fivIqRGSBCppQAiaQ4sJaGPnx4VHSCQQCA5mZ41Kbj1gTFrI8OtDo6YFJqt2jJrLEomR1LVN1qsVuakGjoymUwmk8lkMplMJpPJZDKJM1oY9dGPfpQXvvCFQCo+aK35yZ/8SR72sIdx7rnn8vCHPxwhBLe+9a1529vexsbGBl/+8pf54Ac/yN/93d8RQkApxYte9CIe9KAHneajyWQymd1MS43vXWR2ijRciLQuiW6ORUvBqFCDU9ToGEHR9c2JxMQto78an0QdRe+ys+gFR60LzJv083SkGJkkIDr2fYySxBgQClYKQ2PdLvefRetZG586QZj1YYjP2ymK2s+JqTKKSe/itVUnwdE3woLKqFQYMTJ1pkdwlTmpqMTGBUaFZqVKbkmVTvEbIUSu8mGInluOr9RJeLaMvdtZo3d9DF7dORadQ0nJxrxj1jkmhYYoqIxE92K8W0xLtEpxhpNSs7mwfMs2KbquUKxUhtpGZq1jXKRO9s4HYuhdpwpJM9vmdS94Fv/fh/8WgPs+8CH86steR6PHKTKPJHrTMjIyirHRlIWj6QLKJSHWkdqhJRwYG2QvVtC9MM2xFKyJ/tpFQkzno+pFREUvPmxdh+tdzAotMVqitWTeunRue/erq2YtV223rFWGeWvprMf0BSolxRCnFxUUSIKAQgsmfezgpNCEmFzEjEqRiPRCwlIrrEnOB5t1R+eT4KpSR8e65MbgDJfJ3FzIa41Tz+Me9zge97jHcfHFF3PRRRdx6aWXopTiVre6Ffe///25053udLqHmMlkTjPWhyEK+1hZaWVS9HOKaQaI/f8LDs9bNheWK7dbvnzljIV1XLHd0HQeIUGRhKqFFDihCN7jRKRxsXcATfNPJUApSYixj/RO7xMjEAX1kUv5yjtegG9mTG57D+78ky+kGlU4n9xIKy1QGoxcyqjS+qaxAQSUKrnVRgTBRCaFTm5QlWFSaurOY0NkdVTsanY5NCmyQ1Qmk8lkMplMJpPJZDKZzLXkjBZGveQlLxm6t8877zz+9m//lnvf+97HvW40GvHgBz94ePysZz2Lz3/+8zzpSU/iH//xH3npS1/KH/7hH/JTP/VTN+DoM5lM5ppZGyXRxU6RRucCjfOEsCMSro9mKPTRL8snpb7Ooqi9OrWvLoKu1DKJoa4mJm6Z7hb7H0xfeBgEU9bjYqTUkpUyFQKMPr4IUOjkrBNDpCglkSQKWbr/tM4Tgj5lHdWL9mh83lIUtdOJaS9a69lYdKzPLdutBcCFiJKw1TimpWbeeTbqjsPzjvMOlByclNc6KrHu3bi6HW5coz7Cb7kdJDFU4zzzxg8Cqsb64fnt1rFoHZNCMq2SMOmc1Wpwm9IxEnpHp8oozlkpsT7FmCwLWJt1hwuaGFOBK8RI4SUX/8unePVzf47Lv3EJUml+5KnP4j89/WeZten9C60QpIgSKSWFVkNE3rxL1/TIvGNzYWlcxMfISmGGyBEhknBq3jqUgnkf3bda6V3uaeNezJbcBdJxFzr9fGhSUGo5FOUKLTl3tcKFyKJ1EGOKdhQSoUH3nwctJVuNZbVSLFqHi3HY37jQLLrkCtV0SRgVIlQmuUdNSwNYNhYpqtHKwMhoIpFpqQaXrxuDM1wmc3MhrzWuP84//3zOP//80z2MTCZzI2PWuqERAdh33WOU6MVMIjmLWseRumN9u+OSI3O2W8vmwtK6QOzn1WmaJKm0YqO2oCTRekIMxH7O5mNEIKgI+JDWQogUrSeEoNm4ki+//fm42TrVLe/InZ7wm0wmY7QQOB+IMdAFQeEETqcGkeRSqvAh0lpP3TraQnFgXKCUIPSCrKKQHJl3eZ6XyWQymUwmk8lkMplMJnM9cMYKo9bX1/nQhz40uEG84x3v2LNQsR93v/vd+chHPsLDH/5wPvKRj/CMZzyD+93vftzrXve6voacyWQy14ppqY8TaRR7CIUg9SSXWjEu1XX68vzqOrWJKcps6aC08/1GJolwCi33jYlbftm//FsiaG0qSLgQWXSOGCNjk2IjlsWEvY51535KnQoPO91/antiEXXXRAiR1iUB0bFOTPtx5XbD4VkHgFYCEeHKRXIdmhSaLngWnWalMmil2G4t25dbDk0s561V1yoqceki1vRjLXvno6YXcrUuiXJciMw6h+1fX7eOy7dbOpuKT0nIBIfnlkIFbJVETyuVYVqZJI5SkkJJfIyMy+RINWt9EgkZSWcDPkScT+I6heCv3/EHvO31r8A5yzm3ui3/6fmv4bZ3vzcbC4sLMC4kiEihJc6muJJxkQRHS1onODgumLWWrdrR2ogPllEluWJboKXoIwLT8UsZqYxESIkQgo1Fx9rIDPtbiqFCL9Rbxj8aJVkbS0LQ1NazPu+YlhrZ3wMyRM6alse5hUkp6FzoHQ1S3N/S8awyisYm0ZrzAa0kSopBHFX0j7WUlEb2nz/JrD0qaoPT7wyXydwcyGuNTCaTuWHZrO0QWd308XguHLcSAZ8E+o1LrqxN55m1ju02uUVt1L2A3qbYaef6OZdKc2QvBEIKvO1j7mKKR04OUctGDYnsY7uR4CPQzvnS255Pt/4tykO34q4//TLK6RoxBlxUCJFEVSFEoowE0pxOyzSnH1eSzkaa4PGBFO8nQAmB0ZJZ4xgXOs/zMplMJpPJZDKZTCaTyWSuB87Yb1c+9rGPDR3cF1xwAd/3fd930vsoioK3vvWt3P3ud6dtW5797GfzgQ984HoYbSaTyVw3jhVpnKiD07XhRDu1lw5VjfM0zg8OVaVWNM4zMio5D3V+V0yc6OPDllqSwFG3qHnraF1IIqu+AGD6eLRjWZZJlr9KghJxnPvPpLxOpwPY34lpPy7dqNmqk0PUrLZsNY7GJ1FSBEQ/1nmTHKCMlIyMxGjFkXmLC4FzVqrj9ntNhZKlqGcp8rE+dbsDzNqj8X+N9YhI6phfdGzUFhsiLkZCBCmSoEgpgY0hCaT66L+qUBAiNkQW1qVijkpCLedbGucRwKTSGCnxwVFvbfAHL/9VPvnRvwfg+37wkTz7Ja/miDNsNZaNxnFgZJBS4EMSkq30RSTnI0sdYGUUnQ20PjAtDKXWrM87auvZrB3OR0qt8SGJjELQaAnTUrGMR5mUGiUl6wvLuFBolW6gYwV7S6QUfeReSDF7SlAaRaHEEBO4FGIJQR8l6CgnBfPO0dmQohOLSGVU71CVPjNTlVzPVkeGxrZsN45CSaaVZtR/jlYqgxLienWGy2Qyx5PXGplMJnPDMWvdIIraGVmdGiTksB7onGerdimmetGyaNO887Kthiu2atZ7QZTzac5eKIlXEtu74IaQYveW80IfUnMGURBjes9IarQQpHlx9CDdgi+//QXUV16CWTmLuz3p5RRrh1BA60CLgJIizYulYKVK881RqRAROh8JHowUlGNDpSQrpWZqNEIIDo4KQoxMCsV4x7wuz/MymUwmk8lkMplMJpPJZE4NZ+w3LN/4xjeGnx/60Ide7Wvbtt33d7e73e141KMexXve8x4+9KEPccUVV3DOOeecsnFmMpnMqWQp0jgVYp+9OJlO7brzeB+RAgqjODxrGRVqiAyrjKIMktYGtmrHuIi9uw54kjgIH3vxTqC2fhATjYskIAEYmb0FSF3vdiR6IZgU+7v/XFf2cmLaS6wFySlqeRxXzhrmvduPkmKIRiy1pDIaF0KK1LAB2wYmwMFxQWMD27Xl4KQ4KUHMTnGP8wHrUgzhTlFU0UcXti5wZN5hfSACU6OZC0cMgS4ErAt4Hzg0LmlFwLnIVmOxPgwuXk3rqQo1FKtWKo22IokJAB8DX7zo/+PVz/t5Dl9+GaYo+eXnv5TH/6encuWsZbX1+BBpbEdjPRIoTOqslwLqPo5RSYHqnZhiXyCzSjIqBbPGJZFcgHnrqTuPUZJxqSiNoDKpMNW5kASEPtC6FGW36PwgrDv272M5VnRW9tGW4z1eO2/TvldKwzaWzoYUoWd9cgDzgUjEKMmii/1nLN0fgUipFTHCOSOzp+PZqXKGy2Qy+5PXGplMJnPDsHShhd2iqHGhdjlzzlvHduNonGdhU/PFduu4cqtlfd7SOs/GwiL6pYMQAq1AIGk7j5aSIJKzbIhxmANLIZAygI9EkoNTJDWEICF0HZe8+7eoL/031GiVu/70y6gOnIdSgtgL+JUUaT/AxCgqrZBaUklNlJFRIY42s5g0R10pDWvjgkOTksJISq16QVae52UymUwmk8lkMplMJpPJnGrOWGHU+vr68PNtb3vbPV9TliVt27JYLK52Xw94wAN4z3veg/eej3/84zzmMY85lUPNZDKZM4KT6tRuLLPWDyKRwiURyLz1gzjnyLzro8HAB1j0QivvAzZEZExCl0Xn6HxM3dokh6il4GdUKPQeBYFlMQOgUqn6USg5iFr2c/+5thwritmvSFF3bojP2ymKWhsZVipNiKmoY2Q6RiUF00pzeNZy+VbDrD/vB0aaq2YtlZFUhYY+es1IwajQexZKQojUnaO2no26Y6N3eQKwfbTg2qigdZ6F9Sxah/VJABVCJIqYhG5KUgqB85HWRebOEQPYEJhKQ+sCnfMcGAsi0NqAHInhvHQ+YKSiMoK3/t7refvv/VeC99z2DnfmJa97M999/++g0ooQQdCxUXdI6CPqAkJKiJFSSwRJAHe49SgFur8Hp6WhUor1Jt1jUkbmjUUpxbiQTCrD6sgwMZq1kaEsFEoKQkgOALPGYU1gWhq2aouSgoOTAmBfwdtxEZD7KahIojUfI60NrJSGVh2NMOxcYN65FKuCQErBuEhuYCtVQWUUoReWFVpdb85wmUzm6slrjUwmk7lhWLRHmzKW64/Vkd4VWb3V2OQS2nkW/Xy7dYGNuuWKrYa5dcxai3UBayOVVkxKleZSIRKUwEfBvHV0zhP7uebStVYpifIRQkSRYvcC4JzjG3/xKuZfvQhZjPi2//hS1m59J2KMKAFFoSj6Jo7WOjxpfhxIX7YpIxAIJoVGqTRXVkBVGs6aGA6MDVoJrAtMS41RgkPjAr1PbHomk8lkMplMJpPJZDKZTObaccYKo4wxw89a730YKysrtG3LkSNHsNbu2mYnBw8eHH6+7LLLTu1AM5lM5gzgZDq1axswSrE2ksway0adure3astKqZm1gluuVMm9qd+PkiAQgzPOvLG9qMbjYorSG/ed0VIIYkyxaeNi7/++L513tBSYXkBTGTUUN67J/edkOVFRzJF5EkXNajuIos5ZKYfjsD72+zn6t5aSsyYlMUa+sdH0ohkYF5r1Rcd5y3Mg+j/HYH1g0Xpal4Rn1sfeEcoTSIIpF5YReo71RXJ9am1g0XmUSB31ENGq73YXAqWSG1OKp5PMW4eUgrXKYF1kq7ZUWuFixMWA5mjx6sjhK/nt33gmn/r4/wTghx/zE7zola/l0IE1Vkfp3+KmFwhZFxgXCqMELizduGDRi/RciNiY3K+0h3Gp0FJgRUQJwcGJ4ZL1jkUXKDVUSjIuJNZFxlPF2sQwMhopBCFGGptcpVobiLHD+kjn4BbTdHLLfQpRx0VAXoPqbrUyzEVyMyi1otQK6wJbraVzyQHLKIHWkrWR2eUGtlKZHJuSyZxm8lojk8lkrn9CSHNWSNHVkNYfO0VR89Zx1ayls2nueOVW28dve6wFrQXCgg+RLkS899CL8Dvn6ULs4/GS66kPER+PRnlHIiIItJQQA4hAiApJ5LK/fh1bX/hfCG24x0+/hAN3uCdSgBISIwVVoSm0ZNE5hJCMlaA0GilFahABVkaaSmtGRYrW01IiEZw1LrnFWoWUMK0M435frQ9ZGJXJZDKZTCaTyWQymUwmc4o5Y6tuhw4dGn7e2dG9k/POO4+rrroKgC984Qucf/75e77u8OHDw88bGxunbpCZTCZzhnAindrbjaXpf9e6ow44hRLMnMd1STBUKMm3thoOjotBjOIDjIxkUkoa57Fe01jPpNLU/T6rQiG9pHMercSeEWKQChx154dtIEXoSSno2rQvOcTrnRpl1ImIYpwPgxhqq0kis7WR2SXuSmWZpRAp/b3oXB//pjgwMhyed8w7z7TU1F1y5dJ9vJwQgsZ5GueH87MUtC3Zbi3btWW7cYTYIaVkpBXFSLI+a7l0syFG2GodTedSJz2BQip8iLgYEQIqIzGqSNepVHQ2CdIEYL3HxRRxJ4Rg0Tqq/l759P/+KL/9gmeyefhKymrEc178Sv7DE/4jQgjGxdH7KUYoVHK+CjGglaQqJAfGhqV4rnWRlVLiYkwXoKe2HufBx8isc6koppLA6MC4ZFoaRkYyLQ1NF2hth1HJaWlcaLSUbDeWzdqhpGBsjkaX7BfdKIXAE9O91UdAVvu8dsmkTAWuuvN0LmC0pHQKKij78RklKHpxX45NyWRuPOS1RiaTyVy/hBC5atayvuhobWCzsUl0JIt+LprmpjtFUUfmHVutpVSSEAWjQrEWNa1zxDrN13ShISa30y4IBBEfwfk01xuXms6laGXr0zolxhTt7UJESShM5Ot/+0au/Oe/R0jJ/Z/yYqZ3+U6sd8kOSqV5oQsB4SJGCopKUxSSsVaUhWKtLFgZGapCMSkkB0YlRsNm7QkxUJo0/1tOcRvnh1jw6ys2PZPJZDKZTCaTyWQymUzm5soZK4y6613vOvz8uc99bs/XnH/++XzmM58B4IMf/OC+xYoPfehDw887O7ozmUzm5sCJdmovRVGzdmfMnmBaGSqjaKxHCUFpkjNO5wJSCrRM7jiN9QiRnHRGRrGxsEAS8mwtYN55RkZSlholJSHGXcKmnW4/AIWRwxhHRYocW3Z+L0U6+7n/hBCprad14YSiyk5EFLO5sIQYkwim70hfqXb/M2tdL4zqh1Vbj+/j+dLYI411hAizJhVVDs9bDk1KWhvQUjAyiqpQXLZZI0lRfE0fU9j5gHWxd6YSLLqAFAEiXLHVcmTe0nrPxsxRO8eo0Ey1pPXQ+lQg6mxAa0EMGoTE+oh1UBrYqj2ujxkJROgLUluNo1Tw/77+v/HeP/odYozc7i534wWvfiMP+M77DvfUzljESLpepVaMC4X1kUIKSp0coSaForZ+iHeE1OEfIygF67MO71PE4LhUhJCKW7PWccgZvJTMuyTYUjLFNnYuMCqW4qh0T2opOTgybC46lEzRdnvdD6WW6bprRWtDKlodc4/uhVESM5KEEFl0jq0moqRgZFKU4qTUTEud4/EymRsZea2RyWQy1w873U7XF8m9c24dIUSMkf18rk3Pt45Z4wgxcnjeYa2n0pJxoZOeSATmNsXVhZCimU3vfKqANoRkuipIgn5ACtm72IICghCEEPFRDE0Q3/zwO7j0438BwH2f8Ovc7j7fi/MBGwStCwgEIy3RRgICGSOFUaxUmlFpmBjJwWnJyCgmpWal0ighUkNASI0OXe/oupz9LSO7r8mVNJPJZDKZTCaTyWQymUwmc/KcscKoe9/73kgpiTHyiU98Ys/XPOQhD+Gd73wnAK973et46lOfynQ63fWav//7v+f973//rv1mMpnMzYnaeiLQudQlLUQSGi1xPkWuwW5R1KhQVEYNrlBLgVGpJONCoQR9bEVEKcGhSTGIXCqjmFZJRHRoXAxCKQHMGkfjAlIkMc1ybNaHIcquMJKVMkUWpRi2FPW2jNdbOvAc6/6zsxCzs+SwFF11LhAiECNlX8iYlhojBdZztaKYWef6v+0wLi3lrvew4ahwq7YegQAF887RuQAIKq2xLuBJkWqyd29q++uz3To2aovqRTSzzqJ6pZWSgpVK4bxGCIENge2mI5BEYodnLV0f5+ZcRBDZFtCFQPBJeLTdWKKAOE7nOYb0vJCKcQUiQhMCi961CSJXXHYFr3jls/nCp/8JgB/4sZ/kF57/W5x76EC6V/pzuZPOeWKMFCZFl0gZOTQxffe8IMbIpNRURtK5CBGMTjF/h+ctSklWKs3heZsKYTLZeiVXgHSul2IoLQRloSj6+2TpshVCpPGerSY5R62FMAjViOCJQ8ykURLnA4WWaJliIevO7+tsdiyyd9darQxaCg5OCgRw9rTMgqhM5kZIXmtkMpnMqWe2Yx4G0LrAonNsLmwvWBcI2UFIc+dvbTZ03tPYkFxNY5oXN/3aQAuJtYGQptGEfr9GCZQQWOH7NQ5pEgtIBG3fiFAUCuEiCx8QRKKIXPm//pJvfvDtANznsb/EHS74IZSAIGIvoE/ifh8jB7REKTBSMS41k0pzi2nJgXHBgVGa1xqV/ixjk+f9umrpEGp0mgceG92dyWQymUwmk8lkMplMJpM5dZyxwqi1tTXud7/78clPfpLPfe5zfOELX+Bud7vbrtf8+I//OM985jOp65qvfe1rPOABD+CFL3wh9773vWmahr/+67/mFa94xfD6W9/61nz3d3/3DX0omUwmc1ppXSohNL1rVKnlLsHPUhTVuqMxeyuVGb7ch+SsY5Skc4HGe1a0QaveTah2tDZQqMC41FRasTY2nD0t2axTEeQASdC0ubAYLVl0jqtmLZNC73ofLQVVL4SqrUOK5Ea1VTfM2hS/cWhSEkJkXOhdgpNjCzGdC8xay7x1tL1ISEhBpVQ/Bs+i88xbx7hQzBpPVewvilkKapxPf4/M7n9iWxeIMaJFKqhsLSxVodioWzqXoj0qI1kdaWatQwl6ty3JSmWY9G5UW7Vls7aURibRmA2sjQyrI5Ocs0Jk1nqUFFw1axFCoARszDs2F5YuBGZ91F9ySPIQ0zZLcZjRkq3aUXpBqSTbTUhuYiKJwQQQA9jo+ed/+Cjvee1zmW9tUI2n/OxvvJJH/9hjEUJQmiSSO1Y81Do/nKfVyrDo/ODQpKVkuofYKMSYYlbqFLcihaDuXBJXFZLVosARGOvkxBRiEvUBOKB2SYhmtBgKTiFGtErFtQOVZrNJRbLBMUoKKq0otKTrBYJKBkZGsd06Fl2KfdzprrYfrfPDZ2kpPCx1donKZG6s5LVGJpPJnFqW835gcDtdn3c0zvOtzZqtxqJFmiO5GFg0jnlrEUKwWVuUhAOTko2FoPWepg1MR5raeWobECE1QZRa4X3ExogPab7vPUiVRPSqt5ASRDoX8D72c1DBFZ/6e775d28C4PY/8CRu88DH0PmICx4fUpNGmgkHnE8NCEoqDowLJoVirTIcmBTc+RYTCnX8/DC580aUECghEQJM/7rl8usUJYFnMplMJpPJZDKZTCaTyWR2cMYKowAe9ahH8clPfhKAN73pTbz61a/e9fsDBw7w3Oc+l9/4jd9ACMFnP/tZHv/4x+96Teyro0IIfvM3fxO1x5dXmUwmc1NmGdewjG8warfL0TKertkh6ij2iKgrdBJGxSEGgj4mLbLoUgReZRSt84SQREtrI4OSgnnrODguAEFVeOxmYLuxLFpPZSRVqRj3IpLWJrFSZRRKCa7cbtiuLSGC0ZIQYX3ecpuDYyojKY3asxCz1dghlg+Ss1XrAiF0vUuTYlwqnO/j9oCNhR1EY8eKYgajob5VXe2oalifHKl8iCAjl28lYVLr/BBROCk0WiWxz7x1xBDxIeJCZNZYtmtH4wOHZy0bc4uPgUJJ1saGQxMziI+kEowLxZXbbYrskJKtxrI5d7gY2W6SO1XVOx+FENFakuRDoFSKF9lqLbKNGK1YKTWIdG8IAfPGYW3Hx975u/zvC98KwG3vei9+/rd+h3t827cRiayUmrMmxa74vGXU4KLzlDrFH45LRWcbRpWidQElA6E4PqIuie+SAG9aarbbJGJaqQpKk45FCs3BUUEkOQVolSIZOxcGAaDxMgnCBKyUJjlkxYgtFKHzQwwjAD7uijAcF4r1he3vK0lrA1u1Y1xERoXaM1Zv5zEDlEYOMYzjMs85MpkbM3mtkclkMqeGWeuGufhWY5k3jtp6thtL45I438eID5amTe6mh2cdjfW9G1SKIl60ntJoEMmpNhJpuxTxLGQSK20sfIpelhIfPHUXcTGig6CQAg/4mCLsIqCVQEq44jOf4JK/+m0Aznvgj3P7hz4BGwJGCgICo1SK5FMS7QXWR4yWKJnmx5VWHJyWSJFiyIvxsc61aT0QI71DappbL5srlmL5a4ppzmQymUwmk8lkMplMJpPJnDxntDDq8Y9/PB/+8IcB+MIXvkDXdRRFses1z33uc/nMZz7Dn/7pnyLE0qL8aIFiyS/8wi/wlKc85QYaeSaTydx4ODa2YeeX8csv751fxuyJQdRxLMutjt3fqEixcS4kgUqhJbU96rY0LTWllmwuLCG0zFvHtExRcF3vYmVt4HDrCSFSaMnIKLZqm8QxPomWSi2QytDawMoouf9stTOKPtpPqyQQam1g1jo65ymNJCwFUTECER9T3EbnA7XzTAvNvHUp1k6m2EDnQ9rfLlFMfx4kEMD38YKtCzQ2FXxCH//hYqDUko15h/WR0kgaG5A+FU1SfKDn0o1FOpchPRdixIWAUrA5S0ImIeAbpIi5tXGBUZKyF4hJIfAh0NmAlClSRKtUyBEkEZVREiUEK6WhUIHWe7Zrm4o0AnyASgsqo3EuMCkVG5d/k7987a/zrS9dDMADH/3TPPrpz+Hg6piiFxaNjMKFiI/pHupcoNsRhzgq1XBvHBwXO0RbnsZKxsXxU5S6L6h1PlB3yemr0pKDo4LOBwQwqdK9MzaKLgQIkUJKSh1Y2CTcWx73kbpFIhgpjRDJLW2l0kM8pPVhV4Th0gFr0XnGhRrEUYtebFf0MSlCsOcxl0ayWqUIyEmpd4kQM5nMjY+81shkMpnrzjKWOITIldstV263LDpHaRSN8xzeatlqHFtNx6JNscYherreYbS2DhsilVY0NlB6D0HgY3KqndeOeds7vXaOEJLYyQefnKP6nL3WBlqZhPlKCoSISCRaCTa+9En+7d2vgBg4+zsezt0e9TMURlGqFMWsjED0sc7zxqOlRgmPVpJSpwjxWWtZtJbVasxm7XrnW7VrPQAgBWglk1OtltTuaNQ2pPloJpPJZDKZTCaTyWQymUzm1HJGC6O+7du+bShW7IeUkne961089KEP5bWvfS2f//znh9/FGLnPfe7D8573PB772Mde38PNZDKZGyWib5de1m+XDlKQhB1wNGavOCZmbyfLrY6NgZBCUCiZCgLOU+j086Q8um3rAj5GbrFSIRAcWXQsNSOt9cytR5JEVNuN5ZvrNZ5IqZIjFAhaB+3MUurUcR5CpDKKq7ZbSiMZFQolUkyfFHBgXLDoHLaPz0iiGIOS6bgXrU+FHOuYGM3heUvROyYtY9qSOAoKJZPLE+l31gWOzFtcKIgxDm5BKZLPYl3EeU/jAwKBlKm44z0cmXXMuuRMZSOUveNTiJGt2rFoHdZ71hcWoyQHxwWt83xjvWbeec6eloQAk0LRdpJvtgGkYFKk6D3rU3FISlIHPqnbfjoy0FrquafQqSO+danzfrP2SGmZlJpP/8Pf8RevfxHtYkY1WeFHfvbFPPChP8y5ayOMTscxLkp8hO3maHThEi1TxGJlFNanSLyRUVw1bymcZNY6XEjXZKcIbylUSufBsrCeUovkcBUjpVGcPTYgJQJBoSUFuwtLReO4at6CjQgRkP3rRkWKQDFK7nrPyqghwnDRpSjJ5PiUohYPjA2FktSdHxzHls5U+x0zJLHgXnGBmUzmxkVea2Qymcx1Z7O2qaGhsXxrq6FzgUmhcSFwxWbLZmPZXHRcvtXgfKA0ChGh7tL6YNE5fAAFeCmxLhARhOD7hofkAmtdSA0BLtLaiA0xRSQDRFASpEhNBiGmhYqSgfWvfY4vve3FRG85eM8Hcqcf/SUQEq0U566WdP1cMIQ0dy61xPlIWRYYCaXRSAlzG9hcOEZFx7jQXLndcWBcYEMYBLNaCQRpTn5gpLEhYmRyPi10cpEa7dOEkslkMplMJpPJZDKZTCaTufbcbKpyT3/603n605/OZZddxje/+U1ijNzudrfjlre85ekeWiaTyZxWpBB4Yopv8El8shRwLOPhjsbs7R/tsBRRiSEG4ujvlmKo5X52iq92xtx1LmB6oQqkzunaelRj6Vzksq2GtgsUOhWjQwwIoRkbRSR1fyspWHSORecIRKaFofOBjYVlpdKMjKLQilmb3KOAQbSyFH2NDIyMZ7txWB+oO0/rUld4ZSRaSoQQFL370rwXzmw3DmKkdp7W+3QckSECbimu0VrSWI+RklGhk2gpJoeurcYybx2TUjOrHcFoLjm8QGuBc+AJNDZF7DkfuGyr5sDYcGBUUhnP5ZsNQiSnEqUEo1Lig2DWJCHRuNCUOtL6gJL9tQ+yL9r05wLFvPUQA1pKpIC2bviHt7yef3r/uwG49d3uzeN/7b8xPXQuxkhsDIyVodKKtVHvrhVSzIkQKR6k0rtjGA+Mk/PK5qJjxSUnJRdSzMg3NxaslIaVkUaJdE23G0fjkjtTjBGjJKHf5tBEMx2l/a1WGheWQiqGMSglGBnZOzgJQgwUSjAp07WXe9zeUggmZYo53KpdciTrXaXqzrM6MlRG0fXCv2s65kmpsygqk7kJktcamUwmczxbteXyrYYY4ci8Y9F6hISNRcdV2y3bvSjqyKLD+uTaGq2nUAJEiqiOCCKxb3xIczslBI0NzFpPFL043frenamP2TvGxTYJm9KaQ4n0ZH35V/nyO15IsA3TO92PO/3Er2GMJpLeQ0iBDoJx0cdkx9TQ0FgPMRKJSBE5NCnZbiy19Vy51XLOWnKoKovkzKqFoCxUisn2nkmhqYxi1iah/XLtU/bR4ZlMJpPJZDKZTCaTyWQymVPLza4yd95553Heeeed7mFkMpnMjYZSyySG0ipFTLjAJCbHnmV3814xeztZuvkAVCp9sV/siAlbbnZsgWLWukEUtYy5gyQeWa00TR/BtzYuuHyzSeMtJDFGFIJRH7dWGcUtVgoKrXAhMGscG4uOWeupu4ARUJgUc2GUJDo/vNdKZXYJV5akSDjLrHVokQRFm40FkttQ8JHWSVZGhpGWaAmzxhEQKEAKifeB0qQxLjqPFFAahVYClXRojAuJ7s/Vet0SY0TLJN5ZX3TIKSitiSEJeIw2zJVFK2ht6qSfdx7nW8pCooUgAhKoOz+I3OouIARMR5p5a/FREEOkc2AKCD7S2SQ2mlnHrOkAODgq2Lj8a1z4O8/jyq/9KwAP+LGn8Oin/RJnTUdHz1VMXfCmF8EdmhR7RsUJUtFnXKrh9753W1reN4dnHYvOsdUkdwGjUtSgjym2LgYGR6mF9ZS9cxYkYZfRCgOMdt6jIfZ/Co7MW2xIwjSBGKJL9roPlpRaMS6S+1fdeQ5OCrwPFCp9fgot991+r2POZDI3TfJaI5PJZBKbteXIvCVG2Jy3fGuzwfcxdtYH5p1HSMFmk+bb3keiABuWa46IEGAkOA8+BCalwfuIJwmMWp8aBToXcES8i4RwdO1BH28cARlTRDRAkGA3LuOSt/8GvpkxuvXduP1jn0eQBT5CpSSTUhEDOJ/isYX8/9n793jZ8rOuE39/b+tSVftyLt2dCyQkRAIJyEUICBOJBuEn6PBDzIxyFwOCOnHgh8ZwmUACo6Iit+CIgxFFBxAECYz5CQijAkLklhAShEggSae706fP2XtX1Vrre50/nlV1zuk+fQtJOuec7/v1Or1r965atWqttWs/33o+z+ejiCmhjaw9jJb6XiK9DXYp348xMYyRVecIMXPuoMNoJSL6kOZYcM3ZGGmtuc5VdNFWt6hKpVKpVCqVSqVSqVQqlfcGt50wqlKpVCrX0zvDZoo0VmIcYpa4iGVrUUq6CTeK2buWMSRKkcgwN8dAXBtJtnvYtTF7IWU2k0StXSuKWjTSINBKcToEtNZcXk+g4LBzhJRkEhxojOLOww6rtTQkjMYZTe+sCIfiyMYnhlLoc8EZcfmR9ojEmz2cmOVsCuQizktDSIQssXLrVFi2lr41c1RHRiGv/ah3hJyBls0UuLyJHC2gby2NVVitiVoi+NapIA0fOShnY+BdZ56YC32rmbzEzFktEX8HncVHETrlLM2Zg06imkqR43myCTgr7lQFicJbNJZhnrxPRXHUa3IuaCUOXjEVTreBokCVQi6KmAqNMWijePPP/zv+n3/6twnTwOLwHJ/5km/iQ5/3fO44WGCN4sLSkbK4NvXOzo5aso3OqavuSXNcYe8eOgl/1DuMVtxzMgDwlOOe9Rg4GQNxdhqbYiIjr3fRyTForaW3hkVnmWLm3KJh0dy4tJlimuMexXEgxcJiaUAp7ByR2D1KdEnfiINZzAUfr4qhjnrHEJK4opXymF5zpVKpVCqVyq3KbvjBx8zZFHjn6UQqBYXUR0bDQWclejoUUpF1RgxgDJKbVxRaFawxlBCYAiyagrWa4COpyFBCzFKLF0T45ESvLw5RRVxsd+KoXXy4v3KJd/yrryVtLtPe+UE84y98A65bUYrEXDdGkTJsQqSxhlYZOqcZvDyTM+IE1TsFGk6myLnOspprVF8KGRHUh5zZBllHGKVQSpHmtdHRwnLYiWvqsrVVQF+pVCqVSqVSqVQqlUql8l6iCqMqlUrlNkdrRWsNY0z0znA2RbY+YY1Ei6X5PhKzV3hwCpiPaRYbQddcdd65VggyhsTgI5NW5FlAdToEiTrLIurRWnHYW9rZvSfP4hOtFGPMrFqLVpCLIyRpWlij9nF/Y8isrmkmGKU5XjQijhoTRosoqjEGnzIHnXtYIczWR3yQ5/YpsQ0JlzV9o4kJWidiJaMVVkuc3hQzrVOcrRNHvSWUyGZMjDGTcqCbp8GDUvvGEEBIic2Yue/UE0LB7HZJwZOPOladRMlppYgJsr36WICFczRWsZ4iIWfGoXDQ230HyBlFziI2G2OmALEUNlMkl4IxmimlvftULqBQqDTy8//sH/Bb/+k1ADz1w/4If+p/+UbuetJTWDorx6C1fMC5JWPIXBk8U8z4kDnsFIvGcH7RPGZB0Kq1PP3CknedTlzeeladY9U5YpKIOr2Wc70e5aWtlpZlK5F5Wy8Cu0dqJu0czXzOhJQpsyta5+QxjdEP64i2QytFY8QRa4xpHxG5bO387zG91EqlUqlUKpVblmuHH07GwOhFPN7OQxjWaDYTFDJXhoB1GhNFuNQ4tY/udlax9WVfb8ckwxuZvI98Bonfc3qOTtaIVefsDLUTTKlrvonbU+7+wa8jXLkXd/xkPuhzX4npVxQKjdbkAqlIbDURegt9o2m0IbqCQmOtoiRZixitac0uOs9gDHNknrjYnmwi1s6CMGNYOIPVivOrhvNz8dg3pkYtVyqVSqVSqVQqlUqlUqm8F6mfvFQqlUqFRSvCqK4x+JyZQuZ0iNJXKGUfs+djJjciKMmlzIInEUU1Tu9FTf0skNo1Ru47ncilcNQ7Ui40VlyYSoGTrSflwtHCXSdMGUOaXY9EXHStZuVgnqwegwh6GqPxSdx6dtvIhbkBI82LGAujLhgd0FrNwq+HCmFiyvvXtPZx31hxRqLbNiky+kTKhVVraazmwqqhFBiDwxnDxkeecrjkbXlDjJl1ypgxkFciPCqlMMTI2ZDIueCcIpSMtQqnGzZT4Nyy4Y7DlpDE4SgmmYYPMc9RHqIIUw6c1RwoR8yZy1OgmV2sihaR2hQSi9biTMHHhCqKOJ9nZ2A7JWLOFKVQpXDyzt/lP//jr+XK3W9FKc3Hf/aX8rH/4xdzsGjELasxXFi2HC+cuHSVQms1Wy9uSlMQAdYQxHnsseKM5innei6sGi5tPGdjxGhFY43ovEph4QxKi7PYFDN9Y1g2mpjFdWsXR/Lgc5tnJ4JhigwhzefO7K/ZRfPYokt2Yqg8K/IezkWtUqlUKpVK5XZkO0kdPfo0rx8KfaP3tZxSipwz60Fqah+SxA47cX3VWhFiJuSM1hCjODTFlDjzCaMk3k6ioxWaQsxgtGilSpnLdw1q/h4FqkCcttz9r78ef//vY1bn+cDP+Ubag3PkDFYpsipopN5ORpxXjVEoFCFnGmPonaGxipMhsHSWUkT0dNg5ppiwVtNqw0HXkEtm2WqUEqfarjF0xnDYO1ad1MjL1lZRVKVSqVQqlUqlUqlUKpXKe5lb7tOXu+++mze/+c1cuXKFzWZDeZwNyy/4gi94L+1ZpVKpvP/ijGbZWjZT5LBznBL2DkInQ8BqcTnKKXM6gNFqdt2RxzdOc9CKWGnRGJzRbGbnqa0XZ6JcCkNMlJCYgmaKiVQKPhSJ31OKK9vAojEsW4ufHX5Oh0ApBSOmVag5ngxgCiLoiblgNUwh70VZO0cgq+X1DSHRlMxmyqw697CCliFIM8fHTJij0ZSS/ZxMhrkx4keJxFBKMcWMVhLN0VjNlBTrMXBx2XIyBHJmFgqJo9KYRFg1RmkEuWJYNZqMYjNF2kbEVuJolQip4GPBWnGnaoxiO0VihsbKuWmNiKV8TAxB9iMkae50TrPxmVVruJIzzmpWjSPGwBgiBfZiojf/7I/y8//yW0hhoj++yJ/4slfytOf+EaZcWJaC0RIfp5TEMII4TMmxFjHSGOUYipvS478eW2d4ynFPzmUfUddYjY+JtY2EWFg0lgsrwzhHMK4nuWYHnxhnsZyz0sgqFNZjZIqJ9SgOBr01LBuDVnLN2scYXbLTW+0un6qLqlRuL+pao1KpVB6eXfwxSE29i5tujOF0lDWF27lvpkiY768RYdGyldouxozTht4WzmLBzi5SKRV8kpi6XEQcZbTE5oHUZSmLc9Q+yhtQBlTyvONHv5Hpnf8N3R3wtM/5Rppzd83R2ZAolFjQ1pKybDsXcVqVyGiJmW6NQRs46hzWKHwqEqm9cAxeXpuz0FlD6yxPPbe4rs5czO5QrTUsWlPj8yqVSqVSqVQqlUqlUqlU3gfcEsKod77znXzLt3wL3//938/dd9/9B9pWbVZUKpXblVUrTYAxJA47x2jEDcppETHFJJFl6ymybMQpyWpF11x13emcCKxOx7B3mDrZBqaQaBuDD3mO7cvEVNj4hI+JRTaExtA6w9anWUgl+zVF6XSkedzbXRN55manqClmbCMReT2zWEcpKAVrNTpmdn5AUyqsgDQLr64l50KYn28KiTGIKKkUBUrEUieDJ6aCRknMnVH0zmBmUdAQxGkr5UJRYLXmjiOL04opiWAnDwVtQCtpmhit8CGz9hLPdtA4GmNmsZEmJHHXMkpx4iMDEFKBeWLe6II2mhASax84HQONtRglIrbjhWPRGEopxCwirr4xZGAKmjEENusNP/e9f4ff/aWfBODpf/gT+ZQv+3q6w3OEXMhJmkJmFn/tj1kpbENkPQZikUjBKSaOekffGI5796hxetcKoHIpEoWiZPq+tZrj3tFazXqKHETHyRBQitmNKkqMYutwJjHuXKtiYk5xAcS9LM0NtM4aDhci5Dvo3eNytdo32dT1XyuVyq1LXWtUKpXKY2OYHV99lMEFrRXOKqakKLkQESFTTIWY5GtIhc5pWmdorEFrJTV4nt2ligiUGquZfCaWQsllH02tFGQFJc5RetcKojRzFHfiHT/yzWzf+np00/P0z/kGlnc9jVIgZrlPSRmtNDEnQoKUswiyMvS9prMGFKSSUVmzbBtap9j4OLthiYtr4zR3rToOF05i9pyBIo5YO3eo3pnHHDddqVQqlUqlUqlUKpVKpVL5g3PTC6O+//u/n7/8l/8y6/X6uolt9Tg7lTtL90qlUrmdOeodRotrUeckkqy1mnvORtw8qR1iwufMUltWvd2LlHZOT5spzq49iXetJ0LMc2SZOA3dsWrYTElcl1ImJHnPXk8RnzMHrWMMWaL9rNlHlu3EMrv9gKvCqLK/z9W/A1pBAuyDhrBzEjHPZko44+doO9m2D5lQMlopTqcoIiLEHevMB4qCkgtKi+jqbBIRVJwnxfvWsGisuGTlwqI14mqVCkd9w+HcADnsHSGJgOh0G7iyCRijaK3Ch4JPiVwMuei98GaIkVg0PmYK0miKKfPAxtMYzXYys2ALfC7YIsf3ZAOrxjDEzHZKdFYzGU0pEmvSWcW9//1N/N/f/rc4ve/tKG34hBf9FZ7zqZ8DSpNyxijF8UHDQefwKeNDIqXM/euJxmrWo0z8S+OpiMAsFdKYuH89PexEfEiyT1NMPMRzpcjk/i6OUSJU8l6QF3Nh8ImDzqGVuJO1czReTHL9lMw+XrFzBh1h2TnKrIlbtIaLq8dnaeVn4dyumXWjOMZKpXLrUNcalUql8tjZDTTs3EMPWsuVrae1moJEVvuYRNyfrw4paH21ZrdaREglRMZU0BpSlJowlkxMiVIKqYBGHGWZ3VmZRU5mFkhprdAl8/bXfDtnv/VfUNbxIZ/79fQf+KH42dLVaHE/hYJSoMhQ7H5Io3OG42XDOMnARGsNrdN0jcJoxUFn6Zwm5UKYMm1jaBsRQd150PLUc4sqhKpUKpVKpVKpVCqVSqVSeYK5qYVRr3nNa/i8z/s8cs4PaTQ83liLSqVSqQgS7aD3gpVFa7mLjq1PHPZXI8tCFjeoZWs46iVKYj0G3nXm8SlzNoW9KOriHAu3ai3L1kr0nDYsnJF4DaslBi5kzggijvIJe817ewYMNxailAd9BZnYDinhjAEiMRdpxqTEelR4m693Ciri9hRy4fLWM/nMstVsQuJ0DDitsMZQVKGUglUaaxRzL4YpZYZN4vLWk3JhM0Y2vROhUsocBEuYGyIxZtY+YJS4Tlmj2fpEiIlYCrYUplBIWSbQN1MERHDkg0yxawOZzNk2Yo2m9SJ2OhkCmylx3Dt6pznNkeU2gILLW09jNa3THHSWk63nF378X/Jj3/3NpBhZXXgSn/pXvoknPfsPo4q4TTVWy5S+kWl3DRQF929kW3cetIwhMcaM1eAj0Ml1smgsBWmOjTHtp+QB1lOcX5fgo4iZcr7GMUorOmskRi9ltj5hdKZ3hrM5qtEaxXJ3zfqETxlrNKsHibBKKWx8pDMa0yg6pzns3OMSNuVS9hGP3eyS1j5YeVepVG4Z6lqjUqlUHh+7qOrdYMOqs5yOEVuyRHMniTd2RksUtlFoBTEWchbhVMziUjtEcZaNSZxmd5HaVmtxGM2FlAspI2J4ZK1gDbTaoLUI9d/x//8nPPDrPw1a8yF/4Ws5/4c+Gh8ybnaa0krcYePsQIWy+yjt1hgKcLYJFCWRgP0cG946ia1eNJbeWS5vRrrGcK5vuLhqOV40PPPiCltrxUqlUqlUKpVKpVKpVCqVJ5ybVhiVc+av/tW/um9UlFL403/6T/MFX/AFfMzHfAxPetKTWCwWT/RuViqVyk2JM5qjhSZnyxASzmiU8gw+c9Q3eJfJuWC0QmvFEDJDyJyNAR8lQq9kiTq7sGxorKF3Zi9E2sXc7eLSOmdQDs7GiA+ZySS0kjgObcT6KeeCMWpuuFzfoFYP+grQWsPgdxF0mgxc2QYWjUysjz5xOgX0NY5Rax9RBcYpESm8ax2ZgjhILTpLzBLxp5RECHbOcNA6rIGTIXAyBIlsy5mTbeRkCFxYNoBi6BMXV600gWQcnc0UKRROh8CVITDOwp5VazBG0xfDyRA4GwPOGonho9BYxSYkYoS+sZQi7kljTAwhE1LmZIhMUWOMYgqJpjFoBToqtMqcnVzmh7716/iV/yjRec/6uD/OC77ka3H9AVYZ+lbhtCaUjEWxaB29Ezexy9vIxZVmPQaGMWGswihFKIpUMsZYppDJOdAYTe8MXWPYTHEflTcGcRIYfWIIEn/3EFJhCtJI651h0Rgub8Mct6KZQuZ0iCyaQt8YDntHLhIH6WOeo1fk+1xg4QyrQ0vJEHPh8c7t766nnZhPAb0zj/q4SqVy81HXGpVKpfL42WlGd1+t1rRWERN0rWbaZtZj3MfLudkJdEqJ08Gz6hviHH/sU2HtozgxpSLvx8zxeFkBmf2yQIEq8jNjwFgRMd37//xz7v+lHwPgQ1/0N7nruZ80O0SBiplQFFprSi7oIq5Rdi4QY5KhicY2+FxwVrFotbjgahFFNVpz1Dm2ITHEzMppDhfiNnXQuiqKqlQqlUqlUqlUKpVKpVJ5P+GmFUb9x//4H3n729++n95+9atfzRd+4Rc+wXtVqVQqtxZaixvPsoXzy+YRXX5SKlCgdeJc1FhL3xgaa/Yxe/vtzjF3WitI0uxYtZa+mQU+PtE4zTAlGq0ZEeGMmSe/m1mLEmb3HjU7MV3r6KGVmiPXMpGEKuBzpi+acUqkUuhGiQwEoICP4vS0npLEdcxxfxdXLblIZJ7SioW1HC8cRmuMkdiQzhms1tx7suV0G1n7CBlSyTTakCmcDQEfC7kUccnKmTFmppAppVAoTLOwzOfMwhk2PslkvE8kUzjoDNZqXIKuK6QE69ETs9wuOWG1IpdMTBK3N5Ao28BBb7A68c7Xv4Ef+Za/yZV3vRPrGj7jxX+D577wRQxzhKFSBaM1SmkWVnNh1bBoLesxYLUh5cy7TicapwihcPGw5XDpSCmzMo47li0ohVUiQDqbYxIPO8f9ZxMgornTUdzH5NyJ+5IzGq1EACdxg3m/jdZpFo1h6xOLxuzFUdtZXNUYiWs0WsR2Pmb8LvLEyjXorGYKad9wm6JE8D0aU0xsvYi5+mbnFlVjUSqVW5W61qhUKpWHknNhCIkp5r3YfTfoIHF5oojaleS5FI56x2ZKHLYN2zGzSQFtFFoXcsooDTnC2iesjYQk64GTjZ/rcXFNdVaT1BxzPUdfayWDFlmJa5TRYLXBKHjHz/0Ib/sP3wfAM//MX+XiR70QoyV6LwMUqeOtUaQEzlpQsLAapWVNM8ZMGyJ909AZGVIoSNxzb2SNsw2Jy5sJZzSLzrJqHaXAhYPmCTlHlUqlUqlUKpVKpVKpVCqVh3LTCqPe+MY37m9/xmd8Rm1UVCqVyvuAB8fsNVaEKADbKZKBEDOTymitOOodq1ai4q6lmWPuOmuYggiBclPonGGc3YO62VXJaYVVCmc0PmaMzuQi29sJo3ZxZs2DnkchLj+6KKzVxG1hNJnGyn1zkX1pjQiXhpAIJTPFxJWtR2k4t2jIpXCy9XSNYeEsh71FK0WImVKk8+Nj5mQIjHGXNwdjjKTB0JnCNiTuUYXzi5aURWijlcIZmFJhComSFY2BIWTWY2GzTWBg4SSKJKaCmTtNy1azHiPrKYJSLBotUSRZnKFyhlgyR72jsZqTbWD0kf/6mu/jF37wVZScOP/kp/F5L/sW7nzGhxJTRmtIOUuUiFJ0jUT9rTpHyiIwslpzz+lICIW+06way6oVR7AROF44Vp1DzbenKMKlKWQuJ793hppiYj59LBqJJXlwrF3nDMvZDWu3jdZpOiexeccLR2M0g5drZooipHowViv6xmC04so2cLxoyJSHOE7dKFYvX/P8wPz8IoxatNUtqlK5ValrjUqlUrlKSHlf/z/E47OIUCikzJVtkDp0towKKbPqHIs2sJ0Sh51lMwVSKjilWftEoy2bPLEOAR8SRiu2QSL0cpG4PKVkW0aB0hpKwUfQWgYzlBaRlNYaZzUP/NpP8daf+EcAPONPfhEf8D98FqmU2U0U+Y9WOFVQRYEuaBTGiBvuwll6Z1Ba4VPhZBMpvWKMifOLhq53hFS4Moj7q7OazlkuLkUMdfGgYdHctB+3VSqVSqVSqVQqlUqlUqnccty0n9Scnp7ub3/qp37qE7gnlUqlcnvx4Ji93cR4nKP1RgqLxnK0sBz1N56U7py4/lijZ1cniTtbNHYvgPIp44wmZXFjiqUweggxMUURQBUkosNqhVKK1l0VRvk5Vg5kar0UERdZo2iNCHEoEmeXHTirSKlQSiFTSKVQEhil2PhIStA6SykwBWn8OKuwyojzU4iEOWYjbAtaw7KxFBSRjE4KpRUnm4mIkon6WZjVG0M0hnWKpAxWaRSFSKYkxZDF8Wq1cKQCZhY9FaBvNK215CyCrsZpWm1kP+YpexMLcbjCj3/b1/H7b/gFAD70kz6NF/6lr0H3S9ZjoBREqCTqKs4miaxrjJF4wCRRhpspMYZESrBS4sKklWbrI4tGRFQgr8ua3T/F6RC5vPUipCuIS1gnIrNHcmzSSlzLdtuYQuagE2Ha4BOHvdu7Q+3cy/buBVrRWbMX7wHccdDub58Sbug4tbtedtfhLg6mdZrD+fUtW7lWK5XKrUlda1QqlYrwSI6xD6m5jGLjEyFmQs4oJc6zx31DSBPzPAFXtoEMKAobnwBxOR3nCO80x1eb2ZkzpIyaRVG6gNYao7Jk5xVwGnE7RfHAG3+O3/43/wCAJ3/Sn+UDX/g5WA0NUuORCsoaHIWSoZSCUhqnFc4ojNF0reV40UCRNUGmMKTESht8zviU9oMfK2dZdQZnDWjF8aLhrsP+fXiGKpVKpVKpVCqVSqVSqVQqj8ZNK4w6f/78/vZisXgC96RSqVRuT66N2duRckEriZZLuXBl68ll13BQaCWCmc5JFMUUM11jWI+RYY6Ma6wIo0oWgdV6Kiw7y5Qzjc1sZhFLOwtedmKo5poItjEkhvl+fWPwW4nFe/JhtxdANc6wncQJaOcGtB4jMRec1jijmHLhge1EQdEaTS6JxrpZLFNQaM4Gz9pH1mOkdxoU+JSICc4tnbyWoukbw+XBS0yI0fROsWgaUs7yr2QKhWFKjCkxxERnNecWLSEXTqfInccdKReZoE9yLFeNwxjNfWcjpUDvDK3WaA0L13A6BX73N17Ha77tq1lffhe2afmkz/sqnvuCz8QYTS6K1olbUsqFpbL4ECkoppC5tJ44WogYyGcYQsRqiSlsnSEX2PjIUec4Wri9yGkXNwcSOdfZzP0hsfURHwsxZ7TuMFoETrvr4kauTbttLJoiIiafOLdsSCnTGE1I+Tr3sgejdo9vDc5ocfYKicPOMZr0mB2ndk5RfWNYtTdtCVWpVB4Dda1RqVQq7GsmgHGurXfun9eRxIlTA6OPFODS2nNl6zkbRIB/eTuRZ/enVApdY+idZfCj1P9J72OsSy4oCikrMmUegtAyuEBBq0LRUBJYPTtFacOVt/wyv/ODfxty5o6P+TSe/qf+MilDyQUnSXkUmU3AKIVxYLQhxIwCrDF80PklB72ldZpl6wg5M0wypHC8bFBKsXQGYzUXly2HveN0HjJ4ymHHk466vZttpVKpVCqVSqVSqVQqlUrl/YObtqv30R/90fvbb3vb257APalUKpUKSJMhpszpENj4RGNE4PJgYZSbBTBWyWR4aw3BZaaQORsDVou4qRSFNfN9tWLVWHIpbKbIqY8oAsd9Q9+YWRijeNfZyNbLBHvImfUY0Ep+fr5vOF429E4i1XwUMY0PmcEnchEBTEyglYaiIGW2IdO3lsUcxbadEjFnUHB54xlCJuVE4ww+y/7FVGitxmrNJkdSLtik0EjUiC2FXBSDD8RU8KngjCLngrYKpzRTykyhcHnjcVZz0FourwPayDR77zTWajLwwNnIdkp0jTgrGSU/b4ziZ3/gu/jJf/WPKDlzxwd+MJ/6176R9s5nEHPBOkVnFY3VGGUIOZFL4Wgxq90KoCUmxACd0/O+Glorx1CpyPHCsewsB60IqBaNuc5NKaTM2RQ5HQM+FpgjR8SlqpCAkESg1hjNojEPiV8EESTtGnK789dYzVHvrnMv27sXKEVrNb0zaH1VcHXUO4xWbKZI58zjcpxatraKoiqV24C61qhUKrc76ynuRVGno7hsgtRIrdW4a4YSQsqsJxl0uLzxoBRGwz1XBt6WB44XjpQlju9sTJyNgZwKKHF/1UoiuK/kwMbLoELOswCqyJMWCqoUwvyzGBNKKZTWKKU4fdub+K1/+Q2UFDj+sE/imZ/5v1JgjuLWxDjXeJT9vlttMBq63kKB86uOo5XjKUc95xYNPolQK3QZpRULJzXqQWs5Wjis1kwhsWwcF5eOJ59boJBBhUqlUqlUKpVKpVKpVCqVyvsPN21n73nPex7PeMYzeOtb38qP/diP8fKXv/yJ3qVKpVK5rdn6yOWN5/JWxELOKEDEPju0FqHK4CUmgwLGZFatg12sWUhspygOPbPAxmiZLM9z/FrMRQQ1pXD35QFnNK0zwNw8KYWQirgezU2Tg96xbER00zWWzRQxXrFs4NwSYi6861T2MeYwR8DBlArMUYFbn1FtJETwSQRVKWd8zAw+swmRGGQSPjaGXGTCfUqFK4OHIgKvxmiuDJ6UwWnFNkSU1kieh0IV6J0mxMIQEkOMhJTZTpHDRUPrFClbtJdYkWEXS2gUFMgUNpfv4x//nb/Jm3/1FwH4mD/5Wfx/Xvy3SMYxTJntFNgOAdVZtkZzYWVYGodSipRE+DVnnEAQwdF6inOkHjhjKapw3DdcWLX7BlDnNMtrhEObKc4uTxGrNSdhwqfCYWe5vJlIOe8FSHZ2EZtiZtGY/XbyHLXoU2YzSZzeECKHnSPETH/cP8S97NFYtZbWarZTkgjCx+E4ValUbn3qWqNSqdzOhLnmgutFUYtG4qgf7PAprrEKoxXWKO45GVlP8jgfC2eDx1hNKeLQ2WjDlWmCXFi2jiFmhkHi9TRS55eSUUqTFVJTIw6xmcwUJUZb6lYY738rb/7nX0P2IwfP/Gie/mf/JhkZSijIc5ZScBqsM3TO0jnD4byuyDmz7BwfcLxAKbjrsOXiQYczmlwK952OnI2RzmkOOkfrDAedwxmFmgVSB53Ura29XpBfqVQqlUqlUqlUKpVKpVJ54rlphVEAr3zlK/m8z/s8fu3Xfo1Xv/rV/MW/+Bef6F2qVCqV25KTIfDA2nM6BjYhshkSILEWJRcKIi5RszBqH4NnNXme3l61DmcS959NFCDkwnqMOKM47BtWrWUMCaM1xxcbQszcv5FIDgz4kMiICEujWM/NnGZuYFijaKyldSKIWTQt2ymy8WmeJFccLhoOenE9CjmTCwynE9uY5u1YYpRJ+cYoNjnzwHZiDIkYC0PMErvmDMUXBh9pGsMwJUROo+haTXGGKWRCyiSjsUpRioiNjJZIOx8TChEJ5Qw+Ji5vPZfHQG8NjdMcdbNDU2voZgFWAd71m/+Ff/F3X8rZlQdo+wX/37/6cp7xCZ+GzxmdFVprtNZzPJ1h2VjuPOhoncFqcfnauTvFlNEpY4sI2jKZ823L+YOGlOHiqqEx4v50rZgJrm+kjSEz+sR6iHIxdJaQRMC2i1+xWtE1htYatl6EUEaJM9VOXmdmR7EY5bFnU+T+9fRuCZec0RwtNDnbx+U4ValUbg/qWqNSqdyubKer8Xm7Wu6wt/vI5GvZ1XtaKXzIrMfIyRBYTxGnFespcHmbaYwhl0QqCmegsWZ2EC2YoBh9xESF1oreKXwSoRW5MKZMVpC05OBZDdZaCrC+7x389j//atKwZvWBH8aHfM7LKbYhlEwOO5coqeuUMSycZtlI3djN++Cs4kmHPcZozvWOJx0t9jHKWikOOsd6jDRGc9A7lBJXqF0cd+v0PnJ50Va3qEqlUqlUKpVKpVKpVCqV9zduamHU53zO5/DzP//zfNd3fRdf9mVfRgiBL/3SL32id6tSqVRuK9ZT5L6zkZgzG5/YjpnTIVJU5rhvcFYz9zSIuexjNlqnWbaOZWMYfEIp6JxMoVsjMXBWS5PBGcW5ZcMdq5bTIXIyeELK3DlPcq+nwDAlSgaFRPYtW0vfGEaf2MwOVHaO9xtDpneGiwcdF5Ep9DEkmrOJ7RRprEIrRcmZzsmsuVWGlMXBqXOW+05GrowBHyQmMBeR7igkUnA7iUjJeYl+AxFTnflCYw0xZzRgjcR4AJg5Jq9TGlShc4ZpjqEbh4jPhZJF+FUo0FlQipAK79iMWJ349R/9bn7mX38PAE991ofx+S/7B6zuehpnQ0QVxZkPaKUYQsIaRd+26Nl1atlaFHBu4TjoLKdDZD1FyuxCtSwSZ3jxoKVrDCEWjBanpVVrH+IUtWuknU3SHEvMx0Qrlo2cn9UskPIxy/UxRoKT5trgE31jWDSWEDNjSkw+sR4jxijQsHDSFBtjYozp3Yq601o9bsepSqVy61PXGpVK5XYk58IURfAzzFF6i1m4/mCurffuOR1Yj5ECmNlR6nQKtM5glKJ1hiGIsGk7JaaUcMbQO0OM4uxkjYIIIYGZxfogNbJsU9E1ihgVPmWms0u85V98NeHsARZ3fRAf+vmvQLUdOTMPHiRSlsc1RtPNbk5tozjuWw56cY9yRnHQW477lruOG3ntPjGGtBfdh5RJpcAoTrall/u1TnM4DyssW1vdRSuVSqVSqVQqlUqlUqlU3g+5qYVRAN/5nd/Jk570JF7xilfw5V/+5bzqVa/i8z//8/n4j/947rrrLrque1zbe9rTnvZe2tNKpVK59Qgpc9/pyBQyMWVOtp6YM61VGCPCl4POoWfhUEjSaJlCYuuTuAXRsGwMMWWCAlB0VnG0aFDA+WVznVvPsrUc9hLDNqbC2RhQiLBFa8Vydi06GyO5lDlCAzpj9qKbVesYgoixlq1FK8WisdxxAPdm+MBzS9ZT4nTr6ZyZYz8Sacisx8QYR7Y+StpcKZAVMYFR4jQ1BDAo2kZzZRvkPkphtUJrEYg5rfG5kEsEx+zWpHBas+quxrz5kMipELJECWYjt1UsnI0JZRSWxPrSvfzUd3017/ztNwDw/M/8XD7ry16K0g1bn8RxKyaYFMYoOmdRKDZjhM6yDZH1KEIlHzOdM1xcGZatYT0FtmOCUmiMhjnS5GjhOLd0+yiRa6+L3QT92RTwIe/j6A57i0LLdL4R16rWQm5EnDb4xKWNl3PaGE62gcFHRHIGIRViKagsrgQphb2rU9cYNpOc912DqlKpVP4g1LVGpVK53RhCosBetK4U9M1DRVHX1nv3nA5cOpsIqbDxkYg4noYo8XV3HrYc9i1bH7gyBGLK5GKgiCg+A72z5BQICXLOFK3QFHIBZ8RlSimN04qkC+HklN969cuYLt9Dd+EpPOcv/m2WR8eElIlKavGCxpoizrVK0VjF+WXLUddwbuFY9Y7eac4tWxatYdU67jroCEmcTmMW8b6PmY2POK0xu8hArfauUiDH6PGK8yuVSqVSqVQqlUqlUqlUKu8bbolPbV760pfywAMP8K3f+q38xm/8Bi996Uvfre0opYgxvof3rlKpVG5dTobA1iemmHhgCOQ5Tq1bNIQsrj8KsHo3qQ2900zOcDbKY69sPc60cxMEjhcistFK4YzGGn1drJnVigIsWsuVwYvAKImz0y7uQiswWmONYtEYpphxRpNymafaA6vWsfVJtjlPdjdWE3KmUDBFnJgoBWs0KWdKhk2I5JgJIZNyoaDoHDQWfNaoklEUfE4UL4IqozWjDwD01jCqRGMUi9bhrEyqF1WwWrHsLM6IIGhKmUVjGGMmxExIhVwKRkFUGmsii87yW7/0M/znV38TfntGu1jxp/7K1/NJL/x0jlYN6ymiNTRa42PmqLeg5LX6OY5umBJOa1KeJLKkFLRShCRxf5015BbIhcNFg1GKw86xaCy9lVKiuWY6fpibZFNI+NlF4KCzbH1CaY0q0kxbNFfLkJ04zc+vFcCnBAVCErFYY0WUpZXDGpnQ3zmRnU0RnzOHnWPwCa1UbU5VKpX3CHWtUalUbiemuQ4bZ9eo1mq0emik8OATMWUubSbuvjxQgFwymzESU8HHiFUKhWKMGYaJtjHcddhBKVzaeFKCrGDykSlGpiTi/KGAVoW+MWQUTkNMInAyWpH8wJu+92sZ7vs92sMLfPSX/l0OLt6FTxkHFCWxyLIO0XROY7TmaNFwftFwYdmwbB2tU6w6x8VVw/llS+f0vOYQh6y9Y2lMWKVorKZxmlVjObds9sfi3XEsrVQqlUqlUqlUKpVKpVKpvO+46T+5+ZVf+RX+/J//87zlLW9BzR/WlTnOqFKpVCrvPXIuXNmI2OdkGwgxc7xwtFai79Y+EmJmPUU6Z/ZNFa0UvTNYrUl5ZAiJd52MLOZItTuOWo7naIrzy+YhcRQnW3nO0SdClIbJXX17g3gPT0gFpeU5RSRlORsDU8g4k2itYesTh708x06Uc3kbMBacE0HUdpD4Nq0U3ieKKhQtjZlSJIqtFGi1omTFtkRKFnejgkTrGaWYcmEbIn3ryFlcl3LKJAqt0fgkwi2tFFlJ82cKIk4qiNuUNdLUMUbhcuK/fN8/4Dd+8gcBuPCM5/DCL/9GnvoBT+f+tWcbRCCUUiFbRSqZg4VjigWXM4edZuMjSoHPGR0UJ0MgZYno23Gt+1JMZf931mqFsxoF+2n5PE/WA4xz/ErfiOvWyRBojXh4hZRnwRzXbFvEZp0zXNp4Si6sOovRisNenMd8DFgDR73DGk3faBRKBHohc0rgsHNspkg7u1JVKpXKu0tda1QqlduNXTx0nnPsblRL5Vy4svVsfeLS2UTMhdFHrmzjHD+niHknhC84q8nA2RBlsKAoemu57CdOx0CiEKPUzZqCM4jbk5Yo7JQKOz39dhj51f/za7nye2/CLQ75uC//+6zueCoxF1IuxCKxeQedoW8suYiY3qDQWuK6tdYkMod9T2cltnnZWs4tHAURffmYcVZjjCLEQmvLvv5ctmbvhrpoTa03K5VKpVKpVCqVSqVSqVTez7mphVFveMMbeMELXsB6vQZkCrs2KiqVSuV9w2aKTFEmxbeTxMpdWDVopRh8YtVY1og4agzzpLXWNLOQpiDCoq2PbIu4QEWXpWGSYNkazsa4j0nTWpGzODCBxHyAOFQ9VBQlDkYhJTpj8EEiMBaNxPsNPjF6EUb5lCVyTykeWHuAWdijMKqw9eIOBTDFSIiJPIuNrIbWWZaNYT1FQspAwWpDIBNVprN6dqxSRF9IReEU9K2dw+EUQ0j4JG5HZ1PkZBtxFkIuiGmVPJdSis5qWmMID9zNa1711bzrrW8G4Nmf8jk8+3/8EnTTsA6JnsLWR5aNo2s0lzceHwuZQqMMpSiMA6c11ipUKVgzH+OQpMGjpBnWWHFmKoBSGasM2yly56FESDVW7+MOxzl+JVwTv9I5ub9EChZCLIwh0lpPSBmtwFm9d4pSiEgKxKWgc4YQC4U8Hwu1dxJbNHYvfDsdIlPIjCbNz5k4WtRGVaVSefeoa41KpXI7snub2329kVvU/WcT21k8dP/GczZEfEqcDQlU5mSEwQdCymymyGoMLBu7r/e0VgwxkorUiiUWUiniUqo1WotYPudEVpYxRLTWWJV5w/e9kku//SuYtud5X/Z3OffUZ5KS1NqlgCLTNwZjDN1cRy5ax2FnGIO4yFqrUEqRY+Gu8y0AjVF7F1nXa3KWmOcrg9+70bazO+3FZbuP8a5UKpVKpVKpVCqVSqVSqbz/c1MLo1784hezXq/3TYq77rqLz/7sz+ZjPuZjuOuuu1gul0/0LlYqlcoty8kQKMDZGIil0Fq9F6mkUvAhs2os3mQmn4il7KPZdiggxIIPia7RLDvLyTZwbtGIGGa+v7j/GAoySe6vEd30zUNFUTCLcXzCzfF7cW5udE6aIjEXYspYo0XMU0RsZWYB1hgTnXVsdUFrhdN6jqWTvzmrVqOUJqfC2Ti7WIWEKgproKBojaFtIWwCxii0zuQMqcgEukaEPVNKhJAZjMYAU0z0xTLNIqPeWbKVKXjQ/NYvvJbXfd83E8Yt3eqIT37xy7njuZ9AKvKaLm8mRmswVjGGxFFxbHzCaEhJEUymd4Zl61AlceYDk5fzYq2iVZrWXSMoUoq+MZwNkZgSyYIzEo0C158DP5/fMYlwrbGa0ScubTyDl6aVxCHK+bBaIhOnGDkbI1ZrfIr7OMUyP8dminsTq25+vsZcjXZprWHRFLY+MXg5z1NM5FybVpVK5d2jrjUqlcrtiJonGHZ1V36QIHQzRc4mqX3/+/1r7juZyIhj6BgjRkmtnkpBoZhipoyRzZhoLDRWhhROxjCvG6R+dEbLEIBTdBhKgRQzuYCzBh8jv/Z/fTP3vuE/o23D8178v3PHM5+LLpCUhpJZtgatHMvGoLSImRonrk4hg9IaYzWdUxy2Dd3sKNU5s3cF3KG1EodWYzheGA46S+cMnTUc9I5KpVKpVCqVSqVSqVQqlcrNw00rjPrVX/1VXve61+0/vHrxi1/Mt3/7t9N13RO8Z5XKrU/OhSEkpihOO2X+4FwrdZ27T+XWZpzdfYb567K1e5HKQevYqsjgE43RNL0mpiJimSzXzJQyPkkkxdpEUiwi3lESu3Fl69Fa0Vkj4pqYuLL1OKNJc4NmF893I7RWNLNbU+fE0WnwIsRpjGaKiTEmVkaznSIFaXxvvAh6FAVjFHcdNShgTJFTrShFzY5Xcv9QMj7kuXEOISUS4rLUO01nDadDIpeCUYpIwSeIMdNaQ+ckWm4siWEKEi+CYusnUGAUZA1OaTabLb/+b76Dt/+XnwDgzg/5KF74Za/ArC7iU0ZTyFmaSyEVDpQlpYSbYOvFbUmj0EpDgfXs+uQvJ9Y5cmkbUciE/M6FS2uFns/JlBKN1jirSBnuOxv5gHM95prf97xzGciFXApnQ9gf04PO4lNminK81mNiPSYWrabRilxg6yMbHzFamlQpZYYgDlSHvaN1er9viweJ4vrGMIREnOP8GqsZQmLZ3rTlTqVSeYKoa41KpXK7opUiIYMBJBls2EUmx5TZ+kQu8I7LW+65MhKL1JghJnzI4kBaRNBvldpHJ5/5gAuKRKQgYn4fM0pBztA1GpDI7Wl2lRqLDFKYlPhv//Yfcc8v/3uU1nzkF3wdFz7koyW6uhQ6q8hYVMm0jZnj7ixOK46XLc6o/bCE1opWG1pnyCWjiqxjfMzkLK87l8LgE9u5hm2d3h+DRXvjoYxKpVKpVCqVSqVSqVQqlcr7Lzdtp/AXf/EX97c/8iM/ku/+7u9+AvemUrk9CCmznSQS7SFBMgUS5Tp3n0VrJI6rckuSsgii0uwQ1Njrz/WisTRGhCkhSpNkZeTPztpHTFEsGom5246Z0hQu2BatNXGnrkmFKWSsliaJCGfkGmzto19ffSONldYZfBYB09kYxRWqFMpsXrXxiUVj8Uki3kRMZWmtIeTMqkvETeags2x8ROcCWqOVJmVPVtIoKqUQcgGVWLgGpWCKGasUYRZzaSWioSGIMGrwCZTElQwxkbJEeYw+kYHGabTWnLzjd/nF73k5Z/f8LijFR3zGF/GcT/8ijHNsp8iUCq2RSLkc5bmM1ow+cnkroiylFT5nesDO8Xj3no5MIaOVwgCnkyckQ2Ok6eOMwlotblUFMoWD1lKQY7iZEkp5EcBZzRQyqWTWY+T+rfx/q0VMpmAfndc5w6ZIFOPZKO8tVivQBVUUUYOPgcYYVp3ElrROs2rdfH2ZfdzJDq12orfMGNNeGLdsH+fFXalUbnvqWqNSqdyutFaLGMoapiCC9uUcO70TCr1rPXBp68kFYpY6LuSCNuIwNUyJ7Ryj3TbgksLN9eDJEMip0Dqp+WMuNFZjjUFlMEbTayXOrrPL6K+99nv5vf/0wwA8+0VfxYUP+0RCKhSVKWSMMjirUMpgFHROc24pDrRHC0eKmUVrMVrjQwJVxEl1HihYj4HGGk62HmM0PuV9lGDrNIed1J/L1tb1baVSqVQqlUqlUqlUKpXKTchNK4y6fPny/vaLXvSiJ3BPKpXbg/UU2Uxx/72fhQc5X+MY9SB3nzGKU8uqurXcosw5G3PU2UPVcmCN5sCIA9EUkwjnfCKljFGKYRbZ9a2it5a+MfTOcNQ78hy9N82xeWdTZOsji8Yy+kTK4jb1SDijWTQSqXfQOs4I+JBlAjxEvM1Yq1hPIpa6vPVsfUQr0FrTN5pDbYlRGj5N0GAdbaP2Lxtl8TGyCRNaaVorjkyFQs4Ko6FvDX6b8ElclLRW5JwZQmaMmcPOYo1mGiI+ZYaS2IaCNQqK4e7XvZZf/YF/SAoTzcF5Pv6Lvo4nP+fjsEajKOJoUiRasLFaHKlS5srGo5SibxXLztIYhdWGvtE4ozEK3nkyMITMFBK9s7MLl6YoWDiDRqE0kOGwtxRgCJnzi4a7DjtGn9hMkdJYpphZz65Xp2MkxExr9V74FUvheOFwxpBL4aBzjCGyGeXfmDLDJqG0YtUZYi6UBo6VZdHavShKYgBv/L6yE0PlWVz34PiXSqVSeSzUtUalUrld6Z1hM0URK81x1INP9I3Bp8zWRy6tJUovRHGQGkLEakMqmVLU7HoqblGtUeQkwiqfCipLjDaIYN5pRYxzLWoMToszqZ4HFH7zp36I//bvXg3Ah37WX+MpH/dp5FywKIoClMYajbUag+LcsqG3hgurltZqCtC0jlVn8DGz7Ayr1tFYw3oK+JS5tPWsGssYFId9AyCDGY3ZO0X1janr2kqlUqlUKpVKpVKpVCqVm5Sb9lOdO+64Y3/7yU9+8hO4J5XKrc/JEBjnD69Hn/ZRVQ/hQe4+XSMfqudS9lO2lVsHoyEkaRpMyLT1w6G1om8sbo54a/qGtY80RTOoRGcNR71l2VhaZ/buU50zLK+JsvAxk0pAKRh8ws+uQI/EsrWkItfmQeuYTOJ0G0SokwoPrD0+ylR4SiL0O+wtuYAzBkrh3LIh5oLScLqNe8ejnCE4mNqCT5YpZCgQc8IDfasZfBa3JSBnua0AHxXOFBonTaGYC1sfiCkzxkLOBVcm3vxvv4N3/PJPAnDhQ/4IH/35X0N/dAEfM/tRdlU46CyKwhQKhsKYJa5u2Ts6q3nqcb93r1q0do65izij8aGAVgwp0uWGvtGoIsKyrjFoBWsiuSjOL5w0uoy4CRwtGkLMGC2OTc5ocpFJ/GVjKKUgXSs4t2g4t2xmxwGJNly1jlXr0EZxNka8z8QMk890jaE1mkUr1wWIU9QjRePtkhV3h6bqoiqVyrtDXWtUKpXbFa0VrTWMMdE7Mw8nJHwSF9iTbSCEzOQzsWSGkFAojAKlNGGO2bZGhFFGQVFqjp2WiDxtFFPMlJwx2qCLuKwqFH3OpCw13dt/6d/zX/+vfwjAh33GF/PBL3gROWeyBmOURF/P2+6toXeKZWs5aCznlw1GibjJaEVjDaNPbH2kawzLxtJYRcwSXb2P2ZujsK9dY9Rhn0qlUqlUKpVKpVKpVCqVm5ub9pOdZzzjGfvbly5degL3pFK5tVlPcS+KOh2DCD+QD6pbK64zWqkbuvv4nDnsHINPaKXqh8m3GJ0zjCHTNZqNh42PHC9E9PJwDPO15GMmxEwuIjZqnaFvRPjS2YfGoy1bizWKk0Ecn3ZOVadDZPUYRHeHnWOjpKnTWkPfFPJsdhVSws6uVqvOsCiGw85xNgRiKWglj7905jnoHAYNqnDYO06HyBAiS2cYrWb0IvwS1yUFaGKOUAqpSIdHKUUCxpjpmoTCEkshlUKImd3L297zFt7yA9/EcP87UFrz7E//Szz9BX+B1u2m1QulKBIFQiEDWZX98TdK4azm/KJBaxEyWa1ZtBKLcmXr8bGAKtL4shptFL2ze/Ov7ewSF3PBasXxwnLUN6giza7TQY6p05qQNUe9Y9VaUs6cX7RcWk8MPnF+abjzoGXRXj1XD45abI3BLjQaOBkDKctzdE4zxszFVcu5hXtIfN6D2WvF1PVfK5VK5fFQ1xqVSuV2ZtGKMKprJI56CplL68AUE6ejp1CI8/9XGrTSjCmRktS0xmhIBTW7PxmjyTnPYigR35eSGFLBWdCaOea6MKWCQvF7v/If+Zl/8koAnvsn/zwf92e/RAYJpsTgI63RKKBvNH1jWXXiONs1sq6wWrNqDYtGorBTyhgja9LD1pGBZWuI86DH0byO2Q30KKjx8JVKpVKpVCqVSqVSqVQqtwg37ac7n/zJn8ydd94JwM/8zM88wXtTqdyahJT38XnXiqIWjeH8suGgc3Szu0/nDAed4/yyYTELXKaQOR0lZmEzRcIjOApVbj6OOodSsGocVmt8lGiNhyPnsp8gn2aBlKAwSrFsHUopDvobC+haazieo/N24pf1FImP8bpatnaOcVOElLFGcWHZsGodFw8alq3Eahx2DgWsut1thVJg5ilyYwCl2PrMqrcc9k6myxtxSWutmZsoloPOcmHRsOodjdY0VmMsqDl+MmUYvIgJU5YpeU3hnb/wb3nj//HXGe5/B/25O/lj/+t38OxP/Tyc02itCDnL8egsF5Yt5w4aWifT/a3Ts+hLYbRM6jutOOgMR4uGszFxZZjYhsiUIuMUUbNw6kkHHYcLy3HfcMdBy0HnaK28/lQKIRXWU2TtIyGXWRyp6BpNzIWYC5nC5W0g5CzXR2c56Nx1oqgd1mgOOsfxomHZWtx8HLVSlFIopXDQO5at4cJB86iiKBDRHYjbAfCIQr1KpVJ5OOpao1Kp3M44o/cOnYedo3WaEBP3n468/YEtlzaed52NTDFCLqy3ntOtxCk7rWmN5rCzOHM1vtnMdVxC1plGa6xRxCQuUk5rqWNT5u43/Vd++lUvo+TEhz7/T/MnvvArOexlrXm8cFxYNRwtHO0cD50LGCMDFnZ2icolz+tZEXQNIVJKobGa42XDuaXj3KKV4QGj0EpE+c5oVq3l4qrlaOGqKKpSqVQqlUqlUqlUKpVK5Rbgpv2Ex1rLS17yEkopvPa1r+WXfumXnuhdqlRuObbT1fi8nSjqsLcsW/uwYoOdu8/hLG6ZQt47Tu22V7k1WLaW1mic1SwaQylwZRv2wpQHM8VEQeLrYpEp8zFkSiks9hEXmkXz8M5ix0sRIanZpSyXwpWtf8z7vGvOHPUieuobIxEbzqKUwhnFhVXD8aLh4kFL3xqUgq1PKA2lFJwx5FI4HTw+ZEIUUZMPGZ8yaj42y8awcIbzq4bzy5bDZUNrDQYtk+3zlHtWUFImJgjjGW/6l6/g937iVZQUuPBhn8ALX/ZPedKzPxJrNL0zNFaiQLRS5Fn8c2HVSkMHWM4CLacVi1aEUgedpaAIKRFTJs9RdSEVQi40sxvUnUcdrdM0TsoDpSFmcYdLRURRJ0OgcwYfM6ejNME24+yKlQuN0VxYtjitxUludgZ7uOsCRMR00Mmk/3EnIqnWag47NzfXzCM+fkcuZR/p2FkRaLaPErVYqVQqN6KuNSqVyu3OqrV0zsgQQmGO0ysMITP4xGaS2n7wiTHl2YkUlk4GBBpnWFhD6wwZoGQUhZgyk08MPuGU1JilFErOoBXv+t038u+/9f9HioFnf/yf4LP+2jdw0Df0zsyiJUdrJe56t35YNhqrNH0rYqx2XptorfBJ4qMf2Hg2U8IZqZ87a/brgvOrlgurlourlvNLqUV3IvtKpVKpVCqVSqVSqVQqlcrNz03dLXzZy17GC1/4QnLOfOZnfiavf/3rn+hdqlRuGXIuTFGETLv4s8XshvNYaK3ZO0cNXh4/xUTO5ZEeVrmJ0FpxvGgAOOodjTWMIfHAZmLrI7lcf653jmHbKPGMW58IKeO05mB2gjrqHl50B2C1ZjlfV7u7nQxhf60+HLkUtj5y7+nA3VcGTsawf/xh77iwbDi/bDjsxQlt1Yk466B1LOfbq8YyTLLP6zHwwNbzO/eteefpltMhohU0RmGswmqZincGihLh1EHnOGwNy8agtcYYEYMdNuK6dvb7b+KXv/3LufTG/4wylmd8xpfzUX/pm1isjohRIvI6Z1g0jt4Zlq2ldwarFLnA0skxXI+RmAp9Y7jzoKNvHEe9Y2ENORUWrcVpET/5kJlSwVlN3zhyBqM0k89c2nqmmMm5iLPTLFjLOXN58Gx8ZAoirNoGEVmdjZH7154pRk4HT2MNZo7LOxvDDa+LHc5oxpAYo0Tzdc5QQGJcnH5MwqjBJ0qROJTGzvEq7rG9Z1UqlcqDqWuNSqVyu2O0YooSgacUdE5TSmEMmVxEDFUAjWLVGihwZQpspkBImUThZDtxZeM5HWQNEJIME/iUyGRSLoyxoI3m9O3/nX//D7+SMA087cOfx2d/5d/BOitOT0ZjFTijaJ2hKEWOha3PDKlQSsYoEfaPU2IKie0UuX89sfERZhfYaXa57ZyugvpKpVKpVCqVSqVSqVQqlduEm/pTH6UUP/7jP84XfdEXce+99/K85z2Pl7zkJbzuda8jpepMU6n8QRiCTAD7KDFfSkHfPD6BQd+I207M4hZTuCqyqtwaHC2cCOac4dxSxFHrSSayH9h41mNkigkfxR1qM0VONp7TQZylnNYcLx2N0fSN4bB/aNzaQ55zvk9j9D427nSIbKaHim5iypwOgfvXE+86m7i8kYgPayQ6LqRCofDAxrOdxE0ppCyORbNr0oVly6q1tI3GaM3964mTbcCHzNnoGX3Cp8wQisQFpsLaJzSFxjpaO0+uG82ydRyvGo47S2MVxhgaXXjjT/4rfuYf/BXGB+6hO/9k/uhLvoM/9MdfRGMUKcv0PUDrDL0zc6Sfmo+bRgOrXqLyQIRgTis6Z+md5q6jnnOrhkVr5f5KGlhKQddoOqdJqbANEaUglExJBTOrx6xWOKuxRpMKDJM0x5yRqJJlY1jNrwkKoIgZNj7N50sxBHEGuLIN110XU0ysx8jpGImzcPKgsxx2bt+Es3NEyiMxRRHbwdX3qtaaOu1fqVTebepao1Kp3M6cDIHNFFm2ls5pxpBZT5HBJ/w8lFBKIUSpgVMRZ9icC+sxcv/ZwH1nI5uQ8TFzMnhOx8h2ikwhM/k818wiwBovvYPXfstLmDanPPUPfQT/09/6VrDNHGstgwAZRQaMkkjtYVdLDoHNlBm9uLcOUerzB7aekzFIjVgybo7KA7i8DVVQX6lUKpVKpVKpVCqVSqVym/DweUU3Ac985jP3t5VSeO951atexate9Sqcc5w/f56u6x7z9pRSvOUtb3lv7GqlctMxze4s4/yhd2v1Izr53AitRLgxxcwYE42V28v2Pb67lScIZzR3HnbcczIAO8cixRQyJ9Gz0XrfaLgyiJjodIgAnGsdR0vHspGYjourFmseXa8r7kaGySec0WxC4srWc3kjLlatVawaS0aiPnwUsVNIhSlmEUVpxengWbaOzolASilpAO2EUYedY6MiW58kvg/FUW+597RQUKSc8LGQSsGoQk6FohQlZ7YeTnRAKU3rFAoYQ8YYRa/F5cnkjJ3O+A/f+Y287fU/B8BTP+aP85w/95UcHB2RUibkwpQyK+dYOIOd4/eWzjCFTNKFxpo5Hq+Im9WUMEax7BwpJ7QWR6rRz7+DQ8LnTOs0x7rBGli1DqMVC2swVlGKOAL0jWHr5XylUuidZp0y1sCysZQCmYLVSkRIChYNbKYocXtJJvKP+wafMoUCRURMU3zouV22hpA0jdFcHjxNLqQEWy9NuRuRS2HwV0VRrRO3KYBFW5tblUrl3aeuNSqVyu3Keor7OPTTUWKTd1W6MwprNaFkjAZUwViwGnwqrIdIKiKaKkDKmZwKMcvtIWRyzmitUamAg7K5zM9821eyvXI/Fz7gg/lzX/0qFssV6ykBgSkUfE4YFL4k1kMixkxrlUR1F5hSRGtHKUrqwcYyhkhrRNzft46tT5xbOqxWXN54+sZw16G8j1dBfaVSqVQqlUqlUqlUKpXKrctNLYx661vfirpGqLG7XUrBe88999zzmLajlKKUct22KpXbnZ3zzi76zj0GwcqN2Imhdtt5uBitys3LqrXccdBxaT0B4uQ0+sQ4x274IG5hYRbbrVqD1obD3rJsLH1juLBsbyh8yaUwBnEWynODZesjl7eeGDOxFNpZwDN6cXyKCe47nQgpY424KaUClELbGBqjiVket4sHORsjndVYrdj6xLvORu467Fm2linKdPkUEkorFq3lbIqEnDFa0ShxXvIp4ZRCN4ZYClNKXBkmGq9orcUaBXuxYOLSG3+Nn/3HL2d75V0Y1/ARn/0SnvX8z0TpQskK21hsLBRV0AWMUqj5b1XKZY7+0DSAprAOaXbNApPBOQ1oLq5acpYGV0wSfWe1wceENdBaccc6bB0XDlpCyigSVonAbed2Nc1RI0cLRyng5xjEGDO6lb+fSokIbNFYlm0k5oxG4VOmMSKS651hjImS5fxqpVBaIkys0Wy9OBFcXLacmABZIvLCNdtQCtmHKFEsu7eV1mkOOxHoLVv7br9vVSqVCtS1RqVSuT0JSVxeQURRlzeezRRRWqG1RhtNyRJX53PBGUNn4XSU+j8X8DFJvRoLikxB7d0/rVEkZSiloBXk7Rn/6R99Jet3vYOjuz6AF33dd9GvDmQNWRJDyEwhsZnSXpDvo8TmWSMDB4vOsGwsVhsWjeaob0il0DnLqlV0VlMQd6iY4J7TiWVjSEW2B1VQX6lUKpVKpVKpVCqVSqVyK3NTC6NAGhPvD9uoVG41dr8Wu6+P1y1qx+5hD95e5dbiqBfHoZOtZ+vFsceHzJgSJReJqTCKXAoxGUqBtjEc9Y7D3j1EFBVTZjtH1F17zWx95P4zj0/ifrSZElP2HDhLKpBS4nSK5CyRHClLNNxx7zhYNDRW44zaC7JCEvGWUYr1FBEvKMXlTaAx4rSUcuGgdVgzUnLBWUXXWBH7OYnyyMwiwCRCn8lHaRiFzBQgt4qLBw0+Fgbv+fXXfC+/+MPfTSmZoyc9nT/64ldw4WnPwlrNqrH42cGqpMIYIgXFlBJDEIcokxUhZUYvjlYxJVIRhzdrxDHLIs5YZR9rIr+PSin6RtM4RUwFVRQ5w7KzaAUpF4zSdHPkXmPkGAB0zmC0YjPJ6wtFml9q1h/thuwTEme3E0U2RhylQsroRrFqbxyZqBScWzQcdJmTbWTVWGDXsBIR287N7lqslki/nVNU3xhWD+MwValUKo+HutaoVCq3GjkXhpBm4ZHU6UrJeq+1Gr9zDvaJe09GToZAa7XUzT4SQiHkxDZkQsxk4HJOKBQoWE+BUiRe2WhQymAVpAw+Z3IWUb/WiuJH/us/fRmnd/93FscX+Qtf9485d/EuicMLGas1CvnaNYWSIJbMQWs56C0hFbSGJx8uaBuDUWCMYgiRmMBZJa+rMWigsWbvhLVsNAezi9STj5sqqK9UKpVKpVKpVCqVSqVSuYW5qbuGL3/5y5/oXahUblmUfJa9Fza9u05Pu4fttlPNEm5dVq2ltZrtlBhCZAgJH83e6alvDEPIKMRtqHOGC6uGxl4/nb2Z4j4WDUQkNcbE6RgZfeJsjKScaYwiF3Eout9PGKWxRhGSXHTDGFFK0TjNGDOHqnBh2dA3Zt/46JxhWQpOK955Ig2dmEWI847LW5QSwdN9ZxNbL9F2GviAo55p4Vj7tG94pyJNprMhseqcOC8pxaI1hFhYD4nNybv46f/j5bz9ja8D4Nn/w5/mk7/ob5BMRyqFw87SWsN5q4lFGkepOE62gSnJsdv6KE0oBSlB6zKqKLRRLK3BWE2KEqt3tHBYoylI0ygmaYZNIcBsgo0AAQAASURBVFEKLBpD25i9+5JSch8oxJRBiegoze8FrdXMxlGkLE5gSonbE8ixAggp0VlDaxNnYyAXQ2s1i3aOETRqf10opUSAZUVQp5UI6NajOBUc9Q3WiKBNa0XO1zTwtKKzZv+8IE5RVRRVqVTeE9S1RqVSuZUIKbOdElNMPGRlVyBRmGLi8sbjjObuK1subwOdM0wpM3qJwdv4yDaIqCpRiFHipRsrovuSi0TpKei0orEaOw8bmKywIYuba/S88ftezunvv4lmccif/Mpvp7/wJKxWaBRJy14e9Y4YC2gHpbANEgltiuKwVxx0js4ZnBWn2LMh0VlxhrVaywBGgcYZeie1aFFgtdSPWisWrrpFVSqVSqVSqVQqlUqlUqncytzUncParKhU3ntopUjzJC9JRBbdu/GB8W7iWM9WMu+u81Tl0Xm06e/emf15eG/hjOZooTnI9iH7klPmnaej3NHLNXXf2cSqtXtRzGaKjEGumSkmicebX9c4/zsdA1NIGKOwSvOk44bWOnzciaYkbm8KGWc1XatZtY6YClPMHPbXuxVppThaNORSuPd0QgGbKXFl6ymAM4rLW4/RCjc3WKaUCKngtIixjFY4q0VgdJDwMREzFAoUOB0jb/uNX+Sn/tH/xnD6AK7t+dQveRnP/IRPp2/FSamxhnN9g9GKVS9/nq9sPGdj5NxSpuxPx8A0zs2mXHBWYu6UUnSNZvSFnAtaaxbWMEyJbSPxeiHK8Ugly3UwN6xOh4AzEm83zoKpZWuJqZCAmCIKxWEnoqWInJ+QipwDrbFG4u127xFbn7BG0xiN0RKnOabEgXUYozheNI94HQ0+0TeWrjF0s9PUYe8e9v1DAa01LFpTp/0rlcp7jLrWqFQqtwrrKe7j8UDWaGNMDxGc51zIBd5xecvvPbCls4ZUMsNUWE+emOb62mmGSbGdMlPKlAxnYyaXjFaKogoWiUvOClpjsK0mhMSgI6OP/OYP/m2u/M6vYpqOP/rlf4+jpzyD0zEwxsRx33B+2UgtrjXbGImxEHKmcZaD1lIKHC4sFw9aTuchgsYaVp3DasWyszgl7qldo1l2js4YjFFc2QZiLjijWLWybrlRrHelUqlUKpVKpVKpVCqVSuXWoH7yU6lUbsguLqGzhilIfNWylMclbMql4Gd7mZ2jTGuraOE9zWOZ/g4ps5ni+0w8orVi2VqW7TX7VwrL1jLFTGsN6ymyHiMKCMlw/3oipkLvRKQzzQKplMscx2Y4GQIxZaxRNEamzzdjZlCBrtHk2QXJGsVokihmsmYbAp1rubSecEZx2DnGIFF94lwkEXM+ZB7YTrROS1SfjzywDQxjQmvIGcacWVhDTpCzNIfOLRrMToQ2C7we2HimkHAm87of+m7+ww/8EwDufPqH8Odf+vc4evIHEUvhqHXELOdo0WkMmpLheOFYNWZ2q4qcjpHWGFaukI2iKIXTGq3FcakoaEyibxyL1pApnE4BaxSHi4bWaXpnKVnEWmMQhyylFTFl7r4y0miF0eIwZbSidzJhH0pmiAobEjnLOQ2psDCGRTO7RRm9f39ojIihusbQhMRminRe4kryo5jPTTHtHcMOZweAxsj5eCJFf5VKpVKpVCrvrzzSgMQ0R8dprRh9YggyePAQUuFkCAw+ce/JAMDl7YRCzcMCmoNecTYlFtZwAkDBKEXUhclnCgWrZR2YlNTqTmtSKfQadGvQGt78g3+fe9/wn9HG8fFf8k3c9aznkHJh4SyKOZ5ZK3qnWTSWO21HzAVVCgcLxzA7Vi2ciOgtim1MlCwutlZLva+VxC0vmqsffSlg1Yrgf1c/TjGzbN+LJ6hSqVQqlUqlUqlUKpVKpfKEUoVRlUrlhvSzuKOxGqslXmzwj2+SdvDiPmPnCAU1b7fyB+PaxsfZGNhMaW58yM/nFMQbxo2NMTHG9Jjjxv6gLlQPnk63WnFpCuRcGGMixMLGJ1atRLRppbi8DWgl10rfGHxM+KQ4G8IsNNJcXDWMUaLlYi5kYAiJRWPIWZycXG8wqjCEzOkg9z3sGt7+wMBhH+ib61//egxYK6/lnVcGKBprwIdMKgUf53i5AtucsEbhjDhGpZzpO8e5RYNCRE1PPdfz27/7Vl71NX+dt7zhlwF43p/6n/jUv/g3uHi8YvAJpRSHC4szmpjgsHfkXEilzMdZc7xo9o5MZo6dC/N9Wq3pWoPKhW1IFK3xOcOkKEVi/+4vBZ/EwWlyGWc0SmuOloaUMqA5mwJDFMHZUdeIoDEptE6EIM5Qy8ayngKbMYJSs9OXYdXJcdwJpHa3dwK41io2E6zHyKKN1zWmrrvWirzH7ERRrdN7B6pVJ8eoNqwqlUqlUqlUrvJoAxKnU2Drk0RZz7HJu7qytRo3C9tzEZH+/evE6ejFpTQlVFHEUjhoLeeWDZfXHqUKbWM46B2bkNApY1TB24yPsn6AQioZHxXOKEKWgQerFb/5I9/J7/7C/43Shk/60lfw9I/8BGKGxmn6xtBYcXs6t3AsnKOxmicfdaw6y5WtZzOvMc08iNEYiWt2Q6AAy8ZSSsEaxXHfYLTer5UaI/WlT5mzMc77+u7HxlcqlUqlUqlUKpVKpVKpVG4OqjCqUqncEK0VrRXnnt4ZzqY4x2PJ/380rnV96ZudW1R1dfmD8ODGx9kYrsbOhauxcwpws2jJGg2pMIWM1YreGbpGRG+5FA4795ie6zqucaE6GwIZaUwYra6fTo/zdLq6fjpdK8U0u5HFHPEx8fbtRMkKa+TaU0jjxCXFA5uwF83kIqIjnwpWKzpnMFrJ/s7X22xSxnFv6RtxmToZApfWga3PLOdJdYBYCiUXtj7JNL1WFAoxQ4iBYZsJsXDxsKEUiDljtNrvy9YnXIajrtlHAu7Efz/3H17L33nZ/8rZyWX65QFf9NL/nWd/wqeQi8JoWHQOpySKZBdTEnOmMZoURZCWZ2GhVZqDzmEQV6wOOOgMMYI1iilFzqaEMZpYMlNM4s6mNdtJBGir1nD/mefiqqFvDINPEodiNH1ryAWMgdaISE2pAihCjGxjIeW8P3cLZ+gby6o14kLWzNfajDWaRWPY+sSydaynTMmZwUsEYWvFAUopEfD5mPEps+tJtU7vr81la2s8XqVSqVQqlcqDeLR4vJQzp1OkM4YpXXVjvbBqOL9sH+IE3M3uS0aJkGk9JjSKRatxVmrKXR3oY+J46YgxczpGrgwepzXYTMrisgoyYGC0whpFyYX/9pPfy2/+1A8C8Ee/8GV89PP/JEZLbHWjIZXCqnM4rVm1lvNLqVuPlw1KQd9YjhcNZ6PU9W5eg+gi+y+1reL8qqO1+mHjm9W8f7vas+qiKpVKpVKpVCqVSqVSqVRubaowqnJD3vjGN/L617+eu+++G2MMT33qU/nYj/1YnvGMZzzRu1Z5H7JoRRjVNQafM1PInA6RRVPoG3PDWL1Hcn1ZtI8uqPqDOhTdqjy48XFl43lg8JRcWE+JEEXU0xnDsrM4I5EXRolIaoqZmAtnU8TnzGHnGHxCz84/N3quXApjSKzHyBATOUnHQGuJcGvmWMRdH2HRGJatJafCAxvPyeApKIYQifNjnZHnM1oETEe9w0eJWoslc7KOaK04Xrj9fhTkuipKriGFuGJ1zrBqHc4ohjmubQoyob4Ta2mlOOodp2NgG6IIcXIhxMIwi6RSLqznY7sdRQB4NnhaaznsLadDRFGIuZBiwTWazmpCLpjOknLh8hBQWgRlqtX8n//wG/mh7/1uAJ71nD/MV/ztV3HnU57GehIx0hgzR53lsLOcjZFSwCnNNiUw4LRmM0XGlET4lUVQNMaEM4qD1qG0orfiiLUZ5f8f9m6OvkyzAwBskmKMmcYpjIGTIUjzyphZdKQ46BrOLcCnTEqwcGaenC9kDdOUZ3GdZtkYOmfpZpeBZWNv6CS3bC25FM7GwLIxgLjPKQpTlHjOB2O1xJ3s3jP6xjwmZ7NKpVKpVCqV24mTITDOEXkPF4+3HhM+Zs6GiA+J1hkurFpAsZkiBw8akMi5kLIMHxilCKmgVcYaS0xZovJK4Xgh7qLj1rNsLbEUhqAJKaJ2qvfZwjbmjA+giuG3f+6H+M0f+x4AnvcXvoLnfvKf2a8n7zzogYxBop+XraW18tVozbKV+lArRcoS+dw5zaqz+6GdRSvrlmbvgvXwx28nhNotZx9HWnylUqlUKpVKpVKpVCqVSuUmpHYbK9fxQz/0Q7zyla/k9a9//Q1//omf+Il80zd9Ey94wQvetztWeUKQ6CrLZoocdo5TAlMQZ54hJBrznnN9eawORZspikNNa24bF5kHNz7OxsCljQdg4xN+dmbqjEZrSCnjtMFZTSrggPPLZi9Ym0LmlMBh5+bjqffH8mQIrMcwi4PCDZssQ0iMIe2jEftW3IIurSdKAa0Ka58xCs4mmeYupXDUO1rrmGKhMQatMiEVYoLjvmEMIkoq8wXktGIbEkedw+c8u0hpjFa0cwyGM9LFaGeRVipXxTYhFToHU8xYpWmN5nQMNFpziKKxmcZafCwctI4xiDhqComMRPTFIIIynwsKRdtqWmsw2rLxkZQypz4TVORshHvf/lZe/cqv5C1vkvfQz/7Cv8z//Ff+Jm3TMAYRRaVcaKxCKTi/bEm5oJQiZ7nGp5BYdY5tkJjEzRRFRFRETLZoDDFnYsjSdEKx6i05F3IWQdyFg1am+VPGmsgYM9Mk97dG0Tfy+9hYzblFg1HinpU9LBvNUe/2jlWHrSOEzNpHul6z6i3L1jCExAec6/dRejdi2Voubz0+SoyhsxpnFFqrvZvBg+Mer31sFUVVKpVKpVKpXM96ivu1wekY9k5Q18bjAbJGUFL/bn1ijJlEYekMSinOhsjxwongSCvGIBF1p1PEx0xMiZALzRiZtEbpeU1nNQet43QIRKvRSp7TaoUphWIUKoPSikQGpbjnV36SN//IdwDwYZ/xxTzrBX+OKUQao0CJEEspMFZJlF5rWbSG40WD0WofxawVJGTbJKmdd8Io8Zy9GotXHsEGys8C/d3AzY0GfiqVSqVSqVQqlUqlUqlUKrcO7/cdxy/+4i/e31ZK8T3f8z03/Nl7ggdv/3YipcSLX/xi/tk/+2ePeL+f//mf54UvfCFf8zVfwyte8Yr3zc5VnlBWrTjijCFx2DlGkySCK7/nXF8eLQbiwcKJMSbGmG4L4cSNGh/rKc1itIIzitY4cVJScuzi7IDkc54FPxmt5HhZozgdIlPIjCbROcN2ShwtNOspcmk9iShqCvidKChJDN8uQi7mjFGKKSTOxkg6lf3YNSxSLow+cXnwjF7iLJad4dImM/rIqnWy/woaozkbI4OPbKaMQmHMHKVnNV2BmGdxk9YctoZY5P26vUZEo5WiMZoxZnwU4ZGPeX/tOqsIQ8GHgmkLWsNBZyW2T0mEX/HSbFl1Dh8z6ykSQsHHzGGxQKHRht4ZWqdRiDBt2YoA7Bd+6sf5se/8eqbthtXRMX/jm76Nj/1jn8J6lOO9HqXJtOgMjTY4I4LApx73rGfB2hQT9595rmwHfBaRWIiFEDMhy3H2UbENEaNFbNQ6wxTBOc0YIovOctQ5Fq0j5cyqtVxaT5zmwqI1xFywSnO8dLRaIkdsY2jQ6EaRS8GnIhGaQ6RxmkVjUUquAYMc63NLx0F/4yjGHYNP9M7SW0PrDCGJW9nDub4puO2Ej5VK5YmlrjUqlcrNxG5QBK4XRS0ac52j79ZHtFKEKFHNAFrLkEXKhVVjOR0DSkk0tNaKk61n6yNnQ0RphQZSKkwhEXWmFBFPtVbqR6PULNxPxFJE+F4UOmciGZXBWsUDv/nz/NYP/T0AnvnJf44P+bQvZEqZhKaJUp9OKUGRWO6TIXDYNfMAgNTnOxqjCSnRGYMPGR8zuZGo7jKP1+yOgXoYsZPUunJMOruLfK91Z6VSqVQqlUqlUqlUKpXKrYwqjzRG936A1hqlFKWIo0ZK6SE/e09wo+3fTrzkJS/hO77jO/bfLxYLPvdzP5eP+qiPwnvPL/7iL/LDP/zDhBD29/mWb/kWvuIrvuKJ2N09b3zjG/nwD//w/fe/8Ru/wXOf+9wncI9uXR6veGnHo4mXHksMxLVYreidoWuuiq4Ou0cWZ9yshJR5YHaG2jU+cpHmROsMZ0MgZok13ImSdvF3wxxl2DiZ6AY4XjickYi2rU9YrTi3bFBIpN3bLm8ZQ+ZsChK5ETPWiABJK7V3igIRBKUsQqbddXG8cBw0lrdd3pBQbMbIGBNaQessnZProtWaxl19/04ps2ytiLlCxrmdK5MSUVUrbkgxF7SCXKCxZo5nY/+67zkZubz1hJixRuLuVp0DCj4WroyeEApHC4nlePJRv4/iSLnwwHZi6zNaFe47nQgxS4RgLtxx0LJoxF1q2RpWnUUree2XTtb8y297Jb/0734QgGd++B/hS/+3f8iznvlBTCETsgjLppQJIfOB5xegwCi1FwHlUriyFbeuK2NgPYhILaS8F6OVonBWQyqgZ8Fh73B6Nx0PvdMcLRqWjd3/HoaYeWDrubzxjDEzTIFl17BsDHcddoBEFGolYrKNj5Qs187oE63TpAw5Z1KBo97y1OOFPE979dp7MFNMnA5ybRx0ls6ZvctcjcqsVCrvL9S1RuWRqGuNyvsbJ9sgQyI+cTbX4If91Ti5HXdfHjgdw95d1mpFKpmzQQRBfSt112HraJxm8InTIWCM4vfu37CeEpfWo9T8KdM4w2Fn0VrTzrXc6COnQ+D+9cQUM+spEJIMSfiQQcP2rb/Om773aygx8KSP/TT+yOe+lNbJsEbK0DWG3hhCKTQGVl1DawxPO9/ztItLnn5hybIxLOb1ZM4S2V2Ak62/bi20HiNTlNp1F7d9vGgecgxvtBa6uGprDVqpVCqVSqVSqVQqlUqlcgtzS1itvJ9ru97v+Ymf+InrRFHPec5zeO1rX8sHfuAHXne/X//1X+fTP/3TufvuuwH4qq/6Kj7lUz6Fj/iIj3if7m/liWHVWlqr93F3jdXXCaCu5bG6vjyWGAitxMEmJHGnirlwNrshHXaOwSe0Urekc9R2uioY2x2bxiq0ssQkx0IptXfmAhGYLBqL1YqzUYRGk5HJ7sEnXK/pG7MXoPmYaazmbQ9sJW4tJC5vAj4mVq2lmYVuao4yXDaWK6MnzlPWhUzvNCjF5W3g0noiAxok5k5p7NxY1ihQsI1JhEFGXJcuD2E/se6MxONpJZPvucg+Dj7SN5aQC0apfYRezFnER3NEXZqn1VPJXBnFWQylON16fC4sG0sq0rABEe90znBl8FxeBxLidrXxETtfVyUXRp9ZdYpSMmnep84ZLt/9Vv7+S7+ct/3Om1FK8cf/5y/ls1/812mcI6RMLmCVpjHQWku3Mixbi0KaWNbIxP39m0maWwUWzpJT4VRL0ylSCKlgjJImEmCMYtVZGqVJFHIqPPXcYm56FR7c18mpcNg5bEg4ozjXN1ijgMKqE8Fc7wxnUyBEgzZw2DtYFDon19PaR042gVzAp7w/Nw/uN+VS9rGNIJGau2t01dk5ovM99VtSqVQq733qWqNSqbw/kHNhmiO0h3kNtWjMQ0RRZ2Ng40U0NYbIdrq6drNGnFiHSWrq399uWbWGvrFMMTEOmbPJk7LUlNM8cNGmQsmFXDLOWlSBK4PHR3GyTbmQEsSYJPbaKU5//828+V+8nBIDF5/7SXzYZ38lBXGdsllL7HcurHOchx8UcRM4vwRnNTkXtlPkwvJqsam12ovsO2dYT3FeD/IQF6gbrVWneLVG7ZudW1QV5lcqlUqlUqlUKpVKpVKp3Oq83ysJ/tgf+2MPO6n9SD+rPDZyzrzsZS/bf79YLHjNa17zEFEUwEd+5Efyr//1v+b5z38+OWdyznz1V381r3nNa96Xu1x5AnFGc7TQ5GwZQvoDub481hiIHZ0zLK8RXEwhc0rgsHNsprgXUt0qPFzjI6QMFBH8IB/4P/hYyf839I0cr9GLMMrHTM4iHGrMPOkdE5TCu85GDvqGSxtpcHTOcNg7Oifn4mwMOKPxMeO05qBTKIU4AimZvA4pc2UTuPOwZZjdpvpGXIV20YsGcNowxoRNIuxSCob5/FstERmbGNhOkYJi0Rge2I70s0Bn0Yjj07UOViCCvM2USLOALqTEopUJ+ikUUskEkzgbpcl9OgTOxoDVistbz5UhzNvIKArWaZxRjLngY2I9RjqniTEzKcV/+okf5nu++WuZxoHDcxf53Jf+XZ7xh/8oKEvnRPy0aOWa1Eoi+5501GFmZ7Xzq5YxJC6tPU5rLi4b3nkycGUbKMCis+KIFi1DTDilKCiJ1NMKZw05F5aNwWgt+5akeX+t6VpIEiyilQjOrNZYq+YmmqIxhpgzSokoqxRwWrPqLGZuPo0hc2HR0jnN2SANNqM9nZPITIl2FCc5nzI7DUHr9N7RbdnaW+p3tFKp3BrUtUalUrlZGEKicDU6W6mr4p4dmykyhkwBNl5qtlTKXNPJOutsDJQMISZiygwBzqbEdooinlJG1lezKN/PUdUxJQwKdEYhEXxbH9mGSAwJnwpFKUCxvfetvOl7v4bsB44/+KP58M/9OtrWYY3eu8AaFE7D6RgxiCvwJnucLgxTAmToYQgSCb6jbwxTzLTO4HPGh8z9a3HZXbYGazRKcd3wyCMJ9xft9cewUqlUKpVKpVKpVCqVSqVy6/F+L4z62Z/92XfrZ5XHxk//9E/zhje8Yf/9S17yEp75zGc+7P0/8RM/kRe96EX8wA/8AAA//uM/zu/8zu/wrGc9672+r5X3H7SWeLM/iOvLjdyQbhQDcd3zKnleaxSnQ2QKmdGIiGc7JY4Wt47o4uEaH9NWjlWelS8756Qb0TnDODtDhZhxVjMGEQvt48xy4fLkSUWmy7c+opTESeyaBXl+PMC0F2lZUi4smsLJNhBzZjMlrFVMKRFDoVjFhaVj2RpOtl4clFDi6JQAk9EoemdZOFhPAUVh4wO5KDZToXHiGKaVZoxZHqcU08mA1SLuSVmaNZfWntFHQKE1jFPGZ0/O4GPCGY3Vio2Xxs96jKyHwNHSMfrEeoqkUgi50BqNzoohsBee3b/23HnYUKaB7/07r+DnXvtvAPiI530S/8s3fCv24DzbMWKtZkqJVDQ+JRaNwxrFuVXDU88t0ErERj7mvfDoqHdc2niOuoZFY9HqqqCJItF+mUJvpZkUcyGWwuQLVomIaYoZo3ZOWoUGaQLFnCkUcZuadu5riTDf/6ATZzCtoCDuAcao/b7dcdDiUybEQmM1OUs8XyniOHA2Xo3Y3GG1om/M/hrqG3NLurpVKpWbn7rWqFQqNwvTXI/vBiTaBw1IxJT3wp+tl1js3f1Wrd3XZdFJ9PYUC6vOspnS3qHXGsVR77i89UwyP0FKMmBgtSFqUEnqUIlWjwyTiKIoBaMKZ5fv5Tf/6d8iDmccfMCzee4XfAPaObSWQZbGgpqdZKcoQzaRQqRgrUZrxckUuPd04tyi5XQINNcMwTijWTSGrU8ctI5LcdoPS1gjAx0HnSXMYv0q3K9UKpVKpVKpVCqVSqVSqdQu5W3Oj/zIj1z3/Ytf/OJHfcyXfMmX7IVRAD/6oz/KV33VV73H961y6/JYYyAejtYaFk1h6yXaoXOGKSZytrdMDMLDNT52cT67D/Yf7Ba1O7a7GLfNJJPgPmWOe4dRikUrDl8gsRdrn8RBaRa4HHbuugnrKYpIK85NEKXE1eksiIvUbg80oJQ4CjmtaWYHsZQLeb7PJiScBmv13uWrZImGm3xkExIpaY6XhpMU8b4w+UwsmdYYhphIObFsHX1jONmMEvMRE6dDACVioJQQoU+Bk9ETY6FxmphkOt5azXEvU+j3nU5c2kzEOaavNQbXSYMkZhFvTSFjNPzWG3+DH/zmr+Let/0uSms+68VfwZ/5vC9DGXHkUkrcpXIpHC9aOqu5uGppnOZpsyhq2VpWrTRr7rky7uNHrJZ4vJ1QKabMfacjIRe6JqJUgaxQSs5lLJlTFdFanKDmfhTAfP5FfBVSZjMmNipxNgVKKdhBRE9Kw9kUWc2v1cyix/PLBms0y9awaCwLxIFgionGaFaNNNdCyTijrrrGzW5Y10aX7F5vpVKpVCqVSuXdJ8+F3tUBiesFPTtR1E4ADxKNnEvZx0iDOM5e2QaYRU8KWDiDUTLgsPYBrTRn48hmTCQKZS74tVKgMttBhFdjECF/zhmtFNsr9/PmV7+UcHaJxV0fxMd92TdjuyVFgVKKMYrblDMajbhB7Zz5Jp84WjgOe8cUZbjj8uAJOYNSPPmo27+GZWsJOXMyv45le9X11MdMTEWcba+hCvcrlUqlUqlUKpVKpVKpVG5f6qdAtzk/8RM/sb/9wR/8wXzwB3/woz7m+c9/Pl3XMY4jIK5RVRhVeTw8lhiIR6NvDMPshuRjprH6ITELNzMP1/hQc2bZTti0u5/EYEgT5JoUNaxRTLHgQ2ZrEn6OuNvpx3bxejEX4tyoWHXXH0OJ74Mxpf2+hJT3YiltFHEoOKslSiMXtCpYoynI+dmJumLKkDWrztBaLVPourAZI8ooSpDneWAjTZbGKFJW5AypFHIp3HM6cdQl3Pz4KWVKhtYZYgKtCjEVGmsYfCIHeVxJhXs3W0KGw9ZwaT3J63GGECUaJBqNVjJFb7Uiz+dAqcIv/7sf4qde/feIwXN8x118+dd/G3/oDz+PWDLbbRCnrFygiHDMKsWidSzneMj1FGmtRBOOIUkzqmSOF477QsYaicOTaDqFM4YnHXeAonMSe7IZIyRonIaAOFtpRc4K5qaVQgRS6yFweQwMswuAQq4dnwpnk2eJw8eCLiPloMMa6J0lZ1h14jB2rUBu2VrGmObzCc5qFsZwvGgecv3+v+z9ebxtWVnei3/f0cw5V7P3aaoVECkQY3ERVISgMYbYEKJiUK9EUSIam4QYYxQTVLwKhkaNubk2xGBiEvmZ2KASTfT+RPLRJCA2EMWiifQoZVFVp9t7NXPOMcY77h9j7lXnVN9S51SNL9TnrLX3mnONNZtzxljv8z6PMAkYW1u78CuVSqVSqVTuB44E8LfXIKE5Mx7N2cfJKdWCNcLp1ch6KI0TIsKYEgfbkdYaNBsQYW/mWeTMez96SD9mkir9qEQtInjNEHNmZkCso0tKP0YMoFOUc9oe8qevfQnjmRtoTlzNp37DqzDtgoTQmDJXVc27GL+QFOcMjRGcNVhg0XhaV+aPKSk3HQ6olrm5NZljs2bnAnUUIQ2w1zmWrSdExVjonK3C/UqlUqlUKpVKpVKpVCqVyo76TdDDmLNnz/LhD3949/zpT3/63dquaRqe8pSn8KY3vQmAt7/97Q/I+CoPXe4qBuLuYERobImD62PaRcPdl3i/i4k7KnwYgUT5gp+UCSmTNLKdOsShFAoOx8AYlDEo2zFineHy1LJoHduQ2AwJY8p+ci4Cp5yL6MnJhUKWXYP5eSKtcXL6GlIRPXlniKqMISFiMKZEZAxRdx3qR5/FWzM5TZW4tn4I5VrIsO4TY0pEhUVj2J+3HJ87+lBEYZqLgOvGwx5nLYvGIFnok3LYK523WDF4K2xDKu9thBSVgyGyCaW4c7iNjDljBXwqgjA1wswYGlecrpwr+7np5tP8l1e/jPf+/m8BcO3T/hrPf/GruOqKKzEGUirHPKvQTYWjE/OGy/cakpbDlhG8NcwaW8RsGTZDZD0mwiYwRGXZWq7c724TiXJmE5h5wxAta5PYbMuxt0Z24rBMEcvlSQB10I+cOhyxFjrn0BRL5GEqnfnOGISIIPQxc/OqJwR4xImOq451bMfiDHXrglvOsNd59lqH5iKGs+Y8x6jJJWzm7UPGva1SqVQqlUrlYkCKtug2DRIAfUjTnL40nlhbHE+HyT005cw2TFHbYyLmTIwJYqJzBmc6NMOYMn1MbMaETEKm5cyTkzIq2Cnqbr/x9E2CkEhqiJst737t99Lf+EHc8iSf9HdeCfOTbINSUusMZEFEyCYXpyoRvCkNAM4Ke63j5LKhaSwfd6xjGJV+TBzYwF7nuf5sz3ZU5s0tX2Ptd57LFk0Ze1T2Z/42TR6740cV7lcqlUqlUqlUKpVKpVKpPFy5pIVRj33sYwG45ppreOMb33iv9/PFX/zFvPOd70REeN/73nd/De+i513vetcFzz/xEz/xbm/7uMc9bieMOnPmDDfccANXX331/Tq+ykOXu4qBuLsciaGO9nN+ceBS544KH40zhJTonGUIyunNwGxyIdoMkcM+0J/nGhWSMuaMC5lzfWAzxebFnOmcZd5YRIrIRqSciws9p25HpIUQp/i6dV/ENqMmhlEZguIsOHEgTCIcQbW4NiFwZEKUKaKhc9uAKmxjAslInn5JiefzVkhqdwWfWWs4t01styOnVoqhdMTnDKFTGutogYPtSB9KXB4C2zEVAVRWkhr81J3eNYKRci2dGwJIZq/zxJj5sz+9jl/65y/i7Ec/grGOz33+P+ILnvt1POrEohSdTHHPWrR2isLzhKTMG8tmTCxbz4lFgzPlmJ3djDsR0WqIWJGdCxOS2Y4Xup45a5g3lu1oWDSWlBzn1iPrMWKlRBc6K2jKGBHGWOIli5ta6aQfg5JUy3kVcMbQekMGhMw2RMYkNLa4Ws36kcsXJapkPcTdeLZjOf7OCF1jEeDyZVsFUJVK5SFLXWtUKpWLCSNCIp/XIKE7d8/xvMaTbUhoPnIRLa9fbSOrPuKNcHozMkRFDLTWknPm1GoganFr/chm5HAb2cbSmJA0M3OOuck4YxgVVARrLRIUkwPv+7kfYP3n78bOllz7glewd9WjyJpxViBDzgJGEDJeDI0xOFuaKZwVlo3jqv2Oy/da5o3lxLzh0MZpTSBEVciWEBVpy5ro1i5QM2+xpjRmHAn6q3C/UqlUKpVKpVKpVCqVSqUCl7gw6oMf/CAAzt23j/GRj3yED37wgyWi6mHE+9///gueP/rRj77b2976te9///urMKpyt7mzGIh7wtFmt97fQ4E7Knx0vghu3BRnNwbFIKzHUuyAclwsoBw5QWWSKP0INHB6M5IyHOsgqmInl6RtLOKokJTW3RKhdr5IK00xbKs+kXKJrEtkUBjjFOuXlaBKjEWEla0prkmTqMZMjlR9TKVjXTOqJYZjDCX+Imtxw9qMkbYX5t5xNozcvBpppg74zRAZUsYZpVFh1jrI0FnhsFeilvi+EhcSsQizxk4uV7CcOVpn6cfIRhUn5TNuo3LzauD9v/0L/LfX/ks0RvaveAR/6x//II/+S59CSNAH5bJlQ+sN5zYQXGbWlGKNaokXvGqvo20sSfPOJe18tmNxtNqMEWsMy85NwrUL4wwXrStRiWOauuA9qz4QVBFRwhSj5zDEnNnGhBWDM8rmvAiUxhmEIiwTMpttxHmDnZy7vCvHZ9UnZj5y2bJlMyZaZ0g5s5lcyY5iL1tXi0uVSuWhTV1rVCqVi4nWlfn/UYPEEJVFLuL4I4fXw22gn+LFQ4JVn+hj5GAbWQ8RzcqqjxgBMYK3kcZ1HAyRPzu1ZrUN3Lwa2EYtDqrG4EWK65QKUZRNLG5ShoxBedd/eiVn3vNWbNPxqd/wKpaPfBzWCEmhayzemDInnlyiGmtovCHGTAL2O8fly5bWWTpn2e88x2cN3pryOYOWcVjDsXlDYw37xYbqdl2gHioOwpVKpVKpVCqVSqVSqVQqlfuPS1oYBdQCw33g4ODggucnT56829ueOHHigueHh4f3y5gqDw/uLAbinnC02dF+Hkp/HdxZ4aOxZipslNd+5OxmF4NXdCpCysWhKeZSgJg3DpESr7HuE94Ji9aSg2AnF6HOlpi3MSra5NvE9/VJWQ1xV3Qogp/EGGGIkfVQRE4zZ8lkvLUcDoHBGLwtER8obIlsQkQ1E7UIfsaku67xmKAxpatbFfqQiTmwHiIpZ64/NyAZZo3HayJoJioMo9I5Q6+KMzBzlsO+xNRZMSWy0ZYP0zaGZeOKqEsMjVHM9P7bw3P81594OR95e3HF+6Snfz5f+Pf+L+Z7+ySFRWcZYuTcFubRMWscx3zZ36n1yOV7LZctWoaUSEmJ1iBSzqmf4ul0Ehr1IZFSZoiR2WBonWUbEiJc4Bx1bN6wDYmzm8CJuSNTjn2IxQlKKNe/N4bOGVISjJEiAOssy8YTpmPdOiFEMNZgRWit0HjLXucwIjgjjFFZD4FZ47h5NWBNOeetNztngnl7i3iuUqlUHqrUtUalUrlYmHnLeog0zhQ3Ur3FbTTnIrYfwuQcNc2vV/3I2W3EGqHzhtWQGJKiKZMpzqpnNiOSi/hp1ScOw0hKQOvwrQNTGhiKaywMIaHAZhv545//59z4J/8D4zxP+8aXc/knPpH1WCK7Z97irWXWWTpnyDnjxOKdoWuKYD+msiiUydWpayzWFtH+onEs2+JgCsUVy0hZg1gpgv7qAlWpVCqVSqVSqVQqlUqlUrk7XPLCqPuDPKkrHm6Fj9VqdcHzruvu9raz2exO93VvuPHGG7npppvu0Tbvfe977/P7Vj723FkMxD3hKDLi6Mvwe+s8dTFyZ4WPeWO5eTXQOsOZVdo5+ZAzdhJHHR2J1pXIuFlj2Y4Jaw0tWtyYhkTnLbNOWPWJZecYgpJzETHNm/JPhLeGM9thF2+3HSJjypMzFCjKeigOUnk6B5shccWyxO4dbCNDLAWNResIqlO8h3DQBzajkpLivaGzpVBirGG/cwiwbB3n+pH1kNCU6ZxhOyYaJyys59wmEozSeoOIcLAJWGvYTlF1i9YRY0ZMJmkR9+w1Dc4ZWmNoTCIL9EPipg+9kzf8xPewOXMj1jV8zt/5dj7tC76C4wvHNmQSyrlNZN4U0ZY1huXcs2gch30o8R6NZRsjMWaOzxvmjWXW2Ntcn3udo/OGEBOHQ6SPymoILFvPaogl/i4zuW0VoZoAi9ZzMETAEiMYiuuXM4K1whANkCEIly1busm1SlIpMpX/Kc4I3lqWM1tEajGDz7TOEpLykTNbLt9rAeH43DNr7K47f9G6ex2BWalUKg83Hq5rjUqlcv9ijBS305iYecvhECcn2RJ3tx2LuH7TJzRnVmPEGOHY3LHqU4nBHhJjSGQR+jHSB8W5Enu9HRIhKX1MGEozRm8T+67BOCGEREaL06tk3vVrr+b6P/h/QQxP+drv46pP/gwa72hsmZO7aV2yaCzH5s0u2m7RltdsxsjhNuKmn82mRo7W3rIuNCKcmDekaS6813kaZ5g19oImgkqlUqlUKpVKpVKpVCqVSuXOqN8kcYvb0Xw+f5BH8rGl7/sLnjdNc7e3bdsL/em32+19Hs+rX/1qXvrSl97n/VQufu7MDenuojkzpiKM6txRtNdDR6hxZ4UPP4lgtpoJmvHGMKbENioSlXnjaJ1hDIpMMRl9VLyzzJpyjMZYjrs3grdFaBSS7tyMtmPCGaFxdorMU6wRxpjoozKZftFYODcUcZYRWLSWMSmdNZzdxJ370TYoMSmjKo0xZV+pCKpizLS+iHYUaBvLlct25840bx2rMeKMkFLGGmFv5vHW0DmBeYnMa10RADlbouKcKZ3n1hqiyxxMwqXWCyElxgQzY5i1Difw1v/873jL6/41WRP7Vz2av/JNL+NRn3gtxhoUgzGJHOH0ehJAzYX9XByyhqCsx4izhj4kVkNk3jqW3R0XbYyUYs+8c2guEYbrITJERRDWthR/jhARukngdmzmObMZaZxwbquEFIrIqXWoZmbekrOQUXIux6x1lnkzuWgFofEGR1HRNY2jawxRSxGNXM7v3swz9xZvZSeKmjXlfSqVSqVy93i4rjUqlcr9z7wt64OusYxaYuYOtpGzm4DmTMjKwTYwJC3usBk2Q+TcdmQzlkYG78ucWTNYCzEk1kHpx8g4RVx3vkRsmylmG5MpadgGZ5V3/MZ/4IO/8zoAnvxV38ljn/oMYgQnYF2Z61tn8RTR097ME0PGWilrtwyZ4nA6a0qzQCZjpczdAaKWOay1gsklLrCPicaZsn6skXmVSqVSqVQqlUqlUqlUKpW7ycO+snnjjTfyoQ99CBHhiiuueLCH8zHl1g5R4zje7W2HYbjg+a0dpCqVO+PO3JDuLtsxkTOTeKdEMczuhevUxcwdFT6ETOstp1YjKWecBSOWmDLeSonLG4tDk59i7KCIlo46tIeonF4PWCtsxsiidRwOkeMzT5qcLQ77SGOLEMoZw9ltAEpHeVZIWQEpneZWShf3rClOTVY46EeCAqmIovqgZDJ4Iauy7iMhlRg4ny0pZfYXHieWlOHYwnPVsuPMdgQF74XVqKhmlq3h+NKz8I5hVDYxMfeWXpU9LdF+1hQxV86ZqJnOG4aQyFkYooIUMdX67Gn+64+9hA++/S0APO4zn8XTv/pF+PkSMngDWWFmHaOM5JwRgcYJmyHx0cNtMWhKgFfIAiIsG8tmVCDe7rXdWENIic5aRqdstpE+JBpj2Jt5tkGBTM7sOuyNEYyBuXfENtPY0v2PgBVYDZGcYT0kGi801jNvLMYU56kxKN5aOmfJwH7n8M6waByjKoebgGYwhuL+lTPH5s1OtLhoXRVFVSqVyj3g4bzWqFQq9z/eGhatYz1E9jvPAYHtmMp/MXJ6NbIaQ3ELNZlz68gYi7vs3FtMZ4lRdwL7bSgR3Ezz5ZgyWTPRgGoGhMYWl1FjiuPru3/rF7juV/8NANc+51t41NOeRc6w11nCtGaxVjjWul2jRWsMvoXOF9HUuk8kLa87+pmR8rh15oKo9W5q1FA9GtO9j2KvVCqVSqVSqVQqlUqlUqk8PHnYVjfPnTvHddddx/d93/ehqogIT3rSkx7sYX1MWS6XFzy/tYPUnXFrh6hb76tSuTPuzA2pdXctbhriLfFxs+bILcruIvUeKtxe4WMIyrltYEyZwzFigDFkGm+YWUsmM0bFieCsMPceETg2cyzPcx86Pvc4U6LstlNsnjfFLcrKlMWX4fQmEDUTYmIzlMKKToWT1ZBISRliQjVjrLDuI94I1hpE4PBw5GCItFaYNwYjwswLSYWtEWbGYCiuVkaEpNB0pTu9cQZri7uT9wZvHMu2vPexmWfReFpnsSYRtxnVjOgk3MpC5wzHOs8mKmMaWafinrQZI95YEMMH//gtvOFf/V9szp3CtR1f8HdfzKP+8t9EoBSGMqwHZYyBeeswBsiZzZg4tRrZn3mWncMZA5IRhHN9ZNFY3ORgtplEfMvuwn9yO2/ZjAnvimAraSZEJYoSp2JPSHbniAZAyjtHr/WQ2IQigAsxgbMc9iOtL7F9Io65d8waQ4gZJbPsHJ23eGeYOcs2FGewzls6LJbi5DVpoqbIw3Itnlw0NT6vUqlU7iZ1rVGpVB4olq0jaaYPif3OE5Myawxnt4n1mNgMSlJl1UcyZR439wbnyvz89GrAYvEWtkNCEZwxNN4gkomqZISQFCsAGe+Ks+ifvunXect//BcAfPLf/Do++fOfCwhjVBaNBYSQMgqICokiZtqGVAT+CEFLhJ+mInpqvSNn6FpL6yzOSGkWmJponDVoSrTecKSHqrqoSqVSqVQqlUqlUqlUKpXKPeGSEEa99KUv5WUve9nt/i7nzPve9z6sve9OMV/6pV96n/dxKbG/v3/B8zNnztztbc+ePXvB8729vfs8nhe+8IV8xVd8xT3a5r3vfS/Pec5z7vN7Vz723JEb0rzJzBp7u7F6R4KQI1FU6w3dZIc0bx9ablFH3Lrw0ds0RaFFxjExptJpHVPG+RJHuGwdrTc7EctRhJqI0FhD502JmxM47ANOhKSZ/ZnHCoyp5KgZQJOSgT4o27E4PDXesBkC/RhZDSXizk6Fi/UYWXjLNiY2oxI0YUVwzuCtJU+RiWLLOOe2nP/NmPBW8FZoraH1dnJhUtZ9GQOitM7QieCdIUTFWyFl8M6QNTPzxQ1KrIEsGGvRscT5qZZ4uKAZJ5F3/dp/4I//63+AnLnsUY/j2d/2g1z1mMfRj+X9kimRdpARKU5cZzeRYXI3WzauCKNaT9cYDMK5fqRxhnnr2AxF7LRsPesh0ocStafnOUBtQ2IzlqKVEWE1FKHTrIFFYzEUQZWREmN42Ec2Y9y5Oo2hjHXeOKwVxmARBMmQtBx/xow1hkVjy7FtLM10bVy2bJh7xxBLlGLnLXHqxHemuFqdXDQ4a6ooqlKpPGSpa41KpXKpcWzmi/PSEDEinFi03Hg4YEWwFkLMrIfIbGbpvCkCpagcbsu8E6MYha4xdFLE+qMqQRKGopBPk/hoVGCMfPBt/503/ORLAfjkz/sKnvDFX4eRWxpexpQQiptvTMqYEl4MqrDuY4ntc1rmsRRh/qy1GMlTA0RZw4SUSVrWDN3UBFPmriXeD+B2loqVSqVSqVQqlUqlUqlUKpXKHXJJCKOgFCXuze/uCpm+UXvKU57C8573vHu9n0uRa6655oLnH/7wh+/2th/60IcueP7Yxz72Po/nyiuv5Morr7zP+6lcGtyRG9JmTGxDorGmRORNzjVjVMaku+7g1hv2JwekRese0qKN8wsfnbccmzVFFOQM21Achxprdo5PGYrzUFT2Zo69ztE6S+vNBYIzK4K3pjgtTcf55F5LH5Szm5FNSJQkvMwmlEJH54WDbSCkzKxxk0tXZtaWTm9vE2PMDEHpp9gOJ2DFMIZUREFA60zpQJ/Gc2zm2Zt7Zt6SKLFw1gin1gN9LAKjxhrGnNnrHKpMDkt5F6URcqalfI4QMlmKcMo7wQxFWJczHJ66kd/7jy/n9PveDsATP+/L+Ktf8+34tiNn2O88h31gzJl5Y7CmiMn6MSEizKc4ucYV0dBlywam43Ri1mJMub6TZjZDYt0X0VeePqc7ulZzGezp9bgTqaWUGVRpvWV5dN6cZTOWzvqj++bseuTcJiAI1gijRsaQmbcOpLhdpQQWw8l5g1ihsxZnbzn/s8Yyb9z02DEDOl/iB9PkHNY6gzFSi0+VSuUhT11rVCqVS41l62idYT1ExhjxVhARvDEMonhvkMn5yYgUN1Ay/ZgYUyakIj4KKRMm99KUMikrVgyqyqpPiIkcvP+P+e2f+B6yJh7z9L/Jp/+f30rGEHLGCOy1ju2Y6EMk5Uzni5OtIaM5oWLY9pmuhf2Zx01/N8ZYHE2XszIvLQ0hsaxfvNm5CVspzRBHDsG310RTqVQqlUqlUqlUKpVKpVKp3BGXjDDqgWK5XPL85z+fV7ziFTj38DocT3jCEy54/t73vvdub/u+971v9/jEiRNcffXV99u4Kg8fbs8NaTsmomaGqAxRb7ONM8KssTunqFljWbYP/Xv3qPCxGRJGjuIIhZyFrJmmKUIyYFcQ6bzBTmKpqIpXwZwnjDmK1hhzonMl+k0zXH2sY9laPnRqQx+Lo9EQiwALoHEWROm8YdnOyDkTEzRO2ITIqg+c2wS8d6AwhMR6iHhncBZSUsQZFm2DNbBvLdYWFytvBEHQDH1InFkFMkVN1RgLVpl5R9DEOFKi/QAnxbEqRohJSZQC0BCVNEXiJc38xXVv4o9/9lWEzQG+m/OMr/8eHvO0L0BNOWZjLDFySinA9FExWQnJTJF4mb25Z945lp1DBDZD5Pi8oWlLYSpqZtE41mPkzGYEinjPINy0Hlh4u3OMWoeEn5y2NMOgigXIxT0qxFycn1IRvK36wGZQYlacFQLFYa24AwirPuDEsJwbnDF4Y7DWMJ+67YXirjXz9haB1nmUd4GUMtbdcr3U4lOlUqncOx7Oa41KpfLA461hr/M7V9YhRKIqzgmIRWNiE8u8rg+JPiohlPnedowMqYiXyvpBGI2QVbCmzJ37mDj34Xfz+//qn5LiyCOe/Ff5tK/+J2RTxPpDSDgR2sYyxFRcabVMdJNmrLVoFlwGa0vk9TAmtrk0QZycN8wm8dPR/L/ztriztqUJpvNmty48iphu3UO3KaZSqVQqlUqlUqlUKpVKpXL/c0l8O/+c5zyHxzzmMRf8LOfM13/91yMiXHnllbzqVa+62/vz3rNcLnnMYx7DE57whIdtkeL48eM8+tGP3jlF/e7v/u7d2m4cR9761rfunn/Kp3zKAzK+ysODW7shdd4yxuI2pJp3AhJjhM7ZnfgHmL4wf/jcv94ajs0NQZWbVwN9UpKWKDUhM6a0c4HKWeljpnO2OApFZYx6gUvQeCQ8m8RT+5NDEcCy83zc8RnHR897hkNaaxHy7nV7raNpLCJMcXNFAOWdYdF4nAxsQqJxQj9mZjEwJOVY69mOidY6rIHGFmekISRiUlpXnKcO+sDMu6nTvEQAjilzrPUgGWcN2SvbURhCoplZbIbVEBmTEhL0MSICrYXN0PP2X/oJ3vPffg6A4x//SXzu3/9nXPnxxTmvMaWbnkno1Adl5i1tY3AiDLGIokTkPDGUZ9E6Om+xVnbxhAAH/QhTRMjhNnDzMDBrLUKJKIwpM8TEwTaQgTObAGTm02eOmsjZcjgE+liu+c1Y4u6giLaO77U78Vdrlf2550aKWCwmRTVjvTCmRJMM+7Nyfo867W+PIweumDMN7ApVtfhUqVQeytS1RqVSudRQzWxDYojKmc3In51ac9hHEDDGIKrMGkP2ZS4eVFn1kX5ylS3z5UzWjArMWgsibIPijYEMETj1Z+/jj17zT0nDlhOf+Gk86fkvwTtH44RMpmscqiX6zonFN1oaHsTQNZbOGrBlvWAzhJTZBmXmi3C/OEvBonHknFk0lpPLdrcmmXm7c7Z1psT0yfTzSqVSqVQqlUqlUqlUKpVK5e5ySXxL/+QnP5knP/nJt/n513/91wOwt7fH137t136sh/WQ4Au/8Av5yZ/8SaC4QL3//e+/y1i8//E//gd93++ef/EXf/EDOsbKQ5/z3ZCGmGicuUAAdT4CtM4yb+1DOj7vzgiToOnyece6V4YxkfItHdSaS2wcmhmj7rq4G2vYjomci9PWkcimsxYjRXy07BzHZp7NkCCDs4ZF52kbi06d6J23U5FCcEYQKQK2U6sRzZExBpYzx+VLT+MdB8PIuY1h1UdmrcNaw4m5Z944YipuVmLBqFzgEpZyiZQTgX5UFo0tHeOhOCZ5MQSTGQCRzMEqFpelnElJiapYEQ4++he84Sdewo3vfwcAj33GV/DJz/4musWsdLkbYR2VqLBofBE3SSk4pQibVER6rbNcvt/gxEyRJMUham/qlrciiBG2fXF/WjSWoMomlEhBG4vz0iYk5s4ximKMoQ9FwDWGzGEKeGcwYtCkKHlylEpkLYKw461n3pVzpjnTWIUOnDE84uSMG85uyRTnLTFC60qEnrfmTkVRmjNjKk5tjS0OXMvO1eJTpVJ5yFPXGpVK5VIhJN2tmY5CPtdDKM6mwHobKVPPTFKhc8KyNRyOkHJGchH8b4OSyew1DpkaBFSLIywixKSc/ehHuO7f/lPC5oC9j/9knvR1P4BvOpLCNih7xmAMiIHGGNSBGMEiLDrPsbnn5KJBc+ZgE4lJyU2Zpe7PPJcvWowxdI1h1lhOzBr2Zn73WedNmcMebCNQ1i/AXQr9K5VKpVKpVCqVSqVSqVQqlVtzSQij7ohHP/rRiAiPetSjHuyhXLJ86Zd+6U4YBfBTP/VTvPKVr7zTbX7qp37qgufPec5zHoihVR5mHLkhqbpd97Pm8xyjRGinCLCH8xfhq6EUBowIQ0qklIgo/ZjYnzV4KzvBTEiZkJSYM3GIBGdYNK7EaIQICDlnnCtFjc4Xsc3RuRhS4ubDAWchpKlT25pJyGZpvbkgYk0z7M88B1vLZiwRHo0xNE4YQwYyi9bS2hK9sd85Wm843CZAWI2BfhfpITgBJZOlXAOzxpJTJkTlYAhopozBwKpPBC2fZduPnNtEkmZuevvv8JbXvoqwXeHnezzpK/8JVz3prxJVWY9KloSV0r1uRMh5RDUjRkgm0ydFFRpvaHyJputH5djcMfOWwz6ybCMn5g19UJwpMSUiwuFQYvy8FUIsLlaL1iBZQGA7FsFVTEXIdXRZx5SRBm48HLliv6XxlqCZxhmWrcdbuSASrw/KNhQHgLm3LBpPJrMZEzFlDvuAM4ZtSOzdiZiwD2lym8rM/C2RlbX4VKlUHq7UtUalUrmYWA2R9bQWgOL+uhoCZ1aBg21kNYTye1OERyhsQizxyTnjjWHWwWos8/KcKS5TZGaNIwt4JxgMsj7Du/7dixkPTrG46jF82je8gm42J5e8aYQyZzUGrIF553C2zGe9M1yx1xJTJueMFeHYorjCNkfx2bY0wuzPPCfnLZ03O/fVxpZI8JDyThTVerOLUp+3VbBfqVQqlUqlUqlUKpVKpVK5Z1zSwqgPfvCDD/YQLnk+//M/nyc+8Ylcd911APzYj/0Y3/RN38Q111xzu69/85vfzC/+4i/unn/RF30Rj3/84z8mY608PDBGWLSORftgj+SecX6cxQMl6ApJWQ9xt58xKsvWk4cAAs6UQkJBaCxoNgxRJ9GLApHGGlZDZNm63b72uwZj5ILINGcM1gjH5g2aS9TbyUV7h/GFOR+9s9B6w17rcVawxnDlfmZMnsZYvCtd5kEzLkPMmbPrgVGLQCioshkT57ayi9iImrnh3BbNFCcoU+I3Ysrsd56YMmOMjKOSE6TQ88e//BO873d+BYDjj/k/+JSv+V7mJ64sA80wxERIxW3LChgxRC0irdYX4VfnLMc6x7y1HJ+3jFFLV7t3mKJvog9K0iJESxmcCNuQSDnT+eLUFVJ5zzEmNikRtUQbppyJCaw15JRZh4Q3Bm8ENeWcn9sEGmemGMRSSDpfrORzZoiCm0RqezPHZkw0LjNEZQilaJa0xAO62xFH9SFxej3Sh8SidTTesNd5jEgtPlUqlYctda1RqVQuFs5tA5sx0ofEwSawDaUpYDPEIpDajgxZUSBG5dxmZNY4rClio9UQWI+xrFnGslYxZLIIGSFpxhrBiiVtD3nzv3oR21PXM7/s4/jLf/+f45bHsZRptGZFMUTNtJqx1iAIe3PPwjtOzB3LWUPjiiNtiApisFOjQx8T27HMOZedK65TAs4WN6iYMgd93K0tWm/Y74qT1KJ1D1vX4EqlUqlUKpVKpVKpVCqVyr3nkhZGVe47xhhe8YpX8CVf8iUArNdrnv3sZ/Mbv/EbfPzHf/wFr33729/Oc5/7XFR1t+3LX/7yj/mYK5WLiduLs9iRIZF3gqb7GgG4GUokWz8mOm8Q4Ir9DrMu4pzT65Hj84bW3eLkZESKGMYYDvqRg23AmuIK1cdUxEtG2JvdNjKtdQbNJWpPdSRl5c6GLlI+89GfSkYzBFWcKWM6HCLHrEeApHDz4UBImahHwiY47EfGVKI8kmbOrEdaZ1mHRExKTIqf9meN7CLgvLU4k1mf+nN++8e+i9N/9h4APukLvprHPPNryWKJOZMSxcUpKUPMWKGcuxwJmpl5w17nMCLstY5l22AtxKwsO8uy9UWUJKVTXnNmPSa8gXWvtI3l7DaQpg753fkLkSaXcQvgrNCIISv0ERJKqwYxcGo9std5/NQ533rDVfvdBQ5du+NO+Vnjyp+zphSMjo5LSDqJ4uDGg569madx5fpJOXO4jRwOoXTxO8uyc+y1nnlja/GpUqlUKpVK5UHmzGbk5sOBMSkHfWAMZV6XySiZrrGIFdJQXHj7UERFKUXGpDROWA0J1bKNN8IQM4qgWuaykhWMZehX/P5PfieH17+fdv8kz/hH/5ITV38cQmZIsB2VMWZyitjOk4Er91qOLzxocRydd54T84ZjM4cRwxATrTdkirDqscslZnJsjXrLCiomiCntnjtzi4MpFFHVHTVoVCqVSqVSqVQqlUqlUqlUKnfGw+5bpc1mw3ve8x5CCHzCJ3wCV1xxxYM9pAedZz/72bzwhS/k1a9+NQDveMc7uPbaa/nqr/5qPvVTP5UQAm95y1t43eteRwhht90P/uAP8uQnP/nBGnal8qBze3EWfSzxaDvHKCN0ztK4IkTq49QdfQ+/1FfNDLEUCrYh0TjLVfsdQ1ROzFtuWg0MUTnsA4MzOGN24pc8ja0IgRQrBu8gTYWQk8vuNi5EMImkcsY7gxGIWvYz87c/RiOQjh5oEYQlLXF9SZVxck2KmtmMynaMDCHTeNiEwOEmEjWTckYpYq8hKINmOqusx0RSZdk5xApnNiN7ncM7IU0uXf/7f/46v/lTLycMW9q94zztBS/hssc/laCKFUFEGFKJD9GcyWS2o2IA5wyNNYgYxqjMp5gPsZmkIFnwzuKcYa9xbELCOHbHVS2MSZmZ4sQVorIaI84YNkOELDQOuik2xIgQVEm5uGR1zrI/88W9aRVZeOXsdmTZOJLPqGaMva0wKk+SvMZarBXGqFyx15FzKV5lU6L2yJasGZnEVWESTR2Vo+aN47JlUwR8jWVv5mvxqVKpVO4hda1RqVTuT85sRj5yZgvA4RCmhgyltQZF0ZTpY6T1htObkc4bzm0y67GI3oegtI2ZnEW1RD9boY9lDplJjBHGCN6MvO3fvoTTH3gHzXyPZ3zrv2R5xSPJgLeWxgmtSwyhzB5PzBoaZ7h82XF83uA9WDEc7xq6pkTfiQhRFSPCFcsWpMw5j7ir9dMR92b9VKlUKpVKpVKpVCqVSqVSqRxxSX+ztFqtuPHGGwFo25ZHPvKRd/ja66+/nn/8j/8xr3/964nxFiHDZ33WZ/EjP/IjPO1pT3vAx3sx86M/+qMcHh7y2te+FijOUa95zWtu97Uiwotf/GJe9KIXfSyHWKlcVJzbBvpwi4PTNqQLOp53pMwQtHQ8e0vXWNZDRHPeRULcHbYh7QROUTMi8MgTM/78bCmUnJg3rIfAMMW6Na4Ik87HW8MQlIySUonJ67zh5KIBuE1kmjElUm4zJjpvGSd3rJkvwqxb460hpERnLSEqmyn2rw+3jCOrcnYdGFJkCGV/1x9EsirWFBenIuKRnVORE9iGyGZMjKqMSTkxL4UYKwIKod/wGz/1St72W68H4BHXPoW/8Q/+GQdmyWaIOGvwtpyD4yIc9KHE9kERbgm7iD2bFc0GAxz2Ee8MjbEYkRIvKELUzLGZZ5yi6uY+M2bwztCnxLyxJFU0w5nNwGYoDljHrMPZEj2yDYk+KiHm6XgzxdcZ0iwTAUZlS+LksqUPyvJ23JuOthdTCk3WlOvyyv0OJHP9mR5BaLwtLlKqMBWfnBGcMxzrPMvpepx5y5X7XS0+VSqVhz11rVGpVB5Mzm0DNx8OABxsRk5vAlGVZetwVjjsizj/zGZk1ZeoPG8M1goEIcSEklkPCXJxZ+qj0jmDMZBSiZJ2NjOOkT/+2Zdz+k/fimk6nvbNP8TJRz8OS1n/OyNoFpwYehKNNbTest85ji8aOmfovGPRGC7b6xDg5KIhqOKtwRlh3hZH1uNzv3PcbZy5QAB1PgL32XG3UqlUKpVKpVKpVCqVSqVSAbikv1160YtexOMf/3ge//jH88M//MN3+LobbriBpz/96TvHo5zz7r83velNfPZnfzavf/3rP3YDvwix1vIzP/Mz/PzP/zxPfOIT7/B1T3/60/mt3/otXvGKV3wMR1epXFyshrgTRR30gcMh7sRK3RTDdmzm2etcibyT4pJ0OEQO+uK6th0Tq/Pcpu6KYYpC6yfXqNaZ4hq11zFrLDNfXKJA2I6Jmw4HTq9GDreBPhQhlhODtxbNZX/HZp6TixbgDiPTFpM4Zt5avDOEpBz2kc1Y9nk+rbMIReATY3F4OuxvcZk7tx2JCiKZVZ+wxhBVETJuiowzCJ1zNK5E5KkmVn2Yot4UciZp4tSqLx3mIfHBP303r3nRV/G233o9Ygx/+cu/mee8+CfIs+M0zrDoPPud48S8ZdY5Gl9ETt5bvIGuKR3pnS+uWRkhC9hJTGVESvEoK3n6zBlonMGY4lYVVIujE0JjSoxd58v5D6H04zdOCCkzxsR6iLt/h2aNYeYtftpu2VkWnac1QqY4ZxmEMeltjvlRXB5AN4nVTi4a5k15fHzW8IjjM47PPa23dM5xvCvn/fL9lkeemPPI43OWXYk3PDlvePRl8yqKqlQqFepao1KpPHishshmiIxRWQ2B0+uRqMrMW5adZ9kVh1LVTFYICTpjWG0j/dRIkSlf+MRUBPlDUGIsjlNOBGOExllab3jPr/zf3PQn/wOxnid97UuZf/wnE6NO8XcZocyLrRGMQNcaFo3hxMJjJLM3cyxay3Kylj2aJx9NXY/SoEVKM8WxuefyZctyWoOU/cou8nvZOi5fthyb+yqKqlQqlUqlUqlUKpVKpVKp3Gcu6crnr/7qr5Yv6UT4B//gH9zh6174whfy53/+58gUo5TPKyyLCDFGvuZrvoZ3vvOdPPrRj/5YDP2i5bnPfS7Pfe5zue6663j729/O9ddfj7WWRzziETz1qU/lsY997IM9xErlQSUk3cXnHfTFoQlg3lhmTRHcnE/nLYuc2Y6JzVgKEgcE9jvPeoi0ztytL/uPBDE6uVIdbdM6gzdmJ9RJSQGzi8RTYIiZMSWcaClkOMNley1X7HVohllj71AIs2wd6yESk7JsHOtJZLUdE31IeHuryL5UBFGZEtU3BmW2tJxajYSYWcwNQ0zsd46gmdZbWm+JmokpkbPiMPShxO9N5lFohoV3HPOWs5sRzZkz64G3/uav8Yc/9y9JYWB54gqe/Y9ewcnHfip9TBz2ERE41jmOLZoS45dLJN2icYR+RMXgrLJsW+aNIcTMGLV8ppxBoHHCXueKy9OY6BrLscYyRkXy0XWRMK58pmOdYz1GlEyImaYxtBj2Zw0GYdbYEmfYCS4Up6xVn0i5xIwsGsfhNuKcQZKScmZICWeFISiz5ha3rj4kcs7F+WkSl3WT8Kt1hjObIjo7sWhYdp6YlEXr0MwtcSVSPt9li4bW39YJrFKpVB6u1LVGpVJ5MDhab/QhcTgE1n0i5sysKVHazhgOh0BMt0ReqyrGFpG9N0JPEfmnlKb/FBGLsYb1EOm8pXOGMSau+5VXc8Mf/r8ghic+77u54tqnlrjpUIT/McN6SMxbizXCfueYt57OW+beYcXQWEszNRkAu/nqODV3HK1Nzl8rGSMsWsfUp1GpVCqVSqVSqVQqlUqlUqk8YFyywqgPfvCD3HDDDYgI1157LY9//ONv93XveMc7eP3rX49MX8BdfvnlfPd3fzd/6S/9Jf7oj/6IV77ylaxWK7bbLd///d/PT//0T38sP8ZFyxOf+MQ7dY6qVB6ubIZb4vOORFH7M7crAtweRsqX/s4KB9sSIdfbEk+3GRLH5nctjDqqsaZJnJNz5ubVwGZMCEUwJUDrDSLCNkSGlAHBW2it7KIqrDHMjooW3t5ppN/MF9FUypn1EFl4hzWCUFywxqi7gsfRZ805M/OWcYrHu/FwYD0kFm0RQW1DYn/uObcJJTojAyhRhWXrGGJCAwTNhJwRBSuGPiaCKiIwbta8+Wd/mI+87Y0APPKJT+fz/t5LsfN9NjExJMU6Q2egbTzrPnFy4dmzjj5G1kOi8Y65xnKMnOCdxdmMsUJMytGnSpqJSdmbeZJmNJWYQm8NQyrXg+RyTITiHOambvqz23J+9jvPsnU01rI4L7JQSARNLFqD5nIdFHcwwQo0zjKExGaMLBrHmJQZtxSatmN5/24qPjXW7ApOzpbi1PF5ea/WGeZNcTM7EkS1rrhVHRWrKpVKpVKoa41KpfJgcbTeONdP64aUWDSOvZnDGcNmjIxBEWA9JlZDQAFvhP25K9HXjWEzJM5tFectiBBTiadDM5shEgK897f+f3z4d34RgE/68m/niif9VZrJ6SkmRVXQrCAGa4u7azs3mCysQ8S6Er3deMNeW9YU86ZE392es2l7B7F5lUqlUqlUKpVKpVKpVCqVygPJJSuMeuc737l7/Jmf+Zl3+LrXvva1QLF/n81m/O7v/u7O9ehZz3oWT3/60/ncz/1cAH7xF3+RV7/61XRd9wCOvFKpXKqoZoYpym47RenNG3unoqjzaZ1l3mQ2YyrOQ94WEZC6uxSmJC0Rdme3gRCVzVhET1BcmoYx0adEiBnIzBrH8rx9OhHaSTyzGSLzxnJiile7M4wRWmfZ7yDEzE2HPUkze1P0Wp8SmjJ90J1oyTtDTApZGGNkiErOFKHQZiBTLKAyxUljjJGgmc5bUirOHN4K5Ew/Fielo7gPa4QzH3w3//PffB+bmz+CGMu1X/yNXPvMr2JjDG3KoIkxlq567wxMHfbGCIdDQMqusSJ0jcUi7M0snTUELf9eWDEEzaSUp1gPw6wp49vGhGzg2MLTDwmxgrNFCOWsIQtsQiKmTOdsEZ/NPAaYN6WrX6S8/sTC0YciZlqPJS7l7CagOWMMLFrLECKHfaK1I8YYYiqfb4wJ5wz73S3CvPl5blJHxSgjwrGZp3EllmRRY/IqlUrlLqlrjUql8mBwwXpjLC61nTU4W1xmY7pFGF/mm4rmIo4XgROLFiORPkSOzSyNtZztR5KNnN5GQlAGVbLCh9/yn/nA///fA/BJX/JCPuHpX1icYYMys4aUFc0CAq0Bkw1tYxhTxsXE/rxlMTVRHImiOm92c83SzFEaBo4cZmfVnbRSqVQqlUqlUqlUKpVKpfIgcMlWRz/84Q/vHl977bV3+Lrf+I3fAEoR+m//7b99myi4ZzzjGTzjGc/gt3/7t9lsNrztbW/jsz7rsx6YQVcqlUuabSgRcWNUohZnoPNjze4Os6Y4Jh25LTXOsA3pTsUqqyFybhsIqbznqg9sY6Jzjs0YGGMR77TecGzusQbi9FprDGNUcs4MISEI+zOPd4YhKrPmrv8ZmLeWPiYuWzYYgTObkVUfSic4maQZZwVnbzkWN68Hxkk8FmOGrFjjONwkOm846AN9UISMd5YWsEY40BIbcrAJxSEqKc4V4VJKmff8t1/iD3/xR9EU6U5cxZO/5ns4+dgnMqpgVMt7GRhjLvGDxkNQlp1lO2oRY2XYay3eSon7i4oVQxZh2TlaZ4iaWfUR70q3e86gqQisxq0WV6oDJSk0CfLck3Mmpkw/KMN0rbTW0PpbxFHz2zne1kS2Y3ECyDmQ8hSfN5TPsBmVmEecEbwpblZHIU2iEFLmsA9ctmhw58Uy1mJUpVKp3HvqWqNSqTwYXLDemBoGGmfQXNyajpozxqg7S9ll59iGxOEkfLKSdwIqQVg2ltEZmkFRAzPvuP4Pf5P3/9pPAHDNFzyfj/+rX0bSjJjSzGGN4FNxL22skDJEMh3l94vOcqzzIKY0IlAE+kdrmiGWGHG4Zb3UuupSWqlUKpVKpVKpVCqVSqVSeXC4ZH3MDw4Odo9PnDhxu6+5+eabue6663bPn/vc597u657xjGfsHr/rXe+6fwZYqVQecgxTZFw/dXG37pbYsruLEaGZxCtH+xnOi6K7Nee2gfUQaawpBYY+cvN6ZDMmzm1HtqGIaIwBkaNIvRJJt2gcx2eeT7hszlXHOhatI2ZlG5TOWjZj4u7UJry9pfP7xKLh8r2WxhsOhsDZzcg2JLYhcTAEzm0D5zahiLFMcZlqnHB80RJTEVAtGlscmxCsFWbestd5jjywtiFhrMFgmDeGuTP0h4f8zk98F7//c/8CTZFHfdrn8Dn/5N9w/JonolnQlEg5E7KSUi7iMM3EqBgH/aishwCAZhAjNNZOnluZ7Rg53EY2QwQRMqUIBSVKD4SgxUlqr3PkBKsh0YfIkJTtqCCCquJsOcczX4pK5VqxtyuKApg3jtaX97LG7MRLUTObEDHAekjccK7n5vXAYR/px4QIdM5MblzCmErcYbmmajGqUqlU7gt1rVGpVB4Mzl9viDDFYJf5W1QlTL8fQsI7gzdC1jLXLbF7RUB/FLO8iYltyISoHJs5rBVuesebeOcv/BAAj/ys5/DYZ34txggzX1ypZlY4MWu4Yq+l9QZry5z82MxxctnQOQNZmDWGMSZSUo7PPYvWoVP89sG2zElbb+imue28rQL9SqVSqVQqlUqlUqlUKpXKg8Ml6xgVQtg9ljsQJrzpTW8iT12U3nv+2l/7a7f7ukc96lG7x2fOnLkfR1mpPHioZrYhMUTdOd6IFAFF64r4oook7hk6/X2iOv29Yu+dtrSZ3JqO9nO031uzGop7EsAYlFOrgbObwHZMu47uubPszxpaJ0UIpEoclaiWRWPpQymqzBs3OUeBJkVLoB138Na3Ydk6YlROrQc+em7L6fXIZkiT+5VijGHuLa0vYrGUMo0xqMuMKUEusXIKZJj+zMSQWcWBISrbITFocYsaQgZRGmu48b1/wlt++vtZn/4oxnme+JwX8ujP/lJGVawxNMbgnQBCHxOqGYNgBfqgdD4RpLhAaQJnhZBKcWnUVDrgNeNs+Rkhs5nctVYai4AtgzENURVnhG1KWMk4Y2icZeYN+zOHM5Z5Y1HNnOsDmyHROXad9Hd8fD0pDfQhEVJm2TrmPnP9mUimRDTlXNytABpfBFEHfWDZOJad210zqyHuBHu1GFWpVCr3jrrWqFQqDwbnrzeMgLfCiMAkgBcRYsrEXMROSp7msULKynbIeCOMsThGhZyxSBFVpcyp9/4Rf/Lal4EqVz/lC3jCl34Ljbc4Y4sQaxLeM0U/LxoLCHszh7MGJ8J6KFHXfVAuWxR31SGUqPAx6W590XrDflci9hatu9drp0qlUqlUKpVKpVKpVCqVSuW+cskKo/b29naPT506dbuv+Z3f+R2gfKH3lKc8hdlsdruvO7/YMY7j/TjKSuVjT0jKZkgMMXEbzUuGRCYkZT3E4mLT2vol9d3k6Ev+oz/vqVvUEUeb3Xp/53N0jkJSbjoYOOwDISqZzIm559QqkFRx1mAMxFzchkTKtuPkRrVoLNuxCJOSZrrJxagfE/udJ6Qi0LozkVxIyrlt4Ow6cP25ntPr8vdkohRvkkLSxCormj3HZ44Tc48Y4cwqMESl84aQYBgTmjOH28iQEmNQjBGGEBk0c7CNrIc4uUdl3v2bP8v//q//lqyJ5ZWP4qlf9/2c+PhPYkgZJwYvgnWCd4IRQx8TOWdSBjUZoxCzpR9j+RmJzZgJKTHGTBZBKZF1KWYGYJUhTl363lhihHMmgAh7s4yQOTJc7GYGJ4ar9juOzRv2OsfBNrI38yQyM1+iE89tRjpvcOa295rmTB8SUcGb8lkaaznsA11riZo50TRkMq01dN6gCtZC6y0InF6PGMq2OReXqBOLphajKpVK5V5S1xqVSuXB4Pz1gbel4aCzljEo6zExbyx9SqzHSbgvwmEf2I7KelRCTAwh4YzQp0QftMxaRTj88Lv5vX/9XWgMXP0pn83Tvua7wFhSznhX4vJc6aRBc2lymHmHdULnDPPWTfNjQZHS2BCV9ZC46XDcCfWdEWaN3YnzZ41leSex4ZVKpVKpVCqVSqVSqVQqlcoDzSX77dQjH/nI3eO3ve1tt/uaX/u1X9s9/uzP/uw73Nfp06d3j5fL5f0wukrlwWE1xF2UFsAYdeegs3OMMkLnLI0rIpI+JhatuyS+rH6wXbBEgHyLsOmOnJ7uiqPNjvZze/qqzZBYD5Ezm5FVX85p5y3n+khMyjZGUso4AgLMWkuedmSNkDQzxoQ15f3WQ2TROvZmjpQmhyRTJD7bkHZRebdmNURuPOjZjImYlJAUMtxw0LPuIwglCm9mmTcea0rkXIjK/sxz+Z4naHFBiqmIoEJInNmOWBGSKuOYObcdCaocbhNjjIT1Gd798z/ETe/+AwAe9ZTP41O/8kV0iyXOCCJKUiFT3stgaD00RtimInZKMeNsJqaMdQYjsB21uHAZGFXxYkCLaMx7QwZiyPRBSRkal0vHvIWUFehovcVJwliLRZh3hqTF1WnZejpnCarMGstBHwiH5br96EHPfudpnGG6lBhjOaY5T5F9Rrhy2bEaAt4Ke20DKMuZx4owb+zkXiUYKUWrIerOWaxJlmOdwxphXotRlUqlcq+pa41KpfJgcP56o3WWqErjLM4IqmXed9gHDjaBxpUo5ZwhZmXeGNYps86JrJnDIRGiYkUYbv4Qv/2j304cNlz9yZ/OU7/++7De422JtnZGymuNYeYMYoVhTDirNDhUM2c3gav3O07sN2yC0sdI0ow1Ze7tnTD3bhdHDVwy68xKpVKpVCqVSqVSqVQqlcpDm0v2G6pP//RPB0oh+td+7dc4deoUl1122e73b3zjG3nf+963e/55n/d5d7ivP/3TP909/riP+7gHYLSVygPPuW3YiSP68Sji7HaEOykzhBIHNvOWrrGsh4jmvHOXudi4WFywjAiJyV0plfc86oS+JxzFoR2JuG7tPKWauWlVYtX6MTFGRYAhJozAZkw0zpCMEsmc3o7YrTDvLIvGEROknIkJVn1k2TkEcE7Yaz2nVyNRlZvWA8uQOOwjJxfNbcRl57aBGw97hqAMMXH9mZ5z27HEvaniveBNERMd9Il1r3SNYX/WIGTWYyzbBiVp5nAIXH9mCxT3jMMh7GI3gmb6qcP91Hv/F+/++VcxHpzC+JZrv/Qf8gmf+UUoQoyKOMMYS7wIk0PWzsXLCNYIOZfrXARyzPhWQLXE0imEqCCAzcxbhy/KJmJSUs4YAzllYgaThRAzg4E+ls8+85aYlZNOuPrYjBOLhuNzj7PCyUXHuW2J0dtrPVkzp1cj2zFhkAuKRUc4U6pgy8YxJiVqpnWWyxaOE4uGpBlVdp34ISp9KkWvxho6Z1iHVBylGkvrLJsx8XHHm1qMqlQqlXtBXWtUKpUHg/PXG8YIomVe3nlLBk6tBk6tRsRADEVYbybXWIdBTKKxUhxYtbiibk5dz1t+9NsZVue44pon8DkvfBXJzfBW8FYYRqVpBO8MKWWCZhxgrLAdE2KEZetYOou3k7OUYSfGz5R1ZGPNrgGgOhNXKpVKpVKpVCqVSqVSqVQuJi7Zauk111zDp33ap/FHf/RHrNdrnv3sZ/Oa17yGxz/+8bz5zW/mBS94ASKlOH755ZffabHi937v93aPH//4x38shl+p3K+shrgTRR30gSEU4U3pNDa7GAbNRcwzxCK8OBwioyr7nS+iDZGLTkRxMblgtc4UMZSzk1hIWeR8jyL1NGfGVM5P5+xuv+dz8ySKikk52wfi5L6Uo7A/a4gKQ4h0viVlZb2NRDKHfaQflFlry7mOWqLWcqZpHGPInE0BI6Wze7WNjKMyJuWmwx4oWqG9maNztrgmaWYTIqcOB85sxiIsAvZbz17nmDWOMSU2Y3E+ikk5vR7w1jBsAjFnNCnbmFn3kSEpIWasgc0YaZyACM6CicqH3vgzvP8Nr4WcWVz1CVz7vJcwv/oahqQ4MaxTokkGa00Z7TSgTKaPxc0q5UxO4E0pFq1DYqklSk4VssmklCFDY0sxZ9ZYhjExTu5RmqH1BhGD9xYnJTxPNdOP5Rq4fOlpneVwO3LZosVbs7uPjs08mjMfObNlf9ZgjLDuE31KmASNM1gjiCnxKNYKZzcjSYugK+dSAFt2jna6TpatJaTMGBXvDP5W1818jGzHxDDFJM4bu3ONqlQqlco9o641KpXKx4JbO+Kuh8hmTCTNbMdY3JhypvXFPepgG9mOSkhptw6aecMeDZsxkKfJ8XqIZR6+Os3vv/pFbM/exPFHXMMXf+f/A82SXnVyphKWncGZMvc3AmGaD8+8RR3sd5ZF6zg+88waR0iK0SKSsiJsx9JEceRS+kC7+FYqlUqlUqlUKpVKpVKpVCr3lItLAXEP+e7v/m6+4iu+AhHh937v93jyk5+8+12e7ENEhG/7tm/D2tsvDn/oQx/i7W9/OwBd1/HEJz7xgR94pXI/cuSUBBeKouaNZdbY24h2Om9Z5Mx2TGzGxBCUAwL7nZ8cl8xF09l7sblgzXzZb+MMzghRy3G8oxi689Gc6UPi7DqwHiNWirORHWHuLaqlMzwk5cxmBODUeiREpbGGWWMZYxG2GUBzOffOCMcXDVEzq6kzfAyJeeNIBjprUIQhJFLKnFx6+hGuP7tljErjDMYIx+fFMcoZYXNu4Mx2hAytNWxCYjUEkmacmOKqpBnrSqRH4y37rePstufMdqQPJX5uO0SsFcaYGJIyjGXsKSlaLlNCzIjJ9Gdu5i3/5vs5/b4/BuBRf/kL+T++7B+SbEMflG1UxEQ6Z9nGRAcYMaRcCjgliq7sdEyJGMGYjKdEe5zZBvZbzxBjiRxRpfGWxltaZ4iaSTkjCJYS+WesobWW4zPHNipzX7rgGwv7nefEosUbwVlDzpmD/sL76MS8AeDmwwGhXIculPsxIxgxeFviDA/7wBCVrJmoxenq2MyxbMt25X52zJjEWSExJkUzO4HgXucwQOMsnbc4a+40JrFSqVQqd05da1QqlQeKO3LEbZxhNa3txljm3N4asmS8EQwQcuTsJmCscHzmsdYwtxCSYeEtmzGWRorNAb//6hexvvkjLC//OL7su36CYycv49xmxKiQRYkx0c08jbEYa7ACQ1DsFIvnLMy8Y7/zHJsXV9jGlbllYwwqcNmioXWWRWPrvLNSqVQqlUqlUqlUKpVKpXJRckl/a/XlX/7l/L2/9/f4yZ/8yV3H9hFHz5/2tKfxHd/xHXe4j5/92Z/dvf5pT3sazl3Sh6TyMGQz3CIcOhJF7c9ucZm5PYwIi9bhrHCwLXFnvU103rIZEsfmD74w6mJ0wTJGaJ2lj4mZtxxOHd3Oyh0e75iUzVhELMMUWwcw62wRGrkiPNqGROssQYvY5ShiLmmmaYUxKmNMxQ0p50mgY3YCKSgCq5SLG1Tji6PQ4TbSKRxfeKImTq/g7GbkzHZEgDEZkirrITClyZGzEnOmHzLbFJEsWJM5PmuIFmLOeBFSyhyEyLAeGUICKZFwGeXsOjDGhLXldYdDwIklpsRqjCTNnFh4VOH6P34zv/fv/xlhfQ7bznjC//mPufxJf51RBC+CEaFPEZcN20k0BLBoDTYbOl/i/MaQ6IMSY3GQIhc3qiGU42ZEMAKNNWANeRJvkR3rIRAVMIJrLMYYHHD5smHWODpN5bgaw7x1tL6I2K5YzLhiv2MbEs6a29xHJ+YNRoTNEJk3loM+lmJVKgIoDZRil5ZxrVLEGcN+Z9nrirBq5i8sMhkjzFvH/HauN2cMw+Sq1rjyeNHeL5d/pVKpPOyoa41KpfJAcFeOuNsxEqamiTg5Sh0OkWFUsoAXA+X/zNuyBik+UZksQmcdS3PIW/7Nd3Nw/ftp90/yBd/+Yywvu4IxFCGWZFCKeykK2UDnDFaK6N+I0PoSs51ixtkSoS0mM/MOzcWBdRMSR9Kuo3VppVKpVCqVSqVSqVQqlUqlcrFxyX8z/+pXv5onP/nJ/OAP/iAf/OAHdz/vuo4XvOAF/NAP/RBN09zutuM48uM//uNA6fr+wi/8wo/FkCuV+w3VzBDLF9DbSUQ0b+ydiqLOp3WWeZPZjEWE03nLEBOq7kGNP7iYXbDmbRFGdY1lVC3vtY3Mm3ybsR32gTPrwBCL8Omwj8XlyRbXpdYbLl92O+emTYicXo8lDi0k+hAnhywpjkhZ2YzKJkZCyIxeWDS+xFzkTEyZMMXfOWOwktGsLDrPNpTYDWOUs9siZCrFFykORUAfEznDkBIxTS5XY6J1hmXnCTqSUsJKcbA6tynOVZmM5jLOMSXCqBwOEQNsIyy8o3WGlDPn1omoSmsN6+3I//qVf817fus/ArD4uMdx7Ve/hPllj2JMGUQncZwgGaJmsmacNzQKToR5a3FWSuyfCN4KYg2SiwDQGEOIkZxyie6z5VgaY3BWGENmSCMGKS5gSREjWIET84ZlV+JC5t6TsoII88ZybNbSGKFtiotUUi1RKLdzHx2beayRnaAJblsAS3nEIYAFhEXndtf8Pem8PxJD6eSspjnfxRaVSqVSuTPqWqNSqdyfnNsGNmNpADnYBLYhETQjFAFlY0vc8jit7YaobIYAIhwOgVUfEGM4OYnvjQgOg2bFFm9WJEfe/JqXcOr919Es9vmbL/pRrn7UJwBC0NK0kXNmiIqzQmPK+4aYsY1lZg0JaI3FGaHtLMc6j3dlzo2Hvc7Tj4mgSoxlvjkm3bngViqVSqVSqVQqlUqlUqlUKhcTl7wwCuCbv/mb+eZv/mY+8IEPcMMNNzCfz7n22mvvsEhxxJkzZ3jlK1+5e/6sZz3rgR5qpXK/sp06fsfJLUkEZs3dE0UdMWvsLqLuSKDzYMdvXcwuWN4aFq1jPUT2O88BRbi1maL+GmswAjetBlZ9LMWMMTKETMpFFNU6OBwiUS3OlLjAzltyLiKZVR+4eT0wRGXW2OIANB2LEqVnSEQ0ZJxJBBGsFIHOrLWshlLsQITGW24+HPHOEJKSc2YzFAGZtwAGZwzLznIcz7lN4NSq57BPbEMESjzheowsWkdMxZFqHktUm+YirENBsxZHK4qIKWmJpjs9jjhTPpsYyBHO3PgR/vDf/wBnPvgOAB71V/4Wj/j8bwTvS+e5KkYMmYwcic0mkY8zgrOlEOTLh6D1lLFlmPmpy90KY1AGccSskGEbFG8NkvMkhir7d0bIIhgMQmYxxdH1oxJVsVaZufKZL1u2LFqHKghCiErrLWNIGCO3ex8t2yIOO4pMaVw5X0doZtd5n3JxiTo287h7KOi71aGi6qIqlUrlvlPXGvcPp0+f5k/+5E/40z/9U06fPg3A8ePHeexjH8vTnvY0jh079iCPsFJ5YDmzGbn5cGBMykEfGM9zxPVHjrgImYy3Qh8Vb4VtUBQYY4l+Tqp4IyBlzi2mOKoaIywbw3/+kZfwZ9f9Hr6b8VUv+XGueOwTSEqZZ06xzQbBSmlsKOsCw7GZY+YdYgShuPQuZw7JJf5aSVgRGmdprGEUpfMWBUJUfGsf9HVkpVKpVCqVSqVSqVQqlUqlcns8pL6xuuaaa7jmmmvu9uuvuuoqvvZrv/YBHFGl8sAyxPJlej+5RrXO3MZN6a4wU2fyxRK/dSm4YC1bR9JMHxL7nae35b2iZs5sRk6vx10M4GFfojIMlHg7K4iULutjM084KowkJaSMMcUlaz0knJSu7D4o88bSOIsqzH1xNAqTK5BQ3KS2AbwanAgHfSid42JYj5Hj84ZVX+Ly1mPC2XLuM5lF50haBHaboDjrgFg6woGUIaQS67dsLUIplngrrEYlpMRmKL9vJ/HQzBs2Y0QVhhQZk6AZNiHxF3/033n7f/pBwnaF6xY88Sv/CSef8Fd24jxEUBGSKpCxpojNNEPbWForeGdwRjCAtcWNyjlDY4WutRiE44uG06sBCYkYpVxbmjnWOtrGFgGTd5gMxpQudyfCorPMGz9FFBr2Zp554zg2s2UsSCkaTZdTnxJ7zpcTAXd4H3lrODY3qDq2IRVnp0kM5yYnq0VbrtMi8rvnYr4jIdTR2O7hXweVSqVSuRPqWuOekXPmd3/3d/mlX/ol3vCGN3DdddddEEd4PsYYnvWsZ/GiF72Iv/7X//rHeKSVygODTjF4Q1TOrAeuP7tFRNiERAiKUoT6SHGLMlNkeOtKJLYC6z6WRpYx0cfIzJfHzhWH1CFmQo54ZzCS+S//6mW863d/C+s8L/i/foxP+rSncrgNnNoMpAyL1mKl5aAPIA5VJR4F8WVDFkUQhpgRyWwHgBKvN8PSOmHRFLda5wxMY+5T4rjzNca5UqlUKpVKpVKpVCqVSqVyUfKQEkZVKg83jmKyjmKz7m1c3MUUv3WpuGAdxaOth0jni7vQqdXAGBMpKUlLxF4flcYaFq2lmYRrrbNYEfqxRPLNG0cfEushYg2c6wNQIu1IgjVC40pk3mZyflrg2Eziq84bNBehXEhKJjOmRD9mRBKtNxxsinvVeogMSZEwOSWJZTVsyZoRAwebyJiUIeYiRgKcZLIWVyVVAQMYKZ3nsUTreVuiOIQiaFr1mZgzKSWMlIC4U4dr/uRXXs2H/uevAHD5NU/gM7/xZSwuu5rDvhy3xiaMGNZjcaxSPYq+E6w1dM7gnWXWlG72eVvEYttUnKqsE+aN51jnuWyvYd5YPnR6g7eGMSkL45l5w7Jr6GPAYMhAaw1YMLkIBSOKJkPjhM5b9maODDTO0nrDvLFTzCHk6c8jIdNd3UdHwqfzi0bWSHEDM2HnDNb5e3bdQ7lvjt4DuMdCyUqlUqlU7i+e//zn87M/+7N367Wqyq//+q/z67/+63zTN30TP/7jP473/gEeYaXywBCS7lxCMyVe+6bDAc2w2ozcvBnYDor3QuccrRNSzsRY5rMCtI1h5h2bIWJMnuarlq4pzQFDVI4tGqJCSooz8HM//ire8huvQ4zh73zXP+dTnvpXQTJns2LyJJjXEg2+6gOLziLZEjTTWIuS2QwlIttbQ9LS5NE6w6zpmHvL/rzclwJ0zpCsYKXM17sp3rtSqVQqlUqlUqlUKpVKpVK52KjCqErlEubWcVn3VgRxMcVvXUouWOfHo51el2KHNQYxBs0lVm3eWE7MG+be0vjSAZ6RnfBr1Udab1i2nlUfOLMJZBU2Y6RxhpSU/a7FSImOm3lLSFockzQTk7INWgoWzrCNynZQtkMqBZZUHIkOtyMqMAyKKqhkjIVsynEWgZSKQGccFM3KkDLeCK0vQi6hCG+sE86tQxEbaS5d42rpQ0JMpk8JshBjIilkgfHUn/Hff/J7Ofjz9wBw7TOfx2d86d9nPm9AhL02sx0D2+gYY8I6A5tMH4rILIthZqVEjAhkivBo0xch1zboJJTyGIG9zk4OVoZl40qM4Sg03tB5x7J1dL48z7mIz/qQShyfE+a+ITWlCOWNQRBaJ+y3jtkkWLr1fUOWC57fk/uonQRvnbMMQcv1mvM9uvY1Z8ZU7p9uclhr3f0TIVmpVCqVyj1ltVpd8Hx/f5/P+qzP4mlPexpXXXUVTdPw4Q9/mF//9V/nrW996+51r3nNazh9+jS/8Au/cEucbqVyibAailvsEWfXI6fXA6fXI+shcsPhwBCUZWtpbZn3nt1ErBGsscRUYvH6ZBhDESkFzQxDabhQMo0z9FEZo7JsHNkZ/vO//3He+Iv/FoDnf+cr+NS/9jemposSFb2ceVSVxpZ58bFFw7K1DEMiAMuZo7OlYWAbEppL5F7jDLOmrHkab2hsieGOWuacM28YY1kzmEkgValUKpVKpVKpVCqVSqVSqVxsVGEU8Ad/8Adst1sAPudzPudBHk2lcvcRAfItAo1726F7McVvXWouWN4a5i1sxtIh/Rdni/PRGDJzbzm+8ByfNbTOXhDlp02J4tuOiSEoEHDWEFOJshjGhLfCvHEYA31IWBEaZ+h8ESEtGst6hJiKkEYEkmYOtmOJx1AIqpxeDTTeoFNc3pATnS1xc+UYwawpUXcpZ7YxkTPYo2i4IXF82TCmjHeCJmUTFSvC3syzHhQEnLWIAUeeoj1KRN2Hfv8N/MHP/hBx2OIX+zz1+d/D457yOSw6x7ItBaCYSuRO4yCqYTsmkpZIv+2YUYWQMxKVWVuOU1ItAqnJWaxzQlZwjTBqJobAGDNRi8Bpf+Y5sfB4W4o7KdsSHKJFgKSpjL21Bm8svoEQM84I+53HmdLNz3Qej87m7n6R0uN/b+6jmbeshyKGc0aImtmO98zlbDuW8+ZMuU5k2m+lUqlUHlwe7muNZz3rWXzDN3wDz372s2ma5ja/f9nLXsYv/dIv8XVf93UcHh4C8LrXvY6f/umf5u/+3b/7sR5upXKvObcNuzjtfkwc9oFTU8T2uW3k7KaIo1pnCKrccLbHuuI6GqIiKF6EPmUONgHnBCiNEQd9ZIwRM/PMnKX1lpSUmDP/7Zdfy+te8yMAPO9bX8Iz/9ZXshoCoy3iqb2Z43AbWSXFmMR+17BoHPPWsRmUMQacM1hj0JwRI2U8IpCF/c4Vh6rO7cT8AK03pVEiRubNhY0DlUqlUqlUKpVKpVKpVCqVysXEJSGMOnnyJACPe9zj+IM/+IM7fe3P/MzPAKUj+TnPec7d2v/znvc83v/+9yMixBjveoNK5SLBiJDIRXCT8kMifutSdMHaDMUdaowZZ8FEYdZYGic0zjJEZUyZxhpab3buT/PG4YzhsC/xaZsx4p1wbhsJSTm9Grn6WMdqiBiEdR9Zdo5l50i5FFAWjSUkKfFrqowpcXoTCEkJMUI2KIrTEk+XyRgpnd5DKMUUb4TtWAREfUio5l1MXNJMduUaUZ1iNXKJyRuT0qojRMU7YdEaNAsG2IyRzWbLda/7f/jgm/8LACcf92Se9DXfw95lV2Eks/CW1llm1tGniLcNY1JytrQ+M6SePImaUoaUMiErMghdkxAjxTVLFYMQDdCUY7vaBjTDOhThmUjm+Kxl5h3WGB5xYkbSXKIFY8IbQ+OUmDLz1rDs/O7cWlMEXjFncoLOXniPyXTfxKQ4Y+7VfWRMiVjsY2LmLYdDZDMmnC0/vyuGmNiMpRB3FD15azFepVKpVG6futZ4YHjGM57B93zP9/DUpz71Ll/75V/+5ezt7fE3/sbf2P3s5S9/eRVGVS4ZVkPciaIOprn9akiIQIyK5oySOTHzbEJiM5T4602veCN00/wtm7KOQDIH28jhNrBoLa13pFxir50RnLEYa3jrG3+Vn/mR7wPgK77xH/FFX/UNGAMnFg1RlZAyWSGTsUZw1uCd2UXqxZRZztoyz07KdkyEWJoOcs5YC84JdpoLh1TWCEeOt4d9KOueaQ1aY5wrlUqlUqlUKpVKpVKpVCoXI5eEMOrs2bMAnDt37i5f+4IXvAAR4XGPe9zdLlZA+dKvUrnUeCjGbz2QLliqmW1IxSUpl4g5kfIFfusMM3/PhSSqmSEmYlKuP7dl1QdiLoUHM2W+pVxcoErsXYn567zBWTPFU1i2Y2IzRPqYWQ2JoIqbREiNGESEoMrZbeDcthQgnBHGpISo9KOyiZEhZIaUiFHJOWPIGGNKUYSMkXKerQWTocEw80Uk5ayQhggIVgxBtHSiq0E1lyi+mDACFmEIiYPNSCYzE8csF/enIUT+4kPv4c2v+T4Ob/gAiPCJz/w7fMoXv4CohpQyfUxsQyznJWcyRdDUOcM6RDQpTpgi7MwkiioRemKKWKo1BkRwUsRI3goxJTYDpWgz7duZIh5sjSHnzH7nivtWU7riS5FIaL1hE1JxkcqZxlqOL0xx2QoJNymknBVyzjvHqM4WtzCma+7e3kfztgijusYyqjIE5WAbmTeZWWNv977WXJyljkRRrTc7ceS8rW5RlUqlcneoa40Hhm/7tm+7R69/5jOfyTOf+Ux+8zd/E4APfOADvPOd7+QJT3jCAzC6SuX+IyTdxecdiaLKHBOOtw3nNoGUM3NnWU3z33lb3G1zFhAhKSwbh7PCXudooyHFzOG2uE5lHQFwVogJ9ubK//793+bfvew7APiir/w6vuaFL0IzHPYBZwyNc8x8EWh1vqwdjiK9nS3z+1lTxhGiEnNxgW28pfNl3rxoHdshM1saNJdmgXnjaJ3dzaPnjbso1pGVSqVSqVQqlUqlUqlUKpXKHXFJCKOAYuN+N3k4Fh4qD08eivFbD4QLVul+zujkPnQBGRJ5V9BonWXe2rsd4bcNidUQObcJbIYIIpisbIapM1zZjaN1BmeKuGiIiVlj6bwlk7l5NfDRw4EYE6tt5Mx2ZN5YNGW8Myw7h1Ci+4wRDvtYIvgmdVfKJe7C2cyx1rMmsgmZoCCayCK01uIdk+tTOa6dN3TesRkiY1LWk0iInGmyIZki6Oqj4p1ByfRBabwlZQiasQJjUNYSiaq887d/lT/8T/+CFAbavZN86vO/h2OP/TS8d0gAQYkKZ7eB7VQ48iIEzTRTMSWoFrGTMxAzSQFV7BQBOCbFGsPSg3N26qwXGis4sURNCKXbvQ+ZRSNYJxhTRGmNE7y1u+jCEDOdL8+NlCjGeVOEXuuouwLSUbFHASuCm8a4Hcu1c1/uI28Ni9axHiL7neeAIyexxDYkmklIVzr4yzVeHLbK9q037E9OV4vW3esYykqlUnk4UtcaFwef//mfvxNGAbzvfe+rwqjKRc9muCU+r0RkQ+MEI46YlNUkmopZWQ/FHVRE6LzFG0PSElftnOCtYR0SZJh3DrsRxl53f+9kEbJJfOgdb+M//LNvQ1PiMz7vS/iib3wxZzYjnbfMvGMzBhatofMdQ9xyZj3gjNC1ZS4994Y+JLw1bHqd3FsNy7ah8wYj0HpLDIr3Zhe9102Or1DSpYsD7sWxjqxUKpVKpVKpVCqVSqVSqVTuiEtGGHVPuCeFjUrlUuahGL91f7tgqWbObkoERaaISfpY4uJ2jlFG6JylcYY+JvpYxGXLuxCYqWY+fGrNmc3I4RC5+XBAyTtxjbcNUSZllMIY09S9XYRsNx0OWAOapUTPDYnVMHLYp11BxIihicXNyUwOUTFnRIt4JwNOwLsSrTckGFIpvuRcjufhkNhrDa0TlBKl4U1xobKTeEYohRjnLC4mkpS/S1trGSZhVFCldUUs1DiLPbpOcmYTIpv1irf+xx/mw3/wBgBOftJT+JSvfjGL/csRY8gqaE7ErGw3ReizNy+iqtYbvDEEzRzJeVpnEIR1zuRxxFuDNZCAReN2Ll/LrsTjzbylm5y0QlI0w02HW5CMsYZMZtk6VCCmjIgybwyN86UwZMrjbSixI0MsUSLbmHDT8SnXZzm/CMXdKSpRM7Oj6BPu/X20bB1pijTc7zy9TWzHRNTMEMv9cGvc9L5HAsJZY+/y2q1UKpXKvaeuNR44lsvlBc/X6/WDNJJK5e5x5B4LpWECYN5YQiqz7m2IJC0C+LOb8nvJGSbv0WXr0JwZkjIGxYhwdhNwtoj7O2dopqaGIWWImfe980/45X/2QmIYedJnfR7P+86XswnKNo7MvGPeGrZjYhsCVkoctbMGg6GxjnljdvNsQdibW5pRMBb2uiJ+8rY0CaScsSJYK9McO3N8Vubkm7HMSy+WdWSlUqlUKpVKpVKpVCqVSqVyR9TKaaVyifNQi9+6P12wSnHC7uL5zqxHot6Oy0PKJUrOyE5csx4imvPOged8QlI2Q+L0euDUeiRp5mAzFlcfV+LZsghRFY+hm6ImQlKiKqt1QLUc68M+sekj65A4tR6IMbMeAmNS5sagWQkq9FGZWWFQpkILJC0uR31KiJbz3Hhhv23QDsZzipFSdjHmlriOI1HTUUxhiMoQS9FGVRGEpJmoRQClOdOHiClHk4wQk5Jyxkk5Tzd+6F38wU9/P6sb/xwxhk981tfzmM/9SpZdU65BzYyxOE0RYJ0CQ0yMKRXBVzTszxxeDBFBRPAGsgVrDa23JcLPWQyGk3PPsvXMWsuiscwaX4RdFqyUYlBS5cS8ZeYTVkpU35ASV3cdISWSChhhCEpKsBkDnXNkMv2gHPaxiNxMpmkdnTcMMeEnQZZz5Thtx8ixmb/f7qNjM481wnqIk6uXvUtB3xF3R9BXqVQqlcrFygc+8IELnl999dUP0kgqlbvHdophPhLKixSh0LAp8/XtqMjkWTumMi+POdMArTXFkTVnxpRJZM6sB8aUCVEYNDGmjPcGiZBUueFD7+U3f/hbGLZrHvPEp/F3vudHwDhI0MfEakjMRosr02/ObiMpK8c6zxV7DSkLOcP+3NFaYTUqrW1LPHcqTq4zb9ifeTpXhFGbocyl542jawzWyEW5jqxUKpVKpVKpVCqVSqVSqVTuiFo9rVQucR5q8Vv3lwvWZow7R6Mhpt3nFSlORN4ajMhOsDRMxYzDITKqst95tmPCiFwgNFkNkfUQS8TamBiTcno9cHodpnEW9yaZBERQihSdt+w3njObcef6c3odObsJDFFJKdOPkZhAtXRvY4rwJpvJ+WpMWJNpneOgjxxooDFmF/13ctEw85a9LnHTQc+8MWxj6fJeDZG5t6ScSEkwGIaYSUmx1pByiYcDMFbI0/WSVBHJkIvT1MFY3pOcccZAVt75336ZP37dj6Mx0B2/kk99/vdy9Sc9GTI4J3TWEBM0ZEYtbl4CDKkI+Ywp154ZBG9LZ7xCKRAlRTUzbz0WGHKmsYJ3Fu8MJ+ctx2aeRXfhP2fzxrLq0xT1Z+gaAyLFcUoznXM0zpBSERBuhoTGzJntAEBKSlIYotJYobOZM+uRvc5hRRhVkWSJUyTionP36320bIsj1mYosYuNMxcIoM5H4B5HQFYqlUqlcjHyK7/yK7vHTdPw6Z/+6Q/iaCqVu+ZoXt9PrlGtK2uMo+i7IZZ1zGEf8UbQBCFlvCtx2VCixJ0IqzGy6hOtNxxsRsQKXgTTWNY5s77xL3jj//1tDKtzXPW4J/BlL/4XHAZLS4l8njeO9RgZhsRaM60vjRrLzjFvLa13zBrL5XsNrbOEqMzH4k7aOUPUMqZ5U5oojuaVOZc1WlTl3DaVdQoX3zqyUqlUKpVKpVKpVCqVSqVSuSOqMKpSeQjwUIvfuq8uWHHqdp47x+EQmE2Cqnljb3f7zlsW520/BOWAwH7nWQ9xJ6Q6tw30U0TGmfXIuW3g9HpgPSSSwqKxiJSIus0YGULCSkPrLX0oYi0jwryxnFqNnFoPpJyRDOsQMUZYeGGBYTUkGl9Eb9ZAyiXebUyZ9ThiRIoLkhEWreX4rGPZGawUd6lFV4Q/Hz3XQ2M5s46A0lphG5Q+ZKydyhqaiZqJ03USQkJTKdLEVIo6IoIRiArGCduQkPGQt//cD3H9H/93AK564l/hSV/1Tzl54gTeWSDTOIsAnRcOx0gcEkEVZ8EkYaQIl5i61zVnELACVqHxpkQKWohRacWw8JbZFO+xP/ccRZFYI3hToj42Q2I9BqwRFq1n1hZnqGXbkFIuTlTGcGzu6MciPJo3ltOrIlzz3jDGRFQpAilNdFLcvxBojCHnzKJzXLFsH5D7yFvDsblB1bENiSGW63rnGCWyixOssSWVSqVSudT55V/+Zd773vfunj/rWc9if3//QRxRpXLXHDmw6uRKeyQOkqkrJSN4V1xHrRUIcORfe/6aRAxshkRW2AyRISkza5m1jpwzZ26+kf/yg/+QzdmbOPnIx/Il3/mjnDx2DNUyE5bJrerEzHNmG4hR8RSBkzXCFcsW5wwnFg2XLboyn2zhsiUMoawBjBGGmOindeQYlTEq6zHiTVlnWCMX9TqyUqlUKpVKpVKpVCqVSqVSuT3qt1eVykOEh1L81n11wcoZlq2fhEmCsyWm7c4cp4wIi9bhrHCwjQxB6W1xetoMCWt1J4o6ux05vQnknIkpF7empWCNoQ8JawzjqESUc9vAIkPnDKtJZKUZNCvbMdG6ya0pwbJziBgaKyzaEpOXNBeh2JixbYm4OOwDrbXMWkNjHTkLs2YSZIWyTycNB9vA8XlD6yOrMdKHgKrBGMEZi1VhCNC44m2Vci4OWpoRI2hSVCEpGClxfF6U1hnOvP8d/K/X/gDb0zdgrOPJX/ZCHv/Xv6JcZFI6yJedwyD0QdmGiGrGWKHJhiGV/bSuCMqMtew3Du8NjTeoCicXQlRo+sCqD7S+uES13iJHDko50/hSqGmdKaK2PtBHxYih8bBsPNuYOD7z5JzRXERymUxjDa4T7CgsGjixaDgcImfWA1nBtZZlWyJC9rqG/ZnDiCAGTswbjs+b3TX0QN1HRfzmWLT3+64rlUqlUrkoOHXqFN/yLd+ye26M4Xu/93vv1/e48cYbuemmm+7RNucLtSqV2+P89QfcInYyAmn683wBlLdlHhxTJqbi9ATFRSpNTRAxKwp4L4SYOX36FL/wA/+Ag4/+GcvLP47nvPjHOX7iMhaNw7kyT92MkRgzorlE4KWMt4IXR2vLOuERx2csW89+53bve8R6cultnd25SfWpOJc6keJe6g3LxnFi8cDPfyuVSqVSqVQqlUqlUqlUKpX7k/oNVqXyEOKhFL91b12wOmdYc0sn9rxxzBt7t2L4YDomTS4irLEIo9ZDKI5JRjjoAwebSM6l2HBs7hmDsmgdqyESUqbzBrvnObcJDEkxQ2QbwBvDYV8i/saoJbIiQR8jURURA5rpU6ZrDKrgjMEJJE0gpUN7v/MYI+x1jqSAwHaM7HUNqqVrW20mZSXmTNtYzm4iHw0JiRkks8mKNRlvLBlDYy2IYEwprugQGXOJFxQRMqWoYzC8940/x5+8/l+TNbG4/BF89jf9AMc//i+hGRpbOsmtNcSYyZQxbMdEUmXVB4yUc+WNpXHCvHUIwv7M03rLrDG01rAJie2QpmtUWI1F6NZ5i8ZMSnDYR8aobEwRzMWsZMAiXL7X7OIUZ01x3rrxYGAzJsTAXusYkzL3FtNAzJmQMq0z7HcNiybTNsKyKREhx2YeP4nyZk25by72+6hSqVQqlYudGCNf9VVfxV/8xV/sfvat3/qtfMZnfMb9+j6vfvWreelLX3q/7rNSEQGmBhS4xUGqcYaQSsNCH0o8d9IihIq5CKY2IdFqxlkhpDKHTaqMUyxfVjh3cMDPv+JbOPVn72F27CRf/OIfozl+Bc4JrXc0rsxzTRZ6STgjHJsb5q1j2VicM5xZjWjOu3nxZkzszy6cty7a4ja7HRNjVLwzWFuEWa3LHJt5nDUsWlvnv5VKpVKpVCqVSqVSqVQqlUuOKoyqVB5iPJTit+6NC9ZmiGTAGwFvESlCoXvCrLFswy0REn0oRQYjJY5tTMpeV0Q1nbOQy3F307Edo9J5y7IDO0bWUwf33swRIkQUQWgby8FBz6pPWDsVKbqGmDLLzjHEIr7qQwaEEJWYlUXrcUYQESxKawxjKkIogMZZsiqIhyz0MbHfOVa9ZUwZciZEZSQzWghJmTWCNaBT57oxhiwWSCCQNePCIX/4H17B9df9LgCPesrn8pTnfSfNbEHOmWbqWDciqCpJLInMdoiEyalJjBBjxgrMnXDFskFzEVPNvGHeGKw1eGNZNMJe61j3iXVIhJRxpvyu9YJ3wqiKiUKSVGL0jKHzhmXr8Nbszt2scdy8GohaIgnPrkuOybxxdM4gRiBmnBGWjaPzxVHKShGxOVNEUM6Uc9y5Est4KdxHlUqlUnl48+53v/sB2/eVV17JyZMn79M+vuVbvoU3vOENu+dPecpTeNWrXnVfh1apfEwwIiRymQ+mTEi6W7dsJndYZ0wRRGlxZp01ZtfEMSRlNSirIXJmM9KHRMplDjqcOuC//Mh3cMN7/oRmvsezvuPHuOzqT2DZlui6lDNDgEULx5eew77MSVtrUA+jZk52HitlfXBuE5gdK2sYzfk28eLeGvzMoFNzytntiJESP91Oc/zLFy2L1tX5b6VSqVQqlUqlUqlUKpVK5ZKiCqMqlYcoD5X4rXvqgiUinJh7NiH9f+zdeZxkWV3m/8/Z7hIRmVlVvSCLiLggojA/EBFGxmUUcNSRURBBVHZtbFtlpxFwYxMQFBRbBEFRGRRBHBps6NFRxnEZGUdcEGHYlKWXWjIzIu69Z/v9cW5E7d1VTVd3Vdf3zYtXV1Zl3rwZEV19b5znfB9IZfrPsW/63xitFJXR9CGx8IEQMymrdUVG4zSVNevd35Oq/FVaV4bQZ3wEHxKTMZC18JE+RvqdHqtL4MYaxbIP7N8d6ENi79ShAFSpv1j2mdqV79nHSAZ2hgAZNqrMZuPwMRO0ZhkSVVL4uuzunlaG+ZCZmDKJqQrlfBtnQUVyTqBK/VzOZVLSYvBURqPHekJrFFVQWGfwMXL9R/6OP/vtF9Afug7jKu73yB/ny//jd9KH8jiDQo8LPlplrLYkMiorFiExDLEEnpRGu4zRYxhJGaaVZrOxtHWZyJRyYlJbUs4suoC1GpcSbW1xGtpKsdlYklI02tBUBqMUGxNHbTVGqxJiMprNptTo+ZBoXQnPLX1g3ocyCSt3dCGNi1aKkBIxZqaNZaut18/3RuOOeo2ksUYx2kyJTAkhhBBnp7vf/e5n7NgvetGLeNaznnWTv/45z3kOV1xxxfrju9zlLrzjHe+grs/xC1hx3qitLmEoa+h9mWo7HUNHldG48d6lsoouQM6JnDWVNlirWA6R7S6wf6fn0HIABTFmco78z9c+n3/7h7/EVg3f+KMvZ+MOX4jKZSOAUVBbhVZlAq1WmdoqQoSQMhNnMVqt76XmfWC3D8wHz7RydD6u72GOpbXCGIUzhj0Tw0ZTNg001rDRuhN+jRBCCCGEEEIIIYQQZzMJRgkhznqnMwVr/2Igpkzqw/prb4rKlmDUso/YMSSllUIpyjShMngJgElVdoRXRuPH0NZiiEQfaZxmUhmWXWIRAtFEcs5sLyOHukgXIhl1xCKHpqk0KoM2JXCTevAxk1OZurTdBZTSaF1+/hChaaAymlk91r41jpAyKZVJUrfbqln6wPJQxGjFtHJoA5UxdD7Q+TJtSgGNLtOjcsoM3vMvV7+JD175BsiJzc/7Ar7hyS/gws//YoYYUZmxDkThxilWldbsDpGUSs9fZTRU5T84Rmt8zGjK14QQWZJZDonaeTbaCkXGh0zlNFppUKWqcLNx7F/0OKvZbCt8zEwqQ1uVANhGbdEKnDXM6vIchZSZVZZD0XNo4RlCKpOtrEHrsoiUYqJLpfLP6jJtKsTMocXArHHElDkwH46bTtaF8vxNa8uslv+cCiGEEKfjRS96ES984QvXH9/xjnfk6quv5g53uMMZ+X5PfvKTefjDH35aX/PhD3+Yhz70oWfkfMRtQ+sM8z5QrUP2pUJ6Wpc676U3NC6y2TrmXcKaMrlVWSBqMpnFeE/gY8aHyBATf/fml/KJv/ljtHU8+MdeysVfck8aq9FWE3O53u1CYqPRzJqyGUMrQ8qZYdxM4sZ7iUllyArmXeD6XY+alWv9EwWj0liBvRhKnV/tykRYgEl9elN4hRBCCCGEEEIIIYQ4W8hKrhDinHEqU7BWYaXVP091WlTKpTJiCImUoQ+R3S6w9JE9bUXMiVntxl3hmZgzq0NrrUr93hCZVhYooazOl2OkmGlqTZ8oVW4hsduFEnQCamNoG4PTmomzXDCtaCrDcgjM+4jVGq0znVcsh4xRmpjLpCKrNVbDrHZYramdHiveLIcWA21l2O09lTVcsFHT9ZFliFRWsRhimQ6lNdMKQKG1Kj+fz3Q71/MXr/9pPvPBvwHgC+//n/j6xzyTdjLFqExMBqM0XQzElHG67CxHlUldOSmGlKmVYuocPiU6n2itoq1LLeIyJlqlUDrTB4UdApPaYIwqATcyrdMYNFqXWrtpVcJftTNsThyts1ij2NOWiVO1NXQhshwXdHaHQEgJaxRalZ39G63lgmm9DlYdmA/kEPExcXDZ09hSxedCCZKtxUzvU6nnc2Va1bwPpFymeAkhhBDixr3iFa/g8ssvX398u9vdjquvvpq73vWuZ+x7XnzxxVx88cVn7Pji/KS1Wl97ts6w0wcWQ8Sa8vuz2jLvA1ttxXXbPbtdYj5EQuqJSZFy5prdnpxLDV8fM//8jl/h4//rnSileeCTfop9X3ofrC5hqNaWa1BryszSnMuGjEll6ENEAUPIVBYmztJWBgXsGyvJ8xjc8rFURVdWo8aJsUMoleGr+6ja6fX17XSsqRZCCCGEEEIIIYQQ4lx0TgWjdnZ2+I3f+I0z8rlCiNsGpYBxkhSUwNMNCTGxGOJRiwAAMWViyuOfBxY+QFa0rkIriJSFEGLGx8xsrH7rfWJaWZxJWKXoTaIbpyd5nylRqEztDDvLME660liluGBWcce97TqIs9E4JpVFjTu8rVIYk8lkJrUhpXFiFgptFM4oLphWVNbQh0RTGUKXUePj0A8BtGJaWfZMK/ZMy1SohQ/EqMmUBREyHPyX/80fveonWG4fwNYt93/00/nKr/82amfHyVSG5VglGOeJLgRMyhiTqY1GUxZ6qgRdDBitMNlywcwQQwYFikhlQZPxKaO1JgQItgTPNhtLaw3LENlZBCbj4lLOmS5kLpgZLpw2WKPWAafVc3pkKMqHxBAStTNcYBqmtaGxms3WMqkcKWemtaGyiu2lJ431gq3RpAztWJ2YVgtWIRFSZqcPDCmVur6hPBYyOUoIIc5dt9V7jXwj10K3tFe/+tU85SlPWX984YUXcvXVV3O3u93tVjwrIU4upXzSqbVOK2JOHFwMpAyLITCExKGlZ0/rmDUGqxU7nWdaO7qQOLgc2L/wKBRDiCx7z5DKNeyH/ug3+Zer3wzA1z7m2XzBfb6RyqhyDkPAGseFdbk/qK1BK4WPCR9LRfbOEKi1wSo1VmxbnFHs9pFZZYk5Y7UaN4KU69pj2XHTx2pSVFsZucYVQgghhBBCCCGEEOe0c+rdrWuuuYbHPvaxN/p5OedT/lwhxG2LVopIPiK0lNZv6h9rPu7oXgkx0YVISpmdLuBjZoiRyhrIij5EtpelKgOgsYbel9BNqjKz2qFVYDnW6lWtZpIyIWWcVyyGxGLIWGPQKrG0ikZZNhvDnmnFRRv1UdOJUi7BLJWhchrjFEMXORAjxpRFi5xgs61oLFijaSpTziskamvwLhEz7PaBkBRagzUKH3Kp0KjLoscQYglG+cD/ePMv8ae/+2sAXPwFX8pDLnsRF9zhLkxrS0iZ2ipqVxZWjFZcOK2orWYIkZhKOEypUmO49J7eJ7Yah7EGp6BtLU2lObjrWXrP7lB2rNdW46yidZbNxqKUYhkiZMXeqWW3j3QhkVIiDxFFLkGwpNlqD09rWvrynA6hTOcqO+JLtYmzmkpr9k0bNtryfQ4tA40rk7Xy+FgZpWgrTessKXP4OXeG6REVI71PbOPZbBzzvgTdZDe9EEKcm+Re48y74oor+JEf+ZH1x/v27eO9730v97jHPW7FsxLixHxMLPpIP14nH/VnoQTxh5BAlfuInEs9XcyewSc+eWDBEBKTylAZzU72LPpI5yMxJA71YQzXl4mmH3/fH/ChK8s1+H0fcRl3vv9/wvuIU5qYYIjlWHnMMhmtsEoRxs0ZKWcWfaRuNXVlSsW11Wy2jph6djporWGjdaSUqZ0mpSOCXkdURq9IZbQQQgghhBBCCCGEuC04597hurEdz+qI2qxT3R2tTrFqSwhx9itVd2kdWupDYprzcZV6O52n82VVoQ+RboiEVP7OSDnThbieILXTechl8SFRphl1Q2RS23XgpvORSWWZVGWi0tKXigqjFbPKoBXsnWSs1jgDu12krRKVKaGexpn1gktMmT5EfCy/o1T5PY3GqHIOPmQ8JZhkjEIpTRfK9KuUoDKKIa56BcEZVRZhEhiV6XKkzoqlh5wVCth/7af4vZc+k09+8G8BuPeDv5tv+IEfZzaZ4ozB6Iw1pe5v1lisbgkxcmAxUFeW7eVATJnKaGIqKyzT2tD5SCIzc5qQEo1WaKXZnFjSIjOEEmSzRtM6Q2UUhhL08j6xjBGfFEPIhBhJgAYWPnJwEdgzsWx3oYTRjMKPO9+XQ6AbQ1JWl4Wfpi4LRY3TVEYf9RrofcIZzYWzmpgyg0+0rgSsUhrDdpTw3bQu9X3by0DvE52JNM6w6CNbEwlGCSHEuUruNc6c17/+9VxyySXrj/fs2cNVV13Fve51r1vxrIQ4sd0+MO/D+uMhHN5AMe8jnQ/rIFHO0MXIThfQuWw8mPeePiSUUuyf9wwhc6gLzAcPSpW/F3Ieq54V/+8vruL//NdXAHD3b/kB7v5NjyBpTc6JRUhooHVlYuyBZc/tq9WUWUUmM+89y1DuPSqrxuviUrEN5bp6q3UlBMXRNXnHUpRpVJPaSOBfCCGEEEIIIYQQQtwmnDPBqFNdeLgpVRFnW72EEOKma51h3pepTqvQ0nKITI/Y6TzvwzoQs9uXiUbAeld1iKUOzyhFSGU3uDGKxRCwC8XFm826KqOpDLtd2e1ttS7f12g2jC71deMUpZ0+oAFtyu5zVGZP66hdCU2VGozMTleq3FZCTMyHyP55z3Ioxwo5c/28x2mFM4aJGzjgDHfaN0Gh1pUYq59tWlu2x+NqYNpUGMDZElRKGf7+z/+Yt//iT9DtbtNMZjzsx36GB3zTt5bQkzXElElklFI0TjNrLE5rfNKEDDl5FkZjdakVHFIeA0Waxhl8KF9vdKn8632pLyTDrLFkyiSrtrJstCVcFnJiu/dkyu72pY8shsS0MmNlYubT20tyrlAoKqfph7KjP2c4sPRkMpUxZbd+XXbAb7WuTNdymu2uLHh14+SwVW3IwcVASBkfEs7qEnw7Zrd8bQ2TKrMYIsuhBKP6EEnJrkNUQgghzg1yr3FmvelNb+KJT3zi+rHY3Nzk3e9+N/e5z31u5TMT4niHln4dru+GyNIf3kCx05dpUABDH7nO9zDeQ9S2bI747HaPUuXeYt4FfC7BJpUzeyeOymo0YK0mp8QH//pPef+bXgg5c7dveBj3eegTyShao1mO01hru6q/y9ghcnA5YJRCa0XOmYUvmyMmEzNWcSv2Th1uvCcZYlqHo6xWZdrU+GdHVgOWmm8j17JCCCGEEEIIIYQQ4jblnAhG/fqv//qtfQpCiHOE1oraGroQaZ1hZ6zLs6b8fohpXZ93ZChqFYgJMdH7jDMl/JNyZlInVFZcs9ux03varlSsHVp6tlpH7TS9T+x0fn0crcru79ZZnNHs9oEhlGTSoYXHGc0FsxofEpFMZQ9PmarHndkhZnaHSEyJEMuCRkiZLgaWQ2KjMuyZGLLSzIfAYggcWgw0lcEoRe9Lpcd25+ljYt+0Qqky+WijtrTO0XdL3vyal/De330DAHf5snvyfZe/nL0X3wkfEzHC9V3PtDEoFMqANnr8+cCoMkmrrg2b0eFTRhlFrTNLHxhiKgs2MWMUqKzWi0taKZraMAwJnzK7XSABKSfmqkzBCinT9YGDcSAB9VgZOK0sTaWIKXOwC+z2c9rKksmkBCEncgRjYepsqdCzmgum9TjZyxDG6pAwPq4l9FWeO2d0mQwQI87qUl1ygtdbW5n1zzOEtH4ep1I5IoQQ5wy51ziz3vKWt/CYxzyGlMo112w2413vehf3u9/9buUzE+J4u/3hiaPb3ZEbKCDGMhm1sYbtzpdr5ZyBTEhQo7hgWnFd7okJdjtPyBlFuS/YO62YDxFrQ7nuHAKf+uD7ed+v/gQ5Rb74/g/h/o96KiXmXzZ4XDCt6AMMIdCHiHLQhczOIqCAxloqowgh09aavW1FyrDRGDbGiVDLoUzCtboEuBRw4ayW8JMQQgghhBBCCCGEOG+cEyu3P/ADP3Brn4IQ4hwyqUswqqkMQ0r0PrG9DEyqXKY1cbg6DWCjcdixam45hqYqp6mtIeWM02UKVB8ihzrPoWWgsmYdiimLDmXhZDlEOl8q8pxVKMqkqSEkFkMolRe5VP5Na0tymYUPpJyJ47kd6gIhpnEHd4ZcQlJDyFirUFFBVqAUtdPknNkzqQHFTh/KpKOUMEqx03mGUH6G2cygtSZl2DdxfPqTH+Nlz3oyH/mnDwDwLY98Ao988jOwruL6ec9uH0q9Ryg/hwKGkJl3HqcV+6YVOpfd8Ysu0DaGCaWK0MeMQqNVpnYQdebg0lONjyWqBKMUirY2aJ8YAhAzO12gDwmrFTGDVYo+lo/vuDWlrsoEqDvubdFacWA+0PnEso/0IY7BuEDtNBe0Da011JVhq3VMKkvrDNPacnAxANCF8Tm3el25WNkSjMrresUTv9a0KlUl/VivUtny62l9876mhRBCnDlyr3HmvP3tb+d7v/d7ibH8t3Y6nXLllVfygAc84FY+MyGO52Na1+cdGYqaVGZdoVxrw05farantaV2ZUPD6nPLPYdliInKViyHQEywGMrkUx8yIWRuv9XwkX/6AL/9Mz9CGHru8v89kK97wvNAK0jQOEvjynX2tII+aBY+lkB/yCwIpbKaREyKSWNojMbZUht98UZTzivE9aaQVa1ebWUilBBCCCGEEEIIIYQ4v5wTwSghhDgdzpTQ0bwPbDaO7TG0tNsHDi09VpepRSnldf3Zbl+mK0EJRW3UZYf1rLbElOlDYrN19DHR+cj20nPRRsN8KKGmWe1wJtINZXpQHyJ9KAssu31AqVJdVxsN0wpjyjnsm1RoA9fvlpDOEBJxDEX5sRJvPkRiLlOljFaYRrNRjSEppRhSwmponMb7xDxnDi78emc7KnPBzHHhrGH/Tk9Wir/+4yt5xfOeymK+y2xrDz/8/J/na77+mzFKkXJm/wJUgiGWx+nAYuDztloUkIDr5z0+JkIEo2Hee/qQqJwh51JlN6k0867seQ+pLOJEAxWZSmuMVVirMQq2JpasIPjIwidSzAwxE3Mmac1Wa5nVjroy7JvVbDSGyhiMVmw2jnlfQmvbC7AaptqSgGll2TetaVwJZE0qs57mtAo7pfEXzhxeIFr9avWauKEWpFUYKq1DVFKZJIQQQrzrXe/iEY94BCGUoMlkMuGd73wnD3zgA2/lMxPixBb94fq8VdBps7XU1rC99AClDnq9ucJS2RI2qkzi0HJgd/BMKks/RLRW3H7PhBAS1+z2+LnHWUXMmk9+5F/4hac/jn455y5fcV++62kvRbuKlDMpQ4xlKqtS0NYWaxLGKpZ9mSbbxcT++cDtthpCzhgMeyYVm41ja+LQWjEfJ+cC1K7UW0PZRCKEEEIIIYQQQgghxPlEglFCiNukVaCp85HNxtGZyP7dgZQyi1Bq7xRlwSGmEoOxWtFUhnpc4GhcCVj5mOhDonaGjdbS+8ihpae2mlnjMLoEZ2pr1nV9Sx9YDInOJ5zWbDRlwtQQErPGshgiTpdaDlUa9tjtI8M4USHlTEplStTgS/1F4zQJhTGgnaG2msYq6srQh8T2wuOspl+GMbSUUFqxUTu2WotWio0q8+oXPZc//K+/AcC9vup+POelr+Hi29+RISb6oQSZaqPZUSXYFSk723e6wGZrx2lWsNMHfEg4q0lZETKkELFaY5RiWlv6NnJgEamdxenE7hBx2hApP5tSCW0MMcMwxPWkKGcUEYVVZbrWrK7YM7XEBNPacMc9U6CEmXa68lxMKgMJ8vi/ymjaujxn1RiKsmNNIVCmcXE49LSaFgWwijatfkvdwKb61Z+dSohKCCGEOF9ceumlDMOw/lhrzeMf//jTOsZll13GZZdddnOfmhDHSePGBoDlWKU3Ge8L0liZDKxr9trKrENRwHoDQ86sp07pVH4/xETjDEPsWfaBaz/7r/zS0x7L/NAB7vQlX8F/eeYrwVW0lUOrzHyI1E5RG1VqphPUrtRA10azTGWq6dJHlj4ycZaJczinsUaRc2b/fFhfk9ZOsznW6k3rUvMthBBCCCGEEEIIIcT5RIJRQojbrK3WYcbd0o0z693R+xcDTiucKfUUSisaY3D28CLBkZOF3BiqWQyRraZiMUTmXeDgstTWTSrL3omjG+v5+pDwMWO1KjvJxwlU28uBIWR8Tmw0FqcVcx85uEhUVuOXnkUXiZT6vxDL1CilobGGBEycRhsga1pn2DNxKAU+ZgaVaJ2hp+wE74eS2JmOgaBPf/zDPO9Hn8i/fPAfUUrxiCdcxqOf/FQmTcVu79ntAyFkMqtpSooQoRsSs9oQx1pCgK3GYa1ivizTuGJOMNbeTWuDVpreR5wzOB2prWZQijZDZTRNpdFKlwlUObNcRnyM+JRpnQGt2HQWoxVtZdk7tbTOorXCqvI8Ga3WO+M7HxliQinFTjcwxERjLRrFnonD6uMXgJRSkPM62HTkpKfV4pcaa0ZuqG1k9WWnEqISQgghzher+ryV3d1ddnd3T+sY+/fvvzlPSQjSGCjqw6q2uly7dT7iQ0IrRUjl+nBVPdf5snHAh7T+s9X0pfVxcwlPLfrAfIhYDZPKsn+3J2VFZTXdELjm2s/y2mc9jkPXfYaLPv+uPOI5v0w1mRJT2RRRVxqnE0ufSKlsNHBaY62mQWFMKJstYiRlmFUWUOz6wAWqWk9uzbls+mgrsz7XtjLMankLSAghhBBCCCGEEEKcf+RdMSHEbdqsttRWs+jL1CVnNa3TWO2YNXY9HQpKfVplNW1ljttJPa0tMWd6n9g3qSCXmrqcy2LJ0htAYY0mphIsMqrs7m6cQSv4vK2GtrJsLzyf2e4Iuez6dsaw2wesUkwqQ8qKIaSyQzwr9DgFyepy/kNMGJWpncaZEhzyMRFyBq2YVBZrFIP3xJRorOF9V76VF//E01kuF+y78CJ+4qW/xBfe6/50MfOZ6+Z4n7BW0ViDs4rcl9I8n8rUKZ8yE1PCWDFldvsAg6Kyhj4mJtbS67SuoAup/LpSCmUgpEzOmYkzbE0qjC6/Rx4/V4PJZWKXxWCtYu/UcdFGjVaKPqQxJGUYxhrE1YQnrRWT2jKhLAD920FVagjV4YWuWX18MEoriOPXEzM+ZmpbFrZ8LMGoxqzqUU6+s34VotLrEJUko4QQQgghziY+JhZ9pA+R44Z7jlOefMzMe0/KsGfi1td0w3hd2I1hv8rq9Z+VSbERHxPLIYICHzJRw6xWLIYSYFr6yIEDB/j15z6J6z71CbYuugPf+/xfod3awmiF1YqswCjFrHZkPCmO15kGZq3FaVhSrvubyhBiRulynbq3dUwqQ2U0W62jrSzVEZs+prWVUJQQQgghhBBCCCGEOG/JO2NCiNs8ZzRbE03nI4shMO81KSesKpUXWo1TjJxZh1tOZLNxzFVgCInKaKwrISSfEs6occf5uDPbmuMWIybOcN1uz55pxaGl57rdnuUQmdaG3U7jYwki7XYBH2AIkZgy1igUhphg6QNOW2qnMEbhY2ZDs64D3O1KwMpZw0Zj2Nld8pLLn8lVf/C7ANz/gV/PC3/hCtzGXj59YMFndjrmfVkgqoxmG49GM4SIjyW8ZFBURhMpgahZZbBOERI0Y22INZrKaPpYpmU5o/AZEjCrHEOMaA0axaTRWKUZxl33OUBlIOQSDMs501rDtLJMK1uq9WwixUyIGec0fYhHTfhamVSlNi/nvK7l214EZrU77nMrq/Ex0lhD71MJo1WlfnG1y97ZMtXq2KkAKynn9WJZM4bs6hOclxBCCHG++djHPnZrn4IQAOz2YV1vByVs1IUStF9NjDrUeZzSxFTC8oshUtvAtLbjJFXI4y9WGygWQyhhqFFI5Tp4OQRQ0DpNooT5D23v8IafejKf+eg/M9m6gEf95BXM9t2OqbMYrbEWOl82Rjijx1pwMLpU6XmfMKZ0cNe2XOtnm3FWs9FUXLzV0DrDhRs1m2257lWUqu9JffymDyGEEEIIIYQQQgghzicSjBJCnDeMKZOF9ozhnY3GnjTwcjLT2o6hmwjjBKpGG/ZMquM+90SLEbU1XLPbYUypxpgPgf3bHdftDvhYJhV1IRF8KjvaMyht6GMGlQhJYerM1Dmc0aQMIUHtND5kNmpLyhmjNJ/92Af5qR9/Ev/2sY+gtebSp1/OU5/2DK5feP75Mzv0IaExKDI5x3WNniLSxYhCUWnFwkdc1DhKfd0ylCDYxFnayjDVihBTCZX1gZQzKZaFo5Ayu/2AUbpUAtaWrbqmcZqYE8shcWDRk7NGuVJNUhlTnptK46xmWlnoA4cGT1aZSW3wMZ2w3k5rxawx9LsRZ8onzIdAH+JR08GghJ0WQ8QajdWlNmVn6cskK6AZ61Mqq08amFsOh0NU1Riiak/zNSWEEEIIIc6MQ0tP50t4qRsiSx/X13pH6n1imSLzPuBMmQhVpj3ldW3y6p8axW7v1xXTQ0z0Q2Tel8lRIWVQMMSMDon5vOMXL7+Ej//j/6GebvDQZ7+ai+9wZzIaYxRWU65HYwlXLUMgpRK6r5xi8GVjQM5QWYNSZcOGBkKGzcaO15+lxntVF97eyKYPIYQQQgghhBBCCCHOFxKMEkKcN7RSRPIR1WnptINRUGryNhpHZVQJJ1ECQ6sd51qpky5GJEodX20NB5Pnmu2O7S6QyRgNORsmLtON5xrH6UnOAFmhjKIPkbmPVM5w4awipnLMmEv9x6Qy/P5vv4HXvewn8UPPhRffnpe95nXc4973Y7tP7CzLgs9yCBxY9KUKzxnQitoo2kqzkS0HFx6lFUYpEhl0CXdNKwuqTFaKZBqj6WIap0dpckpkMq1TXLsTyLlMt6qtYaOyOKtoKk2IipThwmlNVrAYIv2QgMwyRjaxdL5MdLJGEVLCqFL3l/LJ6+3a6nD9nTaKEDPby8CkyrSVOVzBp8okrD4kKqfZ2R3ofGRaWWbt4ZrF1fGO1YfIYpwSsPqc2soClBBCCCHE2WC3D+tQ1HZ3OMikVJnwuQpApZxZ+jL9KeUSqq86zQXTmm7crFCPgSSA+eAZB4YyH8K6Vlmpcm8wbQyZsnFBk/m1FzyVf/rrP8PVLd/x9F/k4i+4G8ooBh8JSVOP17RNpemGEtIKKZEBrSzalJro3d6TosJZxayyNJVlw2k+b7Nha1Ixayyft9Xekg+xEEIIIYQQQgghhBDnBAlGCSFu01LKLH2kHxcTdrtISIndztMNJbxkT6Na4sjqtLayVLZUXUzrG//rtPeRg/MBHyPX7PRct9NzYD6QFRxaeHaWAWsUiUQaF1us1mXHeQJNosIwbSzzPtA6jY+OSWVYpMAQM4cObfOLL72c//me/wbAfb72P/KUn30Fd7nT7el8xGrFdfOO5ZA41AWUKnV4TaWxWqNQxAiKjAa22oqtNrG9iOMu9TLFqbKaneRRAKpU2OWUuXij4uByYEGp9Uu51OppxVh9l5l3gYX3qKQJOWG0ZuIMPmaqRrPTB3qf2O4CMZf6EGMo06yUwmgF+eT1dlZr2soQY2ajdix8qU5ZjFMCKlPOv4TYYKfz+JjWNSnDGMBKOTOr7XHVIylnlsPhUFTt9PpcJrVMixJCCCGEuLX5mNb1eUeGoiaVOSoov7LZOGpriClzaJmYd4HKajZqR+8jRimUVkSfmA8lSH9kKKpxhtoaDix62sriQyKnzOtf+hz+5k/ehbGORzzrlVx0t3uRci4bHjLEnIhodFIolamdog+QUpkkFXLCJTjQBeZDpHWaqauxSrGndbR1+VkaV+5JhBBCCCGEEEIIIYQQx5N3zoQQt0k+JhZ9LHV04+85o8kEtCrTneZD5FMHl+yZVLSVOS4AcyI3pTptdS7X7nR0oQRw5l3g4MLjnOHgvOfQfGAR0jhlqhTaaa1QQIyrcJEiZgghMastQ4DdzuNMmbz0oX/4P7zup36c6z79SYyxPPzJz+Abv/Mx7CrFJ66bszVxXLfbc2DuSSmXWg6ruWhWM6vtWMtXJmn1PpbvFRNtZbG2TJVyShFTImfFrLH4kJk4y7SxdCGuq/ByBYsu0jqDAvqU6X2ksppDnQdg6gyTxqKUYjlEYkpYpSGXnfI7nWdSWQ4tB1IqNX8bG+U/W5U7eb3dEBKTyuLHANtW42icYTmU6pQ+JPpxEQvKtK8hwFZjCUkDanyeM60zdL78XDmXYw8xratUaqfZbFz5eU4QohJCCCGEELe8RX+4Pm8Vito8YiLosSqr8TGzd1Kmsc77QDeUQL0zmuU4xfSA9/iU6EJch6JmtcON001DKvcJxmr+6y+/hP/+B29Ga80Tn/fz3PHe/55uKHV7yyEwqS0kRYjQVOB92dCR8yp4r1n6RNIZHzMGRVsZLphWTGvDtHZoDZPastG448JeQgghhBBCCCGEEEKIQoJRQtzGHTkxKeV8SnVv57rdPqx3iEMJs3QhklJm0Qd8TPiUiLFMETI60IfEpDI3OPnpplSnrc4l5UwfEz4kPrvdsX/RM+898z4w7xNal+dD5cQQMqCZVZpMqcuYVIZuyISYCFFhtMZoWIw71f/7W9/AO177MmLwXHD7O/Gk57+SO3zJPVmGUsMxhFQWWoDOR3zImHHS06xx2PFnqIDel59VoVCq/LpxGmcMzmqUBnLGGsOQAxkwSrFRO4wux9dRMWnKY2MM7Mw9GUgxwbioE3JmZxkxJtNYQ+MsfYhUTrHbJ7aX5bF2RmO0otJmHUiaVCd+no6c6HXhrMbHVKZiOUPjzFGvhdW/C3unFbP68MSo1c9eWX1ciGrF6vIzrCZFtZWRXfpCCCGEEGeBlDJ9KNeRy7FKb1KZk4aioFwrLoaINeX+aBWm74bIRuPolgOqMuv7qZ2lx5oyNdSZch3tY8YqRQLe+Tu/wrt++1cBeNLlL+be/+EhXDcf2NNYhpzZWZTgfUoZVQbElqo+BSGAs+X7KwUazUarUCj2thVGK6aVpa3K9983rYBSDyiEEEIIIYQQQgghhDierOIKcRt1oolJaxkieV0xUVvDpD61iUlnu0NLT+cP7xBf+jIlaMUZzWIowZc+RpZDYgiJrYkj5UzKmY1xAtDKkdVpaTxW58vHe1qHT+mEQbMjz+XgfODgfKALiU8f7Di0DBityalU7A2x1LfFDE5rUAqlNDlnfIBBlVq3IZZJTkOMmKQ4uH8/b//Fn+Cf//p/APCVX/sgHnbZT7O5tcXOcmCIiWnlmMfAgcWAUYpJpTHWMPS57HgfIrPGllDRGASqrWFPm1h4xaFFYHNiaZwmUyZYBTItmspprFE0riwUhVS+djkkKq2ZbVhizDRWs9sHUoKNxhJi+V5aUcJTWlM7Rc4ZpxVaw26fSDkwqw1aabb2VOMzkplWJ17YOnaiV201W62j86mErsYawBNZ9IGQMnsmDmf0CUNUWisaa446xrS2EooSQgghhDhLrDYDDCERUkapw5saTkYrRWVKKL6pDENMbHd+vHa2WKPZWXpqq+m6ONbpQd2W+4YhJDofqZ3m3W/5Dd78yz8HwCMvvZyvetB3st15rFZMa0OVyj1HpTW7PjHvPMlZtFZYpahajc6KLiZqq6msKlV+KIyGz9ts2DepaGt7WlNshRBCCCGEEEIIIYQ4X8lKrhC3QTc0MelEAY8uRLoQz/mAx24f1kGk7c6vazOUKjuondElwOQ0h5YepWBnmdk/7zm4HMqOb63ZnFg2aofTigxlqtMYslKUBQ3dw9a4EBJTPi5olsjreo3tzrN/4Qkpc3DZ41OZTrWzDKAyG61jiAqVYaePpFxq5lCgx6lNMWcyicZaliFwYD5w3Yf/jrf9/DPZvv6zGFfxLU94Bvd7yCNIKA4tA3k8p8qWaVExZWpr+Mx2j1GajcYSk+bA0jOEhDXqqNrBWVthbCDETEylVo4MISWGlNkeBqwuAaHy2JVKv9oa9k0hA1aVykIbFMs+YU2pNtk7cUyqcaKUHmsCU6mr8ykzrR0hZiCTc1nQGkJkstGgVPmaY51solftyv9Tsjc4Pe2iWU3MeR0ovKEQlRqPfVsJFAohhBBC3Faspn1249So2upTqpmbVGa9QaCtEoshMh8CZqnY0zoOLf1R4aMh5PVEqtV1/1++9w953UufC8Ajn/SjPPiRT2C78wwhl80TqlRlb9aWBDQRtnuPjyV01diyGQFgw1gmlaV2GrLCp8jeac1FGzWLIdJy6lNshRBCCCGEEEIIIYQ4n527CQghxAnd2MSktZjpfSqVYM7QVGZd+bZ5zMSkc8EqlARHh6ImlaGtzFGLIftsDcCB+YA1JZTT+4SPuVTWbUfmVWCImZgSPmWMUkxrSzVOEkJlWMKhhadypUZtWlsqq9npPQcXnklliLk8zjlnKqPIsezmPrQYiDmjtebCmWFIlpwA1TPEXKrjnMaoEhbqY2Y+JJzJxBB53++/nr966xXkFNlz+zvz7T/2Er7sK76SxRg+qqymdpoYE8ZoalOx0wechl6takUyXTA0NpNzorGGSeWoncIZzW4XmFaW2JbKvhATTWWptUYPkd2uhKkqq3FaM60NiVKrt7PMhJy5cNawlRP/un/JBbOakBM7y4DSpQrEGkWIpT4wZ2gd5B6mFeTkiDmTcllsqq3BmnJufUjU48LUkRO9AGqn1xV3k/rw4pXW5Tmc1id/HWkUWxN9oyGq22IFpRBCCCHEbUEau5dXk15PNcRujWZSlUq9We3ofeTAIrHsA1ZrfCgTXq0qGwB8TFy706MUGKX54F//CT//Ez9KzplvfcQP8N0/9FR2+0hrzRj0VyilaCvNvM8MQ2ZjYjFj9TQZaqtwWlFXmj11jbPl2tfHxFQbGqvZ6QLW6JNe8wohhBBCCCGEEEIIIY4mwSghbkNOdWJSymWSUD/WS+z0gSElNhvHcohopc65yVGL/nAYbPVzb7aW2h6/SDDvAzGVxY/GGVKCIQ2EENkdqy0OLAf2thUhZVJM9BkWXQRVFiya2pKTwhqFHyd0tZVhs3H4WCYcHZgPhJTLJK7GshwiIZdFlNXzNKscTa0xQyAk2KgthzpPolTWeaAymsrA0if2X/tZrnrN8/j0P/41AF98/4fwdY97Nns3Nxh8xozP9WZj2RwnWmkU8yGQYQxbKVQuz3OKCa8UoDFG01TqqClQ1ig6nwi5vHacLgszeZwMtdE4NlvHRmPZM6nY7jwpl+/Tjos6oU/EnKicxndxHSxSCnLOWKM5/DQZaqfZ6TzWaIYh0Ljyexk4sNuz2Vh2u4DVipAyw3g+UEJRq2DftLY3eZrTqYSohBBCCCHE2Wd1Xbj656lMi1qZ1qVeuvOJjcYxxIwPZZODAoaU2O0jCnBWr8NXH/6/f8nPPf0HiSHwwIc8lCc+42fow1gdbRQXuJqljxit2JyUa9SFjmgFs61yz+JjuYdpnCnTa61Co9A6l/OIZfqrVqWa+ua45hVCCCGEEEIIIYQQ4nxwbiUfhBAndToTk6C84T49YtJO7xPbeDYbN9bB6XPmDfaUMv1YlbGqs5hU5oShqCMfG6MUkMlkrFIEpVj6UqFmUBxaepZ9LFONxkWPaW2xxqAy60lCldVorel8IqYeHzKV08SYx2BUqVvbjp6cM4MvU4gqY3CmPC+1MxAy1momlcXHhNYl1ORjonGaT/3DX/HOVz2H5fZ+TNVw30c9hS/92m9jOqnGaVMZqzR7JxWbjSPlPFaBlIlgzmjmQwBlmLUKq8uxlVKlti6DD5lJa2icxsfM0gcmtWHhAzFlmkqDz/RRYXWp7zBa0VQlvDTLFq0V80Ex+EQfIp2PVEajgMoZKsf6NZlzHheUyq+h1NR1PoGCfbOaWe1wGkLOJGC3i1iTCCnRVuU/Y1ar8nOOu+bbypxz4T4hhBBCCPG5Gy/xWd3+rCZInaqNxqFVKNXKRjOtzHh9nplWhsEnFn1kWhtmteOfPvC3vOSpj2foe+7zwG/iqT/zSpwzbLSGvVPHdTvDeM0NlTVlQmnruHBaAeX+pa1sqT0no1DknEhJY62iD7ls6tCaxmraynDRRknvyzWvEEIIIYQQQgghhBA3Tt5BE+I24nQmJq3osR7OGsX2MtD7RGcijTMs+sjW5NwIRi19JFPq1kIq05ra6sSTolaPzU7vGXwCFLPGsjmxfObgEjI0TrOz9OyfD2hd6ujqSrPVVDijaZ1m1jpCLMEoHzOVzuyZOA7OBxY+4mOmj4lZbUoVnA/kMUwVycQME6swSjHO9aJxipwtPiRCLLUZlTV0fc+f/PZr+PPf/zXImb13/CK+/pKfZe/tv5CkMpU2GAN7WgeUgFBlFSmX14Afq/n2Thy1M6Tc0/Xl95w2xAQpQUoJlKGpxqlSCrpQAlQGXWrwukA3JJpKM60tF85qnFHcYU9bztcE5kOkMWXRaKcLDL7UkXQhoAJcMKuprKb3Jdx0OLNXfqG0Zmvi8L4Enya1oR0DTzFDImN1mSBVO01jDZU9/Fqd1lYWiIQQQgghzlNaKSK51B7HPG4yOL2quWlt6X3Eh1w2HxjNRmuZVhY0LPtIzvDRD3+I5/zgo1jOd7nnfe/PT7/ytWTnyCmz6Et99KQ2VKbcOxxaBq7bGZjUmgs2GjZry15g1rj1RhYfEl2M5FQquWNMOKu5YFIxaxy11ev7OLnmFUIIIYQQQgghhBDixsm7aELcBpzOxKQTqa1hUmUWQ2Q5lGBUHyIplek/Z7s+lGhRNz4Gq8WCI/mYWAzlzw+HolhPGUopM6kCSkXmQyDkUoFXWc3SR5RSaKNonGbhE9asFlhKrUU5XsAahQmKxeCJGajKuayeF0XZsb6qqzNakVJGUUJWbWWI0RGTJ+TM4trP8PZXPIuP/cPfAHCPb/wvfPUjfxzraiDTWsdsYrEauqEEuHxMGG0ZfGYIkT6mUoNnNHUGpxRLMr2PaDSBXOpBukwfI/POM2sczmiWQ3k8drpAyCXIpJViwzTsbcsu9622Wk8Xa5xhMcR1tchyiPiY2DOxlHiVorJ6rAfUhJTpQyKnTJkbBX2MTJyhaSvaugSs9rQOazW7XcAZxaxxhJhIKbPbB+hKSGpaWxTl34lz4bUrhBBCCCFuXrUt18ONNfS+1IdPcz6tSr00TiqdNZaNxo7TXlXZ3OAsMWY++vGP8ZwnfQ/bB/dzt6+4F8995a8TtEPFjFIKZ/W4WUGz0wWsUkxrTcIQUsZSrmk3aouz5bp7CCUEZYyiGzdbzBpXJrPWDgXsnVRsTdw5M91XCCGEEEIIIYQQQohbmwSjhLgNONWJSTekrQxLHwkpM4S0DgRNz4FdyKt6jDTW3Z1okWA5hqJ6H9ehqI3GUo3hsflYFXdgMdD7RCLTWA0oFBBiYt4FFDBx5bEyY/DG6lK1N/hETHl87Mr3DevmDkUmY3Sp6ZtUulTuGYUBoqKEkxgDPtnw9//rj/nDVz2P5c5B6nbKd1z6fO56v29mZ1kqEzOZidNEn4kaWpfZmlRsVBalStVdzDD4TBcDBvAp0Y8hMaUUlc2kmNFGsdNFtpcBrRV7ppFKmzJNrPOkMTy125XQk1YZraF1hn1jDQiA1gprSg3hqn4wpvJz5QxbE8dm44gJhpiwGuwRr1UfEz6lEkKrDNPKcYcty55pxaHlwLwLLIZIotQMTusy4atxh+sid/sw1kEaJmONoRBCCCGEOD+0zjDvA5XV6+v05XB69zXLoUyEslrROIMC9u2p2L8YyMA1n/0slz/he7jmM5/iC77oS3jJa3+HPXv3jnV5pZJco0iUiVWrc+hDYohluuruEEiHOuoLJmitqF05353OszvEEvRXiqbSbDaOymgumNVstu6MPXZCCCGEEEIIIYQQQtwWnf2JByHEjTqViUk3RitFZTR9SHQhlqqzkJjWN/vp3uxiyiyGwMGFx8dVOCmix4WJymiG1WM0Tm4qdXMlkJNy5uBioBtDU4uhTH5a5rLbWylF6ww+JXaXpRKv8wmrSngnpHHiklIsh8issYAi50ROJVRFLhOhrFI4q7AYuuDphsCkLrvOc6ZUy+XAVa9/Ge972xsBuNOX3IPve/bL2brdnfEpoYDOZ2LKGKPQpgSS2sqQcwm29SFRGcViiIQYmfcB7xMhZkJKhJzxQ6DziiEcDnRNa0fOiZ1FwJiAVZpliGgNm62j9yUQtdtH2uXAVusYYkKVH5EhJJa+TB6rrEZrh1GK3T5gdXldrs415VIPMsRETInOlxpIqxXTxnLBtC7TqdpSLZIzZMo0tM22IuUyFWoIid6XSj6t1bparwuRLkSpGRFCCCGEOI9oraitoQuR1hl2+hKst0ad0kTdPsT1pNnVZpPaGqzV1Nbwr9dcy6Xf/zD+9eP/j4vvcCdeeMWb2bP3gvUk2mPvw8p0XsunDy45tPQ4ramtwuoy2apMWF3vpkBrzWZTQlKrY67OZbORUJQQQgghhBBCCCGEEKdLVoqFuA04lYlJp2IVhlodZ3Xcs5WPiUUfOTAfCCkTUwn4hJQwSREBHyPXDz0hgVGsJ2qtFhgADi4G+jEcNPdlIWTv1BFCZtIYWmtoK81OH/AxE2MGAweXAxtUTCtDpiyipDwGlhSEXHaJd2Gs4tOZymkqb1AK+iGxOwSMiaVaT8OnP/kJfvOFT+FfP/T3ANznWx7J13/fjxFsxU7vqQwshsTOMlA7Tc4aHyMmlUUYqzUhZ2qrsVZz/U5PiIlDC8/gM8ZkdpeBIWYgl13sIWO1YneI9CGi1bgYAyRV/synxLyPGKXZO3Hsm9ZkStBspwtHPS9WazYaRyZTW8OnDi2JMZEp06diyuydVihAa9AJImXRqLaGymk26rLoM6nKxKedznNwUcZwDTFxaDGUINSxAcCY1+Gq1hmaqkwMSDnLQpIQQgghxHliUpdgVFMZhlRC9NvLwKTKtNXx4SUo9z7L4XAoqh6nkq6OB0Ds+f5HfBcf+qe/Z++FF/H8X/5tJvsuXk+WOtlxO1/qyi+YVmx3AWcNtSvX1TmDM2UTwLFB/xUJ+gshhBBCCCGEEEIIcdPJO2tC3Aas8kurf57utKiV1Zcde7yz0aouDcp5h5hY+jRWVERmtV0vKgwx4WMuISSl2DNx68coxMTO2Ht3/byEiJwpiyDZZBpnmDiDs5omgtUJrRVOK0LMDOOUrmllCLFMjupCBK1grM7IafwQxaxx7PQBUGxOKoaU2O0jlUm8/0/eze+/6vl08x3q6Sbf9KTn8UX3/XqCVqhQfobrQ2R7PmCMZmNcqElJsTkxTGqHM3q9cLLoA5XSLH3ZJd/5SIwZrcoCjTWK1hoGU85TpYRCE2NmiIGsNIsQqF3Z5e6MYrMpoajKava0Dq0VIaZSMXLMQs525+l94o57GjpfHueDoUyvMlod9zq1ukzgWu3kb1z5WebjLn8fE/MhUhuNIjOtDI0bq0qUIuXyc/RjpeROHxhSYrNxLIeIVkoWlIQQQgghzgOra+J5H9hsHNuU69LFEFn6SGU0ldUodXjq6RDT+v6ndnodqp/WFmc0wzDwiIc/nPf/1V+wsbXFz7/uv3LxF34xetx8cXDhqYzGWYUaa7R9yONxy4Ev3KjZN604uPAooHEWBWw25br6SAqkGloIIYQQQgghhBBCiJuBrBCLtf379/OBD3yAD33oQ+zfvx+APXv2cNe73pWv/uqvZmtr61Y+Q3EyqmRw1sGmmzrpafVlq+PcxHzVGXdo6deVeN0QWfSR7c7DWEUXPeuwTO8Tu30oiwkp06XEEAyMFYGdT6RcJh8t+nLMPa2ltiXoBOVxSLmEnuZ9wCqgdsSU2e0iziSMLhO3dnzEpDKRqqeEeUIuwaHOJ/ZOKna7wIGlZ6MxKFXz8c8c4veueBHv/6O3AHDHL70n3/BDP0u152L6mHFJUTvwMdP7ErraaAxQAlxbrWNaW1qr2TetaJ0hpkzMmY3Wct28p3aaeRfJZFJWVLY8uRutY2fp0WiU09TGAAmUpvOJ2mqc1txuq6Z1hos3apZDqa1TWjEbJzvNGnvUgo0CLp41ZWKWj+yfD9S2TNZa+EhKZXrW6jiNKeGzlUllmNaWENM61LXbR1JM2MowqQy339Nij1kkapxhesRu/94ntvFsNo55H8rPIwtLQgghhBDnvJQySx/LxNuxtno1UbS2msl4Tdz5yGbj6Eypew4p04/V08c6UX3drLbEGHn0ox/NH/3Ru2knE17zxrdwp7vdA6XK5ww+jceN9OG4wx61AaBsUCjX8c6Ua3IfE62xR51/68xxYSkhhBBCCCGEEEIIIcTpk2DUeSznzP/6X/+Lt771rbznPe/h7//+79c7WY+lteYhD3kIT3va0/iGb/iGW/hMxY3RShHJ5Y3zWKbmHFkVd6qGcXFg9Qb8TZ08dSbt9mEdilpNJFpNH5o2hvIQZJzRWKMZxoo8HwODj1TO4ENmMQQaV6ZJZTK7fSBlaGyZvKSUoraKIZYKOaXKgkXMGXKZTmS0whroQuTa7cxGa4g5k1LCGlt2imcYQmarNQwhYU0JL8WxUuOaT36UX738h/nXj3wQgPs99HF8zcN+kKwsKUecLROcyJqUy+72rcZRV5pln2id4fZ7JqScaKyhHsNFy/ExWvqINQoVYO/UMh9KjV4GDJoDuwMocFYzqw0pKxKaGKAyYA1stGUn+1Zb0TjL7bcqhlgqSWJKVLYsBq3qQ45dyPExEUJmu/NstoendbWVPaoiRFHCZW11eFf8YogMIXJw4RlCZFpbNhrHRmOPC0WtaKWY1hZrFNvLQO8TnSn1JYs+sjWRYJQQQgghxLlqVafdh8hxd68Z4ji1tYTiyyTTIZRr1caVa/IulKD+qdTX5Zy55JJL+N3f/V2cc7z+N9/Mfe5/fw7MB1LOtM7SujKJtguRnMqmCq0USpf7iyOvW2e1pXWGPpRJtJtNmfq6b1rdMg+gEEIIIYQQQgghhBDnGQlGnce+7/u+j9/6rd86pc9NKXHllVdy5ZVX8qQnPYlXv/rVOOfO8BmKU1VbXcJQ1tD7svt5Or4Zf6pSLjUPUN68Xx33bLJa4IDDoSgo04pqp/Ex47Ritw/ElJlUiknl6H1kPgR8zIRUwjXLIRLTWH03VmpoBbO6TDWyStHHxHwIOKVp6zJBqhsS48ZujFZMG0tMGXRi0cMQE2r8V0OrMolqCBnFaurUUHaEO8N73vEWXveS59IvF8z27ONhP/4i7vSVX8PcR6xStJXFGYPOgM4sB828DzSVxYfIRRsVe2c1m60lpTItqw9lylOIZef8vAtUVuODIhuN0opl71kOmUmr2Vn6EkJSGa01mrIIFNM4LSuXhaIQYLMpizhbrRsfr4jVir3TCgXsm1Qn3NXujObz9jTYHbUOtS2HUqmXKdOfGlsWqo78+pASBxfDGI5KOKvZat06PHVjamuYVLlUpgwlGNWHSEpWdt8LIYQQQpyDjqzTBm405NSNtdeV1WgUfYhUVh8VgDrSierrnvWsZ/Ha174WrTW/8vo38g3f9M0cXAxMKkvrNCmXewBrNLOTBPeVgspoJlUJSXWrSVfjNfdNnfgrhBBCCCGEEEIIIYS4cRKMOo/t7u4e9fHm5iYPeMAD+Oqv/mpud7vbUVUVn/jEJ7jyyiv5m7/5m/Xn/eqv/ir79+/nLW95C+osnCh0PmqdYd6XAIzVipBKldi0PvV/xZdDJOdS81BZjRqPezZZVd11Y0UawOZYe+dj4uDCUzvDkBKDT+x0gbYytJUGLPOhVNsthkDVVhxaeqCErAAmjaFyhpTL4sRqgWLpAyEnFn0i5kTWmkhGJYgpM4RESrDUgbaydDFyzXaHT4mMojble2w2Dh8T/XLBy37yWVz9jlKdd7f/72v4gWe/jHbPBYSY2WwsWWucGsNXtUUpRT8EDi0DkcygdKmmS7B/t2ffpOww73wkxEQGln0iUiZYTWpLNyS0Ap8yWpdpTH1IGKOYVQ5nFJVRbNYObRS7y0AGWqfZMy1pr9VCTlsZlr5UkQwhUVnN0p/8NeeMZqN1aK2Y1PaoYFvKlOPEhEqMU7YSh5aexVh3ojRs1I7GlSDVqdbhne55CiGEEEKIs9Oxddqra7zjxEzvU6nFc4amKlOi2spw4ay+wfq9Y+vrXvziF/NzP/dzQLkP/vbv+M711wFUYwArjdNgh1BqunPOKKXQqoSyVpNVV1a/XB1HclFCCCGEEEIIIYQQQpw5sjIseMhDHsITnvAEvv3bv52qOn58/0//9E/z1re+lcc+9rHs7OwA8Hu/93u8/vWv5/GPf/wtfbriBLRW1NbQhUjrDDt9YDGUCrXa3ni4qQ+RxVAWGVaTeGprzqqpOill+nC4Hg5gUpn1z+fGHdiLIbJRO3bwDD6xHCK9j4QErdXs7wMH5gNWaQ4uB9rKoLXGadgzcfQhoRSEnLFa4UOZwhQSZMpO8M2xpq22ZYEjmMQ8Bvo+McTERl0RU0SR2WwcIWfmfUIrxb/88z/wimf/MP/20Q+jtOZbv/9S7v+dTyRrhdOlzs45zWSs/FsJKRGt4Y77HAfmA96O1YlkDiw9PmVm488y7wLGKOZ+KI9dBj+Uc9NKoXIJdHUhMqkME2fZHINVs7pMqWrduDCkFIkyfWw+RDbbsiN+oiyV0fTjLv3Kll9P65M/h7NxElXnI5uNozNlklNImX58nI/Uh7KgBZnZWLs3qcxphZq0Uqd9nkIIIYQQ4uxyojptKAGj2mqc0eW6NZcavXL9ntnpA0NKbDaO5RDRSjGr7SldC/7Kr/wKz372swF42ctexuMf/3iu2+0hHw42rTZSaKWYVJbJKbbhrYJQq+PIfiMhhBBCCCGEEEIIIc4cCUadx77+67+e5zznOdz3vve90c/9ru/6LjY2Nnjwgx+8/r0XvOAFEow6i0zqEoxqqjIxqfeJ7WVgUuUS/jnBu+0pl8lSq1BU7cpu5tXxziZLH8mUSUIhZZTiuDq1aW2JuewQ36gdvYl0QyRZzXLpQZU6vmXIWD2QyaSU2WxtCZLpUjc3xETMmWE4HNQJMZXHx5Zd54ryGGmlMAYWPrLsIymC0xFnSiCpsonGGUyVeM/v/xa/+nPPY+h7Ni+4iMde/vPc6R5fRYxgbanXWD3+vS/nYJTCaMXeicPHTDdW5aUU0cCQEkYr5n0oga4Y8CFTWc2BuWfwmSGW8FFlFVYbjNUkH9A5o8bvMfjErLE4o7EaUNAYTcyUKj/KYwfl5wLWIaPTqQDZat36fBtX6vNOVoGyMVbebS8HfMxsNZaN5vQrPG/KeQohhBBCiLPDyeq0J5U54X1O4wzTI+5zep/YpkxvnfdhHaS6Ib/zO7/Dk5/8ZAAuv/xynvrUpwIlABUZNyjEEsJqbsKU3WHcELDaiHI6FehCCCGEEEIIIYQQQojTI8Go89iP/diPndbnP+hBD+JBD3oQV111FQAf/ehH+cd//Ee+/Mu//AycnThdzmimtWXeBzYbxzZl0WAx1kxURpeKPHW4qmyIab1buXaazTF0Mq3tKVeV3VJW04S6cWpUbfUJFxA2G8dclYlZtS0TpfxYddf5yKyx7C4jfUzMGkPjyl+Dvc9U1mBtZliUKr4uRJzVGA2Loew8b6wh5UxlDi/CpJQZfKmkA7hmu2PvrOKCWU1lNGE551df9Gze89/eBsB9vvYb+L5nvAQ12aTrE3WluXijBhS10dRWkwFtFI0xJDL9EJkPfnyeHTFDHyMWhUExhMS8Kz/fvB9Y+sCyjyx8xMeMUWCUJqdMPySMLq+HSW2pKs2ssWVRJ5cFGq0UfUj4mKlXr5sxJ3bsDvfTrQCZ1ZbaahZ9pB+nOFX2+NebD+X16YxhUilmNyEU9bmcpxBCCCGEuPXdUJ32yWhV6qitUWwvA71PdCbSOMOij2xNTn6v8853vpPv//7vJ+fMk5/8ZH72Z392/We11SUMZQ29L/cH05xPK9iUcqmQBmjsalrv2XXvJYQQQgghhBBCCCHEbYkEo8Rp+aZv+qZ1MArgIx/5iASjziKnW1UGYLWircx6p3NbGWanUVV2S1lN+VlN/bmh4Na0LrVryyEyhISzmgtmFYeWnspqrtE9JPAh0xHYaisu3qgYQiJnhTOaeQr4mIk544xCowg5sdMHdjrPZlPRhUAImUOdZ3cZqCpNSJlIptaaC6YVH//nv+cFT/tBPvmxj2Kt5bJnPo+Hfv8PElLm+p2ea3cHtAFQTCtTqvoaQ8plcWU+BHwoFX4bjaOyms6XRZ1uCOyO0772zqqxMjBTW0NKmR3lMUphK0VKkBVok9msDdqMAS+n2WwdG40r554ziyHiTPm5V4s2bWVQ40N+bNDoplSAOKPZmmhSsix9LBOd8hETo8aaE2c01nh8zDd50pNUlQghhBBCnJturE77xtTWMKnK9e1yKNfQfYikcTLpsf70T/+Uhz3sYYQQeNSjHsWrXvUq1BEXj60zzPtAZTVWK0Iqk6lOp+p5OURyLvdhldWo8bhCCCGEEEIIIYQQQogz4+xLP4iz2mw2O+rj+Xx+K52JOJnTqSprrDlqUs+0tmdlKAqOn/ZzY7uyndG4VpPGoNgQFTFnDs4HNmtLnxJOabLKGKNYDomlT6RxLNIQy6+jh51lKlV32hBSmb600wdSV8I8BxeerMBlhVZwwaRi36ziv/3267niZT9F8J473fnOvObXfoN7/Lv7cM1Oh4qZtnZcbBQksEaxUTu0ht0+sdGUwJBRirZ1TGvLEBIxZUAxhMjGxNHWljCGl4wqIbfdLpByRmnFrLX0QyQbqKzhwmnNwgeGlFAJmtrQWMOkKkGpYQzQ+ZhYDhlrFPOhLP6swmirNaSbowJE67Kbf1qf+M99TFJVIoQQQghxnjqVOu0b01aG5biBYAipbKDwx4eZ3v/+9/Pt3/7tdF3Ht33bt/GGN7wBrY/ejKG1oralwrx1hp2+TKq1Rp1SWKsPh2vMVz9Hbc0JQ1pCCCGEEEIIIYQQQoibx9mZgBBnrY9+9KNHffx5n/d5t9KZiBtyqlVlAIpxJ3Vtzrr6vCMpBeTD035OdXqQ1opJbZkAeyYVtdVcvztQGY21iut2eoxS5AydT/hYKjqMUbisiUDrFInMECMoUGh8CJDH4I6CSW2xWuO0pk4LXvaMy/irPynT1b75W76NV73mV9mzdy8AG96RcnnsQzJYowgxY7Va19jVRpcQlIGNxlJZgyKyGAK11Qwh4kNGa5hWlmljWfaRmBPWwPYyUmnNgeWAQlE5TesMTa1IWeNQNFbTx0weH0+tFI0zWK3Z6T1LH6izxihN5xO33yqLN5XRt0gFiFSVCCGEEEKc3061TvuGaKWojKYfN4tUtvz6yGD+Bz/4QR784Aezvb3N133d1/GWt7wF505c4zypSzCqqQxDSvQ+sb0MTKpMW5kTnl/KZbLUKhRVO70O/E9qmRYlhBBCCCGEEEIIIcSZJMEocVre9ra3rX9dVRX3vve9b8WzEcdKKR9XS4YCHxJkSlWDUuuqstqWsMy5sENZK0Ukf87Tg2praMfpSK2zXLQBRmkymZ3OA5qYE12fmFaWpjJ0fWS792gMoFBkjLNoMosBMoACjeLaj3yAl/zMj3HdZz+FcxVPe97P8ujHPYk9s8MrL0opyHkd8qqsJqZYplSFUqux3QWsKROgqlWgx2mWXmE1WK3xMTCETF2Xn8cYhcHQ2Mx2jtxuT0MXE5VRGKWpK828C2it0RFqZ4kplMq8cPjxtKaEszKw7CNbUwMZJs6igMaZW6QCRKpKhBBCCCHOb6dTp31DVmGo1XGO3GTxiU98ggc96EFcd9113Oc+9+Ed73gHbdue9FjOaKa1Zd4HNhvHNp7ep1LX5yOV0eN9V5l2O4TEENN68m3tNJtNCV1Nx+poIYQQQgghhBBCCCHEmSPBKHHKfv/3f58Pf/jD648f8pCHsLm5eSuekVjxMa2nQ51ojtKRb7ZXRp/106FO5OacHjSpLNOq1OI11tGFzIWzhs4nOh/pdyO1NVRO0/tIAi6Y1VijMUoRU6ILgeWQ0CEyNRat4M/e+mu8642/QIqR23/+XXjuz1/BA+9/v/X37nxkCIlDS48PkYVPhBDJZCqjWQ6JkBOtNXQ+sGHdUeGvw7vdy0737WXGp4RSHp8MbpyO1ftIFyJDDKSU2PWZWWNZdJkENDZjx+O0lUEpRR8SRiuc0YRYgnUxJjIQU2ZrqvEpMbUWn9ItUgEiVSVCCCGEEOe3063TPpnVlx17vGuuuYZv/uZv5pOf/CRf9mVfxrve9a5Tused1ZY4VnZvNo7ORJZDqevrx2rqY1ldNj2sru/bypy1NeZCCCGEEEIIIYQQQtyWyLtw4pRcf/31XHrppeuPtdY897nPvVm/xzXXXMO11157Wl9zZFDrfLXbB+Z9WH88jBURKZWJUUqVgEljDZXVdKGEZqa1PafeiL+5pwdN6jL9aN+kYv9i4MBiYKt1xJjxMUOCEBKtMygFxiisLvV2OSumzrHVKC6eNXS7+3n5c36Uf/irPwPggQ/5Di55zovZ3Nik94GYy1Sp1QKMUYp+PI9lyhxaeNrKcGjpqZ2iA9I44evYxZ/GlUCTM2Xy19LH8ZxAVZp5H5n7gNaw0wcqp4kp4FPm4NJjtCK3lr3O0vnIpLJoFD4ldvuABmLOhJjJqkymymQ2m6oE73Jme1leb7dEBYhUlQghhBBCnL9uap32sVZftjqOUnDw4EEe/OAH86EPfYg73/nOXHXVVVx00UWnfMyt1mG0Yt4HGlcCTzd2L7Zyrt2LCSGEEEIIIYQQQghxLpN34sSNCiHwyEc+kk9/+tPr37vsssv4qq/6qpv1+/zyL/8yP/VTP3WzHvO27tDS0/kS/ujG6oaQTrBYEDO9T2WXsjM0VQkZpZzXNQ5nuzM1PchazcWbDfURk5lCTuzfHeh9IuSMU4oUoY+JTEahMGO46v1/8T5e+Zwf4eD111LVDY/6sefzNd/yXfTKsN0NZGDvtCJnCLEslISY2Ok8ChhCxGhdKjZCYgjQuExlTzzVyxpNWxn2z4cS2AKMVuW1EAyVLjUdRitqo4lJMa1LoKtymhhLaCimnlltOLgYmDjLEBNLHwgxE3KmsWVxJ4bMtCohqpQ1Qyyvr1uqAkSqSoQQQgghzj4nqvA+E3XdN1ed9jBOcFqdU7dc8sjv/Hb+9m//losvvpj3vve9fP7nf/5pH3dWW2qr19N7K6uPCkAdSVHuP87F6b1CCCGEEEIIIYQQQpzLJBh1FvjgBz94xo598cUXs2/fvs/pGJdeeinvec971h/f5z734cUvfvHnemric7Tbh3UoarsrYREoCxK11ThTpg2lXBYQ+pAIKbPTB4aU2GwcyyGilTpndiufyelBW61j2Qc+e6hjo3YcnA/EnMk5ozDrQJRWisoqUkr8+qt+jre//lXknLnDF34JP/zTr+JOd/1SDnWeeV8mUPk0YAyEGCnLIYVWiiGW52y3DxzqMj5EZpWj82WBSXPixSSrNX6s6NgzrVj6iB6PrnUJReUIZI3WMHGa1tn11+z2HsiEDMEndrpuHRZTKBqrqI2BDNYqQswoVQJot0YFiFSVCCGEEEKcHW6wwjtDpNx7zPtws4SAbs46bYDGGoZh4PGP/h7e9773sbW1xVVXXcWXfMmX3OSwlzOarYkmJXuLhMWEEEIIIYQQQgghhBCnR1aJzwJ3v/vdz9ixX/SiF/GsZz3rJn/9c57zHK644or1x3e5y114xzveQV3XN8fpiZtotdgAR4eiJpU5YUCocYbpEQGh3ie28Ww2bly00OfEruUzPT1oWlu2Jo7PHupYDJFMpnFlF3gfEjllUoaPf/xfueJnnsK//N+/AuBrv/XhfNsPXk7dNBzqBrYXnphg1ljCEDg4V/RVoq0sW63DGcWkMhxceipriGng4MKzvQzEnNmoHD7AfPDssYf/XUu5hIOWQ8RoxUZjCePPt29WlwDRuPBjfKJyJeA0rTUbbUU3LtTsmVR0IRJTxKCIVpGArUmNMxqjIKYStIo5M2sNe6eOSWXZO62OerxuqbCRVJUIIYQQQty6bo0K75u7TtuozCVPehzvueqPaNuWd77znXz5V3wlhxb+cw57aa2Y1pap3CoLIYQQQgghhBBCCHFWkZVicVIvetGLeOELX7j++I53vCNXX301d7jDHc7I93vyk5/Mwx/+8NP6mg9/+MM89KEPPSPnczZb9Ifr81ahqM3W3mClnFbljXprFNvLQO8TnYk0zrDoI1uTsz8YBWd2epBPuUzYypm9U8d2F9heDgCorMgK/s///GN+66XPZH7oAHU74bt/7Kf4d1//bWil2Ok9PuT1pKVrdjpaZ6mMZu+0ojJqXaEBkCkLNY1r6GNke6kYfOb6MLDVOK7bHaiMwRiFD3kMeZVzVBoumNYcWAwYo5nVlmY87q715MYSUsZqRVMZNlvHrLbklPEJdvpSw2iUYtaUx7S2mpQyZqzrS6nsxm9rw6wuga5bswJEqkqEEEIIIW4dt1aF981Zp904zbOe8qO8421vxTnH2972Nu71Vfdj/3xYf/4tEfYSQgghhBBCCCGEEELcsuSdPHFCr3jFK7j88svXH9/udrfj6quv5q53vesZ+54XX3wxF1988Rk7/m1FSpk+lDf3l+PixKQyp7QwAGNYpMplytJQglF9iKRkz5lqhzM1PWin8ygUpEyI5bFeLfjUKvH2176cK3/7tQDc8Yvuzvc88+Xsu8OdOTT3tJVGZ0VOmcoqnFEs+8xGrchAyiWc1vmIUjCpLJPKkjIcXAzsaSsMmp3O41MixMR253FaMTtiEclqRVal0i+kTG0N09qy2dpSmehLPaJWis2mVI7U1rBvWmG1Xr9+Zo3mmu2BPiS0gsoZtiaOPa1DKUUmc3DhSRmmzuKMYu+k4sJZfau+TqSqRAghhBDilnVrV3jfXHXaL3/BT/Kbb3gdWmt+67d+i6/5D9+4noB1S4a9hBBCCCGEEEIIIYQQtywJRp0Fcj7Bm6+3ole/+tU85SlPWX984YUXcvXVV3O3u93tVjwrsbL0peJhGBcclCoTkE5HW5n1G/9DSFRWs/SnV0lxa7u5pweVeoyINZr5EDmwHGidQanMv33y47zxBU/lEx/8vwB89bc+kgc99qnMJi1aKXqV2B0iVmmMU6DK9Kk9E8Oe1qG1ZhjDbNPKsBwiVitigm4I4wJTWezxSeOSRpExlOdlz6TCmBLyskZzaOmBjFYlFFeqRcr/c4YLZjWLLjBrHTtdYFqX4JitNFor2srSVpbKWPoQqZ1eT4TaMylVefM+kFuF1Yq90woFt3oo6khSVSKEEEIIceadDRXeN0ed9htf8wu8+pUvB+CKK67gW/7zfznhz3VLhb2EEEIIIYQQQgghhBC3HHkHTxzliiuu4Ed+5EfWH+/bt4/3vve93OMe97gVz0ocaVUV141Bm9rqE+6SviFaKSqj6ccpS5Utvz7XQiY35/SgRV8mOV2309H5QAiZZYp84M/fw5teejnL3W2a6QYPueT5fOFXfSPzAHERaJymcYqlLzvTTVbEXGo7NhvHrHWocVFmCOV75JTZ7QNGlwlSldE0TmOVoQ+JISRygkhCKQsqM6tLYEkpcEYxrRyLIeBjxhm1Pv56gWbcvb5RG1BqHcaqjpgs5qyiD5DH9sHVBvkjK0dWobvaygQmIYQQQojzzdlS4f251Gm/5Td/nRf85HMBeOlLX8oPPPZx6/q8WyvsJYQQQgghhBBCCCGEuOVIMEqsvf71r+eSSy5Zf7xnzx6uuuoq7nWve92KZyWOlcatz2lMsdzUN+FXYajVcdJZNrnsdHyu04NW9XLdELlup2cxJEIYeNuv/hx/9gdvAuBOd7snD3v6z1Ft3Y6UM5XROKtIQERRO0U/ZGIswSyjFSnl9WLJxFoOLQb2LwZqY0g50ViNj2AsTLUj5cxFGzU7C0837kpfDJHPbg9MnGNzUur3FCXEdORTthgCyzHMVDlNaw2Hlp6tScUyRAaf2OkCbZVpXFnwUZRFn/VrKpfzPbJypHFl0WtSn95UMiGEEEIIcW472yq8b0qd9tt/7y088ymXAfDsZz+bpz3taRxaeODWD3sJIYQQQgghhBBCCCFuGRKMEgC86U1v4olPfOK61m9zc5N3v/vd3Oc+97mVz0wcaxWGWf3zdKdFray+7NjjnY+WPjLExPXznvkQ+cwn/x+/9lM/xr995J8A+IaHP57/+OgfIRtLNxxeFDLjg5golZhDDEwbyzBkrNLUVpXHNcP20nNgWRZhBhVJGQan2WwdzmhCKpWGjTUMLtKFxFZrqZwhxcwQE51PpBQYxslYfUwsh4iPaR2Qq5xmoy7Toi6YlaTYhtHs4Bl8+fzOR5zRZEo1SMqKnc6XaVttmUxVO83mOHVqWlvZBS+EEEIIcZ45Gyu8T6dO++qr3s2lP/h4cs5ccsklvOAFLzjrwl5CCCGEEEIIIYQQQogzT4JRgre85S085jGPIaWyW3Y2m/Gud72L+93vfrfymYkTUQrIh4NNN3XS0+rLVse5ifmqc0ZK+aR1e4s+cN1OTx8S//Ndb+c3Xv4T9MsF0629PO7yl/GVX/N1QKm/Wy27GG2A8iDWVmG1wseM9xGfwFrDtKmYVqUKL8RMYzS7fSBq2KirUstRldDRpC673n3MtNGy3UfmfaR2lkltCDEx7wO5ssyHSBiDUj4mFNA6Q3PEok7jNBuNW9eDbNSO3pSpWKuFqXkfGGKismWClDV6XTmymhTVVobZTVy4EkIIIYQQ566ztcL7VOq0//df/DmP/75HEkLgkY98JK9+9atRSrEYwlkX9hJCCCGEEEIIIYQQQpxZ8s7dee7tb3873/u930uM5c3u6XTKlVdeyQMe8IBb+czEyWiliOSyIzmWiT+rEMvpGMaFjtXO5ps6eeps52Na7yg/LkKWIZLZv9vzL5+6jte8+Ln88Tv+KwBffM/78oTn/jwX3/4OkEAbTR0z1mhaZzBa4UOij+VxzONoqMWQaCtNZTQhJmpriDlhG03MmS4mLJppbZg4w95pResMdpzIVFtQKjPvI4eWA/t3e2qruf2elkUfSnDJaZY5M63K1KfaGDZat34OJ5VZL8xsNo65KvV4tS3BKR8SixDIfcYqxbTSVE6zb1KxZ1KtH55pbSUUJYQQQghxnjrbK7xPVqf9/ve/n4d/53fQdR3f+q3fyhvf+Ea0Lud+toa9hBBCCCGEEEIIIYQQZ46seJ/H3vWud/GIRzyCEAIAk8mEd77znTzwgQ+8lc9M3JDa6hKGsobep/ImfM6n9YZ+yqWaDaAZJwzVJ6mgOJft9oF5H9YfD+PiRUpH7CjXir/62//LTz/lB/nkRz6EUopvfOQP8fhLn0bWBh8Tuz7gklov4ijKgkjtDEZr5kOZyrT0kQSQYdZajNY0TjEExTJEfMwYFNPGsHdSAlEbY10dQIjlGAfmA5nM5sQRYyamvK6/G0Jm2hiGkJjWFVYHQsr0PrJnUtFW5rhFq2lty072ITKEhLMalzSz2mG1YmtSoRRstg7FWBFSH38cIYQQQghx/ri1KrxvaNJrbcsmhZPV1v3zP/8zD3nIQ9je3uY//If/wO/+7u/i3OHr7bM97CWEEEIIIYQQQgghhLj5STDqPHbppZcyDMP6Y601j3/840/rGJdddhmXXXbZzX1q4ga0zjDvA5UttWchZZbD6VU3LIdIzmC1orJ6XcV2W3Jo6el82QneDXFdd3GknDO//+Y38cKfeDpD37Gx90K+++kv4V5f/e9BGyaVYTEACvqYWPYRhcIqtV7QCTETQiakjM4Kq8FaTc6ZlDPOGipryJ0itxBrw0btaI5Z0FkMgeUQSTnjU6n2qIwijqG33ieMVgwxsaEsSil2+4DRionVZRqU0ydd3HFG41pNSpntpSfEcrxJZTFa0TrDZuNucKFJCCGEEEKcP27pCu8bmvSaxo0CQ0jkDNVYRV1Zsw5L/eu/fpJv/uZv5tprr+Xe9743f/iHf0jbtic8l1s67CWEEEIIIYQQQgghhLj1SDDqPLaqz1vZ3d1ld3f3tI6xf//+m/OUzjqfy27lM0VrRW0NXYi0zrDTl5o0a8rv35g+RBZDee7bajUt6rYVhtntwzoUtd2VaU5QnrvalvDQYneXZz/1Mv7grW8B4B73/Vq+9dKfod1zIRuNI2fofGRSGYZgWPQJpRMhJnaHfFR9obUKHzVNVZ4XrRRWabRiPekppESIUDuNGrNLq4d8tz98jjudZ2cZgYxt7Pp58SmRskHnzOATF04rlmMVSIgJrRXby8CkyrSVOeEiT8rl9exTZrOtqJ1mc5xYtW9ayYQoIYQQQgixdktWeJ9s0uvgy72LTxmloDEGZzUhRRbjtfq0tnzsXz/FQ7/lm/jkJz/Jl33Zl/Hud7+bzc3N477PLR32EkIIIYQQQgghhBBC3PokGCXECdzQbmUyRMrCwLwPt0rt2KQuAZymMgwp0ft0aqGY4XAoqnZ6vbAxqW8706JWzwscHYqaVGb92Hzg//4tP/jY7+P/feTDGGP4/kufwb//rsdxzfZAHxOLIbC55RhCIqZM6wxKKayFQ4sACXRWaKVQGpzVWBXxizKJa+IMbW1gDFcNoUyCQmW00uv6Qmc1iyGsz/Hgsufgopz7tCo74KeVRitNFyKKsuiy8BFnNTEnjNJYo4kpY7RiMU7Hqowu08BUWbgZQmKIab2Ic2QoalpbCUUJIYQQQoij3FIV3ieb9LqaqLoSUuZA8GP1s6Zxmt1eYfYvefx3fwcf/pd/4Y6f//m87Q+v5KKLLjrh+dySYS8hhBBCCCGEEEIIIcTZQYJR57GPfexjt/YpnJVOtls5pSMmRmlFYw2VLYGVLpQqu9lp1Nl9LpzRTGvLvA9sNo5tSgBIQjGw6A8vqqwCR5utpbaGnDOvf+2v8JOXP5NhGLjjne7ES179Oj7/7v+OT+5fMm0iqcv0oYSrNhqHVlBbRx8HamuYVplIxtmjJ3T1lGDSVuuYVBanNc6VBZLtZSDmTG01VimMVigFVim2+0DKmQOLgZ2uvO5mjWXfpEKrcrw41vJVRjNtLH5cXDKqLFY5o8c6PI2PpdavD2Xx6lhWK9rKrBeA2srcYq9bIYQQQghx7rglKrx3+8BinPa6fzGsP3/py6aAidMopehiog8RP97T9CGyDBobB57+hO/hA3/3t1x40UW85e3vZO/Ft2e78+v7nSPdUmEvIYQQQgghhBBCCCHE2UNWw4U4wsl2Kx8nZnqfSsjEGZqqLBqknE/4BvyZMKstMWU6H9lsHJ2JLId4XodiUsr0oTx/y/F5nFSG2hoOHjjAUy79Ia78b+8A4MH/6dt45S9dQaqmHFwMOKNwxjCrMkOEnWWgcSX8Nq0N4Jj3kVTBcgj4kHE648xq+pPBqETjNHVtsEaxWTmSKlOsdofAtDI0TjPERG0V251nt48shrCe5LU1cextK6A8P9Zo0vhcpnHRpnWGWWPZXoYxFAUxQcqwd1rdaJhv5ZYM8wkhhBBCiHPLma7wXgyBTx9cMoTEzhHV0gDOlOmsh/qIDxFrSo35nklFGu+BhmHguZc9ng/8zV8y3djk1W/8PS66012AEsjSSh13rXtLhL2EEEIIIYQQQgghhBBnF1kRF2K0O+5UhqMr2JQqO4Cd0WilSLlULvQhEVJmpw8MKbHZuJO+AX+mbLUOoxXzvoR4GmfO61DM0pfqw2F8bpQqizB/89d/yQ8+7vv51098Auccz/uZF/KEH/phlFLsnw84o6mtoTIaoyyhD4Sc2OkCk6o8bm1lCClTO112mqdEypmYIuWVktEanNZs1o620hijUBlQCoPCaA2U50thmQ+RnDO9z5hxOtRmW4J1tdNMKjseuYTzVjvZlSqLUZMqsxgiCsXeiS2LNClTWX3Uc32kUj1yy9c/CiGEEEKIc8+ZqvDe7UsoqmzoiMy7SBcjtVF0Q0IpWIYIWWHNERNXtWLSOJb9wDOffhl//Wf/nbppecXrfoc7f+mXl/OjTIsqtef6qGveMx32EkIIIYQQQgghhBBCnH1uW6kIIW4iH9O6Pu/IUNSkMid8w79xhukRb/jf2BvwZ9KsttRWs+gjfYjndShmNSWrG6dGOQ2/8qpX8sKfeh4hBL7gLl/IFb/+m/y7e99n/TWlKu/wZKidZWLqLEOMDCFhtOLA7sCeSYVRis5HnFEsfVoHsRQw+ETJPZVgktOKISQOLTwhlMUWqxVDLMfPGayCCDRO46xm1pS/ktvKrENRAD6UYJTSh8959XmrqWYpw0brmLiyMNOHEtxah+OUorZlp70s3AghhBBCiFNxJiq8Dy09iyEwxETvI5/d7hhiGjd5ZELODD6yXNVi1xajygSp5RCJKfHzz38Gf3zlH2Cd4wWv/nXu/4B/jw+pTJD1ic5EGmdY9JGtydH3PWcq7CWEEEIIIYQQQgghhDg7STBKCGDRH67PW4WiNlt7g7uGtVJMa4s1iu1luNE34M8kZzRbE01KlqWP520oJo0rMCll9l9/Hc9/6pP5k/deBcB//i/fxct+4ZfY3No66msqq/ExM6sNfTAMPtOHgMoKo8EoRcowxPK68KlMDLNGU+fyvWLKZQEowkZj2e0CsSoTnyaNoXaKxVCmWO2pyqSu3T6glEZRQlOVKYsrrSv1eUf+TKvv3Yyvx1XwTavydf04JayyGp8y+1rHtD6zj7UQQgghhDg/3JwV3qspvZ2PbHeeRR8ZYkIrmDWGbkilBjtnXAKjQWnFfAgMSTOrLK9+yc/we7/1BpRSPOfnfomv+tpvwIeEsxo1zlpdDuW+rA+RlOxR90BnIuwlhBBCCCGEEEIIIYQ4e0kwSpz3Usr044Sh5VilN6nMKVUpAEdVmt3QG/C3BK1LWOt8DcWsFiv+8s/fx9Of/ASu+eynaZqGn3nxy3j0Yx6HOsHu78YZFkNko3EcWgY2J5ZDy0QXEz7ARqNwRlFZQ06ZzUbT+0gfE5PKEFNm/7zHGE1loLWWDFwwraicIS4yWWt674FSxZhyhgwxJ3aHyMQZLpxVtNXxfyV3vtTtWa2wpizQrBaYoISk+nF3PBwOhwkhhBBCCHFzuTkqvI+c0nv9fGDwJVTVOMNm63BaE00gpFIzPa0Ms8biYwll+ZB4w+t/kd9+7asA+IkX/TwP/vb/Us4jRpzVaF02NYSUGUKispqlj0yPqRC/OcNeQgghhBBCCCGEEEKIs5u8iyfOe6s6tCGUiT5KlTe5T8eRlWY39Aa8OLNSirz8517My1/8AlJKfNGXfCm/9sbf4u73+IqTfs1q6lLOsNVarp8PTCpLSJBjqecLUdG4TOV0qSN0muUQmQ+eRZfQSrHVWvZOKpzR1M5gtKb3CZUVKMW+aUUfEzFlQizhpaYyKCDksgDTVkef2xASy7Guoxlfk5XRR9V7rH65ykNJLkoIIYQQQpwJn2uF95FTervxGrd1ej3dthsn965CSc5orNZYXUJJv//bb+QNr3wBAD/09OfxLQ97NJXVDCGRU15/58qooyaq9iGdcOPIzRH2EkIIIYQQQgghhBBCnP3knTxx3lu98d6NU6Nqe3Tw5FScqNLsZG/AizPj05/+NN/9PY/ifX/6JwB8x3c/ip9+8cu53QV7bvRrJ5WhD4m905ohZj57qMNqRV2VRZCYIOdMN5QQXXl1ZFpnaW0mJEvKpeoupExrNSjFtDZctFGx9AmNYrsbmA+RhQ9lh3xUxJhxY5CuGgKTypJy2b2+CkXVTq8nmE2OCe2tglCrl+xpvnSFEEIIIYQ4ZTe1wvvYKb2ZsrnEj5tTtFLkI2qxV99r5c/+6B38ygufDcDDH3cp3/P4Hy71eWa8Mj9ik8DpTFT9XMNeQgghhBBCCCGEEEKIs58Eo8R5L93AG/CnQyrNbj1XXXUVj370o7n22muZTKe84KWv5Jv+88NRqjwPNxZ0s0YzqUql3kUbNdvLAd8lnDEopdhoDbUrVXo5g0+JkDO1NqDKtKfpGGia1pZJZZlUhrYyaFV2oS+GyAWzhrr3LIfI9bFnpwv4mHFGlUBThsEnEqwXhmqnmdUOKKEoe8zrcxiDfauFp9MN9QkhhBBCCHG6TrfC+9gpvXqshw6xXMumnDn27ml1WfuXf3o1L3jGD5Nz5iEPezSP/OFnEGLGGkU/biQ4cpPA6U5UvalhLyGEEEIIIYQQQgghxLlBglHivHfsG+Y3NVgilWa3PO89z3ve83jxi18MwD3veU9e8/rf5Iu+5Es5MB8IKbMcTq3ScFqXYNP++cC+ac20seQEfYglLJdBqRJgqrWhplR6xJyZVHb9/E8qy2Zr1xOejjx25xOz2uGMLgG67Dm09Gx3npASeyeZISZmtcVqRVOZ9XFaZ477OVIunw9lWhWUiWdCCCGEEEKcTY6d0tu4soFAawUx42Pm2LuwnOHv/vdf8LzLHk8MgW/8Tw/lkstfSELRxcjMWOY+UluDWm8SuOkTVU837CWEEEIIIYQQQgghhDg3SDBKnPdWk3pWb5jf1ElPUml2y/rEJz7BIx/5SP78z/8cgEsuuYSXv/zlDNnShUjrDDvjpCZr1FFBpZM5sjbjgmldFlmAmDJdiMRxGpg1qtToOc1iiCilGEKismXy1Im+10bj0KqcT20NF200KKXQGuJ2IoRcpltpxUZjqY44xqQ6PhQFsBwiOZeAVmU1ihKgEkIIIYQQ4mxy7JTeSVXqqhtr6H1iCInVMCatFST44N//Hc/+oUfTd0u+5uu+ictf8mqSNsz7AKlcOw8hU1toTLkGroyWiapCCCGEEEIIIYQQQoijSDBKnPe0UkTyEbuVE81NCJfIG/C3nHe84x085jGP4cCBA2xubvK6172Ohz3sYQDYmOhCpKkMQ0r0PrG9DEyqvK62O1bKZbLUYohMKstGY7FaM8TEVutOWq+4HAKNM9jxOVcK2urkr51pbaltCVMNMdFWBqUqUszMfQQUbpxCpVRZ2DlRfR6USVaLsTpk9T1rK/UeQgghhBDi7HPsVN1JZdntA9ZorFaElEnj59ZW89EPf4jnXvIo5rs73POrvoaffOVrsc7hx2mpObOuvLNa4cZNApXVLJYekImqQgghhBBCCCGEEEKIQoJR4rxXW13CUONu5T4kpjmfVrBJKs1uGX3f88xnPpNf+IVfAOC+970vb37zm7nrXe+6/hxnNNPaMu8Dm41jG0/vE4shsvSRyugyXWms2RhCYohpvUhTO81m44AyfclotV50yeNkMa0UtdUYVUJM211ZfKmtvtHXjTWazVaTcsYZxbU7Axtthc99mUzlI5Ng2bPHYfXxr6EjQ1yr810F+Sa1TIsSQgghhBBnn2On9ELZBNCHRFMZdrtATJmY4MA1n+Inn/woDh24ni+++1fywtf8Jk07gXIIAHxKBJ8xqtRPQwlF9SHJRFUhhBBCCCGEEEIIIcRRJBglznv/f3v3HSZFlf1//FOhw0SCJBlRkgERE4oourBfcQ3ooqJEFdifyooJzGkNuAZ0TagomGBBMGFAxFUx4iJmgqwJJIsIAg4TOlXV74+eaacJw+Rmet6v55mHuT1V1Wd2ess+fc+9J8MXb8fgt/9YrVwccXbYumxnaGlW+5YtW6YBAwboyy+/lCRdccUVuuuuu+T3+7c7NjtgJ4qMcoM+hSxHxRFHMddTOBYvftuWbRrK8FuJIqMMv5UokMoK7Dim4qgjeX+0BNnZzlI7YhqGGmX4ZZumNvsiCvriO1T5rXjR1JaiaKWKuLICdqWeHwAAAKgrO9qlN9NvKRxzFbAtRX3xnV7Xrf9F1/7tbG385Wflte2gmx6ZIn9GduI64aijUNSR40lZfkvBMm2sTVPsqAoAAAAAAABgOxRGocEzTUMB21Io5ijDZ2lrOKaiiCPbMhIfspeHlma17/nnn9cFF1ygrVu3qmnTppo8ebJOPfXUcs9plOGTZRoqDMfb3QV9liKxeJs91y2z+5NpKGhb8pfZ4SsrYCu7AoVx27YEqUr7xKyAreKoo4JQTJm++OROJOom2oNUtIirIvECAAAAqbDDXXoDtjL9looijrIDPhVs/U23XDxEa1YsU7NWrXXTw88qM7eJfi+OKuAzJU/aUhyR60lZflt+21TjDJ9cz5NpSMWR+PtmdlQFAAAAAAAAUBYz6YDiH5iHYk68KMWNr1bOL44p0+8pw2/tsOCFlma1r7i4WKNGjdLEiRMlSccee6ymTZumNm3aVOj87ICtgG2qKOwoHHPkt82kAqiyDMUL2jIDVoV3Xtq2JYhbWiFVSdklrf8cx4vH4I8XZtVkERcAAACQKuXt0ut6njbnF+jaEedo6bffqHHTPXTrY9PVKi9PRWFHUddRYSS+W5Trxa+VGbDkN01FY55cL6asQHwXVXZUBQAAAAAAALAtZtMBxVugZZUUp+QGfcpXVOGoq6KIo+KoQ0uzFPj22281YMAALV68WIZh6IYbbtCtt94q267cbctnmWqUacp14zszhWOuXK9MsZFhKGCbyvBVfpevHbUECVahhWIk5irTb8s2DVmmIc/zaryICwAAAEiVcnfpNT1dc9EwffXpJ8rOydXEaS9rz/adlB+KymeaCsccFUZicj3JZ5vKDMR3gvUsKdc2Eu+j2VEVAAAAAAAAwI7wSSFQIjtgy3E9haKOcoM+hSxHxRFHMdejpVkdmzx5skaOHKmioiK1bNlSU6dOVe/evat1TdM0lBWwlRWooSC1k5Ygnleplnqu5ynixF9bWYF4S5DMkiKtmiziAgAAAFJpR7v0bi4I66ZRI/TBnLcVzMjQxKkv6sAuh8jzJL9tqjAck2UZMk1DGT5LMqQMX7wQqlWjoDIDNjuqAgAAAAAAACgXnxYCZTTK8MkyDRWGYwr64gVPkZhLS7M6UlBQoJEjR2rKlCmSpOOPP15Tp05Vq1atUhzZjpXXEqSiiiOOPC9eZOe3TRmKv5bihVy1FzsAAABQl7bdpfd3L6KbrrtKs155SbZt6+Enp+iYHj3kKf6e2jQMmSXplmUaygz41STTp4AdX4xS9j03O6oCAAAAAAAA2BmqOIBtZAdsBWxTRWFH4ZhDS7M6snDhQg0YMEDff/+9TNPUmDFjdN1118myKt+arq6U2xLE3nXc4ZijoogjKb7bmBR/PbEbFAAAANJR2V16Hxl7u16c+owMw9Bd4yaqe8/e2hqKJY4tXahi5xgK+OK5ViTmym+byg742FEVAAAAAAAAQIVQGAXsgM8y1SjTlOvaKo46tDSrRZ7nacKECRo1apTC4bDy8vI0ffp0HXfccakOrUJ21BIkvzimTL+nDL+1w7Z6rhdfBV9aFBXwmYl2jJmB3bcQDAAAAKiuRhk+jXvgPj38wL8kSfc++Ij6DxhQoV16m+ewSy8AAAAAAACAyuETRaAc8XZmNi3NasmWLVt0wQUX6KWXXpIk9enTR5MmTVKzZs1SHFnFbdsSJF9RhaOuiiKOiqOO/FZ8xzHDkDwvvso94rjyvPj5AZ+p3KBPUryFHjuPAQAAIJ098cQTuvnG6yVJt91+p84d9jd5Erv0AgAAAAAAAKgVFEYBSInPP/9cAwYM0PLly+Xz+XT33Xdr9OjRMnaww9LurmxLkNygTyHLUXHEUcz1FI65Csfc7c6xTUMZfiuxU1SG32L1OwAAAOoV1/UqtcPuCy+8oBEjRkiSrrvuOt180/WVvgYAAAAAAAAAVAaz8ADqlOd5evDBB3XttdcqGo2qXbt2eu6559StW7dUh1YtjTJ8skxDheGYgr54wVMk5laoJUhWgJYgAAAAqD+ijquisKNwzJG37Q89yZGnqOOqMBxL7Pb07jtv65xzzpHneRoxYoTuvPNOSezSCwAAAAAAAKB2MRMPoM789ttvGjZsmGbNmiVJOuuss/TEE0+ocePGqQ2shmQHbAVsMzFJ5LdNWoIAAAAgrRSEYyoMxxLjXS0GCMUcfTj3Iw0880xFo1ENGDBAjz76aL3cKRYAAAAAAABA/UNhFIA68fHHH2vQoEFas2aNAoGAHnjgAf39739PuwkRn2WqUaYp17VpCQIAAIC08ntxVKGoI0kKRRwVR+Pto7fjeApHXdmmoZ++W6JzB/RTcXGxTjjxJP373/+WZVl1HDkAAAAAAACAhorCKAA1wnW9HRYCea6rRx74l+64/TY5jqP99ttPL7zwgg455JBUh1yraAkCAACAdFIQjiWKovJDUYWjrqT4e/6AbcpnmTINQ64Xb6MXjrlauvRHDT37r8r//Xd1P6aHJkx6VhHPlD+VvwgAAAAAAACABoXCKADVEnXcROu4bdeK//rLL7rkwv+njz54T5I0YNAQPfbYeDVplFv3gQIAAACokqjjJtrnlS2KyvRbyvBbMrcJ1JPuAABVVUlEQVTZBTbos7Rl9WqNGHyGNv22UZ0OOliPTn5OmZmZKgzHEoVUAAAAAAAAAFDbKIwCUGUF4VhigkSSIjFXoZgj1/X03w/f17WXXqiNG35VRmam7r7vIQ0YfI4iJedlB7j9AAAAAPVBUfiP9nmlRVG5GbYC9o5b4m3cuEGDzjhVP69ZrfYd9tVjU2fIn5GjUNRR0GepKOyoUSaFUQAAAAAAAABqH5UJAKrk9+JoopVGKOKoOOoo5nqKxWIaf//devLh++R5njruf6Due/wZ7bf/AQpFHAX9lgrDMbmep9ygL8W/BQAAAIDyuK6ncCz+vr+45P1/pt/aaVFU/u+/a/CZfbX0xx+Ut9deeuG1WWrSopWKIo6KI/HCqHDMkevaMk1jh9cAAAAAAAAAgJpCYRSASisIxxJFUWVbaaxft1bXXXK+vvj0E0nSoPOG64Yxd8vwBRRzPW0NxxRxXeUGfSqOODINg52jAAAAgN1YcTTeMjsScxVzPRmGlOHfcVFUcXGxzht0lhYt/Fp7NGuu5199Q3u12Vuu5yUWUkRirvy2qeKooyxyAQAAAAAAAAC1jE8hAVRK1HET7fPKFkXN/+BtXXPZRdq86Tdl5+ToXw89qr+ecZZCUUehmKOiqKOisCPDkPKLo2qa6ZfregrYpnwWbTQAAACA3VE4Fn+/HyrZNSpgmzKN7Xd6ikajumDoEM3/78fKyc3Vcy/PVMd995MkmYYhv2UqXNJ622/Hv88K1N3vAQAAAAAAAKBhojAKQKUUhf9onxeOuopGIhr/r9v15PiHJUkHH3q4Hnlyklrt1VabCiPySs4L2JYMGdoaiqogFC+sCtqWYo6nVo2DFEcBAAAAuyHXi7+jj8U8FUdicj1TUceT50mGIZmGZMnT1ZdcqDlvvalgMKgpz89Ql0MOTbpOaTGU63pJ1wUAAAAAAACA2kRhFIAKc11P4ZKV4sVRR2tWrdC1F/8/Lfr6S0nShSMv0ajrb5Vj2ImV5dGYq5DjyHPjkycxx1XIceV6ngI5lvLDUdkFhnKCPtrqAQAAALuZqOOqIBTT5sKwoq4n2zJlGiVFTZ4U8zz984Yr9eqMF2TbtiZMflbdjzl2u+uUbjJVWg9FXRQAAAAAAACAukAVAoAKK4468iRFYq5mz3xVt15zqbbm56tx4yZ6cPwEHXP8SYnWeuGoo1DUUcxNnvEwTUOxsKvfY64MSTlBn0J+R6ZhyPU85QZ9df+LAQAAANhOQTimLUVROa4nGVLM8ZQfispnGokdoybcf4demPK0DMPQXeMm6vAex6swHFPWNoseSguhSgukdtCNDwAAAAAAAABqHIVRACosHHMVCoV0w7VXadqkpyRJRx7VXY89NVlNWrRWUSS+m9TWcFSRkgIpw4i3zfBZpkwZcuXJ8TwVhmMqiroyjJg8Q8r02yqOxAuk2DkKAAAASK3fi6MKRR2ZhlQUdVQQdlQUickfMxNFT8899aj+/dhDkqSrbrtXfz65rySpKOLI9TzllFn0ECnZUdY04xVRJpVRAAAAAAAAAOoA1QcAKuyH77/X+cPO0ZLFiyRJF11+pW74xy2SaWlLUVRSclFUht9S0GdtN+nRJNMvyzBUuplUKOIoPxRVbtCnwnBMgZJCKgAAAAB1ryAcUygaX/QQjrkqCMdkmYYMQzJMKTNg6fXnp+rxe8dIkkZceZP69D9XBeGYIq6rnIBPoagr04jvHOV6niJOPEcI2pYkKWDzfh8AAAAAAABA7aMwCkCFTJkyRX+/6CIVFRaq6R7NdOdDE3TKySfJZ5vKL44XRYWjTqIoKidoy18y6bEtQ4ZMw5DfMpTht1QYcRSOugpZjoI+S0VhR40ymSgBAAAA6lrUcVUYjkmS8kPx9/mGYSgnaMlvG3Jdac4br+mf14+WJP1t5CiNHHWlQlFHxZF4PrBVUeUEfCqKOPLbpiIxV54n2aYhv23KkJTh23GuAAAAAAAAAAA1icoDAOUqLCzU8OHDdd5556mosFA9juupV9/9r3r0Ol6u58l1vURbjNJV5Rl+a6dFUZLkKb5VlGkY8tuWMv3xY4sjpavSHbml20kBAAAAqDNF4fh78lDJ4gXTMLRHtk+ZfluZflufzn1PN4/+uzzP01lDhmnU9bfINAxl+m3lBONrryJRV+FY/Dq/F0UTLbcz/KW7RVmJlnoAAAAAAAAAUJsojAKwU4sXL9YRRxyhSZMmyTRNXXfjzXrhtTfUas89JcVXk4eijjxJ0ZirmOvJMKTgLlZ/R2Pxoiej5A6U6bdkGFKspMjKk1RcUmQFAAAAoG64rpcoaCp9P57pt9Q4wy9J+t/Xn+vmS/+mWDSqP5/SV1fcOlZllzP4bStR/FQUjqkoEtNvBWG5rqeAz0zkCZkBdosCAAAAAAAAUDdopQdgO57n6cknn9Rll12mUCik1q1ba9q0aTqiew8VhGMKeobCUVfhmKvShd4hJz5x4rdNmcbOV3+7nqeIE99hKliyq1TQZynmeArHXIVi8XYb4ZirrEDt/p4AAAAA/lBcsughUmbRQ4bfkmkYWvH9El08tL/CoWId3fN43XD3I4o4UrQoKr9lymcbMmTIMKSiSEyRmKvsgE+2Fc8NcoM+SVJWwJbPYo0WAAAAAAAAgLpBYRSAJPn5+brwwgv1/PPPS5JOPvlkTZ48Wc2bN5freioMx+S3TdmmoZjrqSjqKGBb8kpa3+1qkiMUdeR5nmzTkG2ZiR2mIka80Kq0hZ7r0UoPAAAAqEvh0hbZJbtGBUoWPSxb+qOGDzxDW/PzdXi3o/XQk1Nk+gIKRRzFSnaZCsf+uI7rSZ6kmOeqcTCggC+eI2T4LWUH+BgCAAAAAAAAQN3hE0kACV9++aUGDBigZcuWybZt3XnnnbryyislGSoMxxSOuSoIxxSKuorEHBVFYiqMOGqS6VdpHZOpne8WFYm5Ko7EJ1mCJS02/FZ8sqV0k6nS61AXBQAAANSt0sUJbplFD2vXrFb/0/to44ZfdVCXQ/TUsy/IzsiUJAVsSzEnvuur58bPNw1D2QFLMddShs9UwLbkevGdoiiKAgAAAAAAAFDX+FQSgDzP07hx43T11VcrGo1qn3320XPPPaeuR3bT1pCjcCzeUkOKrxovijiyLVOmaSgUcbQ2UiRDUqbflqvtK5pcz1Mo6iSKogIlEySSlFlSIFVaCFVaIFVONz4AAAAANcR1PRVHHYVjrn4rCMtxpd+LI/I8T1s3/6bz+p2mtatXq0PHfTX9lZlq3ryZYo6rooijiOPKtkxlb7NrbCRmamsoJk+GArapbIqiAAAAAAAAAKQIn0wCDdymTZs0fPhwzZw5U5J0xhln6KmnnpIvM0ebCiOJ4yKx+Epw1/UUiTkKRR0ZpiHLMuXEHBVEHG0uiioUdbRn4wwZMuTJUzTmKeK48koqnwI+U9kBn6R4UZRdMokSKWnbYZrxiiiTyigAAACg1kQdV0Xh5EUQrhdf1OB5nrb8nq+rhvfT0h++1555e+nZl19X8+YtJEm2ZSo3w0wsgIjE3Hj7PM+TYRiyTEOZflvZQUu5GT5ZJu/tAQAAAAAAAKQGhVFAAzZv3jwNHDhQq1evlt/v13333aeLL75Y+aGYCsMxSVIo4qg46ijm/rETlN+2FHE8haOOLCO+ytw2pJikTUURGYax3Ypw2zQU9FuJnaIyfJaySo5xvXjxlCQFS34esJNXnQMAAACoGQXhP97vS38sgtgaiioac7U5v0DXjzhH3y5eqKZ7NNOEaa8oq2krFYZjiffwUnwxQ6bfVqY/+fr5xVFZpptYBMGiBwAAAAAAAACpQmEU0AC5rqt77rlHN910kxzHUceOHfXCCy/osMMOU0E4plA03vIuPxRVOBovWDKMeLGSzzJlGoZygrZ+L45oU4GnUNSQaVoqqW1ScTSmgG0qy2/LMOPFTnaZ9hqZfitpQqU44sjz4sVTftuUoXjhFAAAAICa9XtxNPF+f9tFEIYMhcIR/fPKC/XNl/OVmZ2jsU9MV+u920uSiiKOXM9TTtC30+uz6AEAAAAAAADA7oTCKKCB+fXXX3Xuuefq7bffliQNHjxYjz/+uHJychR13MTK8bJFUZl+Sxl+a7uV3kFfhppk+rXqtyJtLAjLZxmKup5sMz7xkVGmVZ5hSH7LTGqfJ0nhmKOiiJM4XpICtpVoqQcAAACgZuxqEUSGz9Ato0fp0w/nyB8I6sYHn9Ze+3ZWQTimiOsqJ+BTKOrKNJJ3jiqLRQ8AAAAAAAAAdicURgENyHvvvachQ4bol19+UUZGhh555BENHz5cRknBU1H4j5XjpZMkuRl2ov3djvhtS/s0y1LAZ+m3grC2FEfluJ6KIo5+L46oRW5QQZ+loC+5sMr1PBVH/iiKCvhMBUsmTDIDTJwAAAAANWlXiyAMSdddOUpvvvaSbNvWPY9P0sHdj1M45ioSix+7VVHlBHwqijjyl+wmWxaLHgAAAAAAAADsbiiMAhoAx3E0ZswY3X777fI8TwceeKBeeOEFde7cOXGM63oKx+KTGMUlq8gz/Va5RVGlfJappll+uZ6noM9SKOYoaFsyDEMx11PM8RQxXBmG5HlSJOYq4rjy4h07FPCZyi1px5EVsLebYAEAAABQPbtaBHHXmFs0+amJMgxDdz40QcefcJIKwlGZhqGo46o4Gm+j57dMBWxLxRFHvoz4+3YWPQAAAAAAAADYXVF9AKS5tWvX6vjjj9eYMWPkeZ7+3//7f/r888+TiqKkeDGUp3jRUsz1ZBh/rPKuiKyArUaZPhmGoaBtKeAzZRlSKOIqHHO1NRRTfnFMW0MxhWNuor1GTtBOFEVl+C1l76QlBwAAANKL67o6+uijZRhG0teKFStSHVra2dUiiPHjHtBD990jSRp7/zj1O7u/JCk74FPA98fOUPnFUf22NaxwzFFBKKaicEz5xVFtKowkFUWx6AEAAAAAAADA7oIKBCCNvfnmmzrvvPO0ceNGZWdna8KECRo8ePAOjw2XtMcIlUyYBGwzqfVdRTTO8CsUcbSlKCpJapTpl+d5CvhMua4nz5MMQzLNePGU3/5jkiQrYFMUBQAA0IA8/PDDmj9/fqrDaBDKWwTx7ORnNOYfN0iSbrxljM772/mS4rtAhaKusgM++SxHplnSKi/qyCqMyrYMxVxXGf74e3jbNJThtxI7RbHoAQAAAAAAAMDugE8pgTQUjUZ144036t5775UkHXbYYXr++ee177777vQct6SvnevG/63qyu7GmX55nuS4ngxJlvXHivFtGZICtqXMgMVKcgAAgAZk5cqVuvHGG1MdRoOxs0UQr7/6sq4edYkk6eLLr9ClV1ydOCcn6JNpxFQUcRSwS3aX8qStYUeuPNmmKU8lbfNY9AAAAAAAAABgN8UnlUCaWbFihQYNGpRYfX/ppZfq3nvvVSAQKPe8krqoxL+V3S2qlGFItmUq6DPUKMOniOPKZ5lyvTI7RhmGArapDJ8l06za8wAAAKD+GjFihAoLCyVJnTp10rfffpviiNLbjhZBvD/nHY08f5hc19U5Q/+mm27753bnZQVsBWxTRRFHEcdVZsCW60k+y1Buhl+WaSQWQbDoAQAAAAAAAMDuiE8rgTTy8ssv67DDDtP8+fPVuHFjzZgxQ+PGjdtlUZQUL1gq+2/p5ElllZ5W2jIvK2CraZZfzbIDap4TULPsgJpm+ZUVsCmKAgAAaICmTJmit956S5LUu3dv9e/fP8URpb9tF0F89fmn+tu5AxWNRvXXM/pp7APjZOxkYYRtmcrN8JW8h7dkW/HdpsySBQ8+y1R2wFaz7IAaZfooigIAAAAAAACwW+ETSyANhEIhXXrpperXr5+2bNmio446Sl9//bXOPPPMCl+jdIeo0mKlqONWKZZISZuO0utUdecpAAAApJ8NGzZo9OjRkqRgMKjHHnssxRE1DGUXQXz/v8UaOuBMFRcV6c+9/6JHJj4ty7J2eQ3TMJThs9Uow6cmWX7tkR3QHtl+Fj0AAAAAAAAA2K1RGAXUcz/++KOOOeYYPfLII5Kkq6++WnPnzlXbtm0rdZ2AHb8dBO34pEg45lZ61yjX8xQpKagqvU7pdQEAAIDLL79cv/32myTppptuUseOHVMcUcNQulhh1YplunDwmdqa/7u6dT9aT02ZLr/fX+HrsAgCAAAAAAAAQH1DxQJ2yXVdHX300TIMI+lrxYoVqQ6twZs2bZoOP/xwff3112rWrJlmz56te+65Rz6fr9LXyvBZMiT5bVO2acjzpOKIU6lrFEcceZ5km4b8timj5LoAAADAG2+8oenTp0uSOnfurGuuuSbFETUcAdvUz2vXaPjZfbVp4wYd0LmLJj83Q5mZmRW+BosgAAAAAAAAANRHfIqJXXr44Yc1f/78VIeBMoqKinT++edryJAhKigo0J/+9CctWLBAJ598cpWvaZqGAiUTHKXFTEURR+FYxYqjwjFHRSWFVBn+0okSi5YaAAAA0NatW3XRRRdJkgzD0IQJE6pUzI+qKfx9swacfqrWrlmtfdp30GNTZ8ifmVOpa7AIAgAAAAAAAEB9RGEUyrVy5UrdeOONqQ4DZSxZskRHHnmknnrqKRmGoZtvvlnvvvuu8vLyqn3tzEB8YiPotxTwxW8P+cUxFYZjO22r53qeCsMx5RfHJEkBn6lgyQRJ6fUAAADQsF1//fVavXq1JOn8889Xjx49UhxRw5Gfn69TTjlZP/7wvVrn5WnajFlq1rwFiyAAAAAAAAAANAgURqFcI0aMUGFhoSSpU6dOKY6mYfM8T08//bSOPPJI/e9//1OrVq00Z84c3XbbbbJtu0aew2eZygrEr5Ub9CWKo4oijjYVRpRfHFUoGp9ACUUd5RdHtakwkpgkCfhM5QbjK/+zArZ8FrcYAACAhm7evHkaP368JKlly5YaO3ZsiiNqOIqLi/XXv/5VX375pZo1a6bnX31DHdq3ZREEAAAAAAAAgAajZqopkJamTJmit956S5LUu3dv9ejRQ7fddluKo2qYtm7dqr///e+aNm2aJOkvf/mLpkyZohYtWtT4c2UHbDmup1DUUW7Qp5DlqDjiKOZ6CsdchWPudufYpqEMv5WYJMnwW8oOcHsBAABo6CKRiM4//3x5JYU3DzzwgJo0aVLncfz666/asGFDpc5ZunRpLUVTN6LRqPr3768PP/xQOTk5euutt7Rf584qDMeUG/QpX1GFo66KIo6Ko478lhlvkWdInidFYq4ijqvSmikWQQAAAAAAAACoj6hcwA5t2LBBo0ePliQFg0E99thjmjp1aoqjapi+/vpr9e/fX0uXLpVlWbr+H7fqklFXyrRMbSqMKGCbyvDVbBuLRhk+WaahwnBMQV+84CkScxWKOXJdT54nGYZkmoaCtiW//cekSFbApigKAAAAkqR//vOf+vbbbyVJJ554ogYNGpSSOMaPH9+gFnm4rqthw4Zp1qxZCgaDmjVrlg4//HBJYhEEAAAAAAAAgAaFTzOxQ5dffrl+++03SdJNN92kjh07pjiihsfzPI17+BFdc/VVikQiyttrLz3+9L915FFHS4pPaDjyFHVcFYZjCtiWMgNWja3czg7YCtimisLx1nl+20wqgCrLkGr8+QEAAFB93333Xa1du0WLFmratOlOf/7NN9/o7rvvliRlZGToscceq7VY8AfP83TppZdq2rRpsm1bL730kv70pz8lfs4iCAAAAAAAAAANCZ9oYjtvvPGGpk+fLknq3LmzrrnmmhRH1PBs3rxZQ4f/Ta+/9qok6cRTTtW94x5TMKeRthRFdjhZEYo5CsWcGp2s8FmmGmWacl1bxVFH4Zgr1yszWWIYtbJjFQAAAGpGp06dau3ad911l6677rod/sx1XZ1//vmKRqOSpFtuuUXt2rWrtVjwh3/84x8aP368DMPQv//9b/Xp02e7Y1gEAQAAAAAAAKChoDAKSbZu3aqLLrpIkmQYhiZMmCCfz5fiqBqW+fPnq/+AgVq9aqV8Pp9uuPUODRh2oRxPCke3aW3heApH3Xh7C5+loN9SYTgm1/OUG6y5v5tpGsoK2MoK1NglAQAAkMbGjRunTz/9VJLUpUsXXXnllSmNZ+TIkTr77LMrdc7SpUt1+umn105AteS+++7THXfcISnePrC81oUsggAAAAAAAADQEFAYhSTXX3+9Vq9eLUk6//zz1aNHjxRH1HC4rqv77rtPN9xwg2KxmPZp2073T3hG+3U+VE7J5ETANuWzTJmGIdeLt9ELx1zFXE9bwzFFXFe5QZ+KI45Mw6DNBQAAAOrcypUrddNNN0mSTNPUxIkTZdupfV/aokULtWjRIqUxbMt1vRotSHrqqad01VVXSZLuvPNO/f3vf6/QeSyCAAAAAAAAAJDOqJpAwrx58zR+/HhJUsuWLTV27NgUR9RwbNiwQUOHDtWbb74pSep75lm6eewD8mfkSJIy/ZYy/JZMI3liJOizlOV5Ko44Koo4Ckdd5Suq3KBPheFYopAKAAAADZPneXX+nKNHj1ZhYaEkacSIEerevXudx7A7izpuooXddn8dT3IUXwARfz9fsRZ2L730ki688EJJ0tVXX73TFocAAAAAAAAA0NBQGAVJUiQS0fnnn5+YOHnggQfUpEmTOo3h119/1YYNGyp1ztKlS2spmrrz4YcfavDgwfr5558VDAb1z7H3qd+g81QQcSRJuRm2Ara10/NNI77C27YM5RfHFI66ClmOgj5LRWFHjTIpjAIAAEDd+emnnxLfz5w5U2+//Xa5x2/atClp3KtXr6Qdpr7++mvl5OTUbJApUhCOqTAcS4wjMVehmCPXLbNjlGkoaFvy26ZCMUehmKOsgL3T3WDffvttDR48WK7r6oILLtDYsWNlGLS+AwAAAAAAAACJwiiU+Oc//6lvv/1WknTiiSdq0KBBdR7D+PHjddttt9X586aK4zi64447dNttt8l1XR1wwAF67Okp6tT5IG0ujEiK7xRVXlFUWQHbUqbfU1HEUXEkXhgVjjlyXbtSLTgAAACAmrJ27dpKn7Ny5cqkseM4NRVOSv1eHFUoGv9dQhFHxVFHMXcHO3o5nsJRV7ZpKMNnKei3VBiOyfU85QZ9SYfOmzdPZ5xxhqLRqM4++2w99thjFEUBAAAAAAAAQBkURu0mvvvuu1q7dosWLdS0adOd/vybb77R3XffLUnKyMjQY489VmuxIG7dunUaMmSI3n//fUnS8OHDdfe/HpBnBxSJuYq5ngxDyvBXrCiqVIbfSkywRGKu/Lap4mh8hTkAAACA1CgIxxJFUfmhqMJRV1J8h6jS9temYcj14m30wiU5wdZwTBHXVW7Qp+KII9MwEjtHLVq0SH369FFRUZFOPPFETZ06VZZVufwBAAAAAAAAANId1RK7iU6dOtXate+66y5dd911O/yZ67o6//zzFY1GJUm33HKL2rVrV2uxQHrrrbd07rnnasOGDcrKytJjjz2mc889V5sKI4o68VYaUnyCxKzkam/TMOS3TIVLWnL47fj3WYHa+E0AAACA7S1YsKBSx996661JO8cuX75cbdu2rdmgUijquIn2eWWLojL9ljL81nbv+YM+S1mep+KIo6KIo3DUVb6iyg36VBiOKWCbWvHTMv3lL3/Rli1b1KNHD82YMUN+v7/OfzcAAAAAAAAA2N1RGNXAjRs3Tp9++qkkqUuXLrryyitTFsvIkSN19tlnV+qcpUuX6vTTT6+dgGpYNBrVzTffnNid6+CDD9YLL7yg/fffX5LkevE2Gm5JOw2fZVbpeUqLoUqvU3pdAAAAAHWvKPxH+7zSoqjcDLvcltmmYSgrYMu2DOUXxxSOugpZ8XbZP/60UqeccILWr1+vQw45RLNmzVJWVlad/C4AAAAAAAAAUN9QGNWArVy5UjfddJMkyTRNTZw4UbadupdEixYt1KJFi5Q9f21atWqVBg0apHnz5kmKF4Hdd999CgaDiWNK65dK/63sblGlSk/b9noAAAAA6pbregqX7AhbXNJKL9NvlVsUVVbAtpTp91QUcVQccVSYv1lnnHaKVq5cqX333VdvvfWWGjduXFvhAwAAAAAAAEC9R2HUbsJLQfXK6NGjVVhYKEkaMWKEunfvXucxNASvvfaahg8frs2bNys3N1dPPfWUzjrrrO2OMwxJ3h+FTVXd6an0tNLrVLG+CgAAAEA1FUcdeZIiMVcx15NhSBn+ihVFlcrwWyqOOtry++8aMeh0/fD9d8rL20vvvPOOWrZsWTuBAwAAAAAAAECaoDCqAfvpp58S38+cOVNvv/12ucdv2rQpadyrV6+kHaa+/vpr5eTk1GyQ9Vg4HNa1116rhx56SJJ05JFH6rnnnlP79u13eLxpGHLkyTQNyfEUdVwFfZWbNJHiky6S4tdR1XeeAgAAAFA94ZL35qGSXaMCtlnp9+emYciNhHXZ3wZr0YKv1HSPZnpp5hvaZ599ajxeAAAAAAAAAEg3FEZBkrR27dpKn7Ny5cqkseM4NRVOvbds2TINGDBAX375pSTpiiuu0F133SW/37/TcwK2GS+Gsi2Fo67CMVdZnlepiRPX8xRx4pMvwZL2HAHbrMZvAgAAAKCqSneBdd34vz6r8u/No9Gorvj7cH3+ycfKys7R9BmvqeN++9donAAAAAAAAACQrqiYAGrY888/r8MOO0xffvmlmjZtqtdff1333XdfuUVRkpThs2RI8tumbNOQ50nFkcoVmxVHHHmeZJuG/LYpo+S6AAAAwO7q1ltvled5ia+2bdumOqQaU9rmuvTfyu4W5bquRl88QnPemq1AIKjxk5/TIYcdrhR0YgcAAAAAAACAeonCqAZswYIFSRMQu/q65ZZbks5fvnx50s8bN26cml9kN1FcXKwRI0Zo4MCB2rp1q4499lgtXLhQp556aoXON01DgZJdnkqLmYoijsKxihVHhWOOikoKqTL8pbtFWYmWegAAAADqVmkdVOm/biUqmjzP043XXKGXnp8u27Z134RJOuqYY5OuBwAAAAAAAAAoH4VRQA349ttv1a1bN02cOFGGYeimm27S+++/r7322qtS18kMxAuagn5LAV/8/575xTEVhmM7nURxPU+F4Zjyi2OSpIDPVLCksKr0egAAAADqXukOUaWLFaIlba8r4p47xuiZJybIMAyNHfe4evY+KXGdyu48BQAAAAAAAAANlZ3qAID6bvLkyRo5cqSKiorUsmVLTZ06Vb17967StXyWqayArcJwTLlBn/IVVTjqqijiqDjqyG+Z8RZ5RrwdRyTmKuK4iVYaAZ+p3KBPkpQVsOWzqH0EAAAAUiVgm4o6roK2pXDUVTjmKsvzdlnY9PgjD+mBe++WJN35rwd0Yt+z5HlS0C7dGZb3+QAAAAAAAABQERRGAVVUUFCgkSNHasqUKZKk448/XlOnTlWrVq2qdd3sgC3H9RSKOsoN+hSyHBVHHMVcT+FYfDJlW7ZpKMNvJXaKyvBbyg7wf28AAAAglTJ8lgrDMfltU7ZpKOZ6Ko44yirnvfq0KZN1643XSZKu/8dt6n/u/1NRxJFtGvFFEvqj9TYAAAAAAAAAoHxUTgBVsHDhQvXv318//PCDTNPUmDFjdN1118myamaColGGT5ZpqDAcU9AXL3iKxFyFYo5c15PnSYYRb8kRtC35y6wYzwrYFEUBAAAAuwHTNBSwLYVijjJ8lraGY/EiJyv++LZmvfaKrrpspCTpoktHacTlV2hryJEUX/wgSQHbSrTUAwAAAAAAAACUj+oJoBI8z9Pjjz+u0aNHKxwOKy8vT9OnT9dxxx1X48+VHbAVsE0VhR2FY478tplUAFWWofgESWbAon0eAAAAsBvJDMQLo4J+SxHXVTjqKr84pky/pwy/lWir9+F772rk+cPkuq4GnzdMV940JlEUFfCZid1hMwPsFgUAAAAAAAAAFUUFBSrs1ltvled5ia+2bdumOqQ6tWXLFvXv318jR45UOBzWqaeeqgULFtRKUVQpn2WqUaZPzbIDyg7Y8lmmLNOQaRiyTEM+y1R2wFaz7IAaZfooigIAAAB2Mz7LTLTOyw36FPDF37MXRRxtKowovziq/86bp2FD+isSiejk087Qtf+8T8XReAvtgM9UbtAnKb47LO/5AQAAAAAAAKDi2DEKqIDvv/9eJ598spYvXy6fz6exY8dq1KhRMoy6aWFhmoayArayAnXydAAAAABqUHbAluN6CkUd5QZ9ClmOiiOOYq6nRYsWafjAM1VcVKRjev6f7nhogkzTkm0ayvBbiZ2iMvwWLbMBAAAAAAAAoJL4VBWogLy8PPn9frVr107PPfecunXrluqQAAAAANQjjTJ8skxDheGYgr54wVMk5so2Pflsnw474ig98vRUZWcFFbStpDbaWQGboigAAAAAAAAAqAI+WQUqIDs7W7NmzVKzZs3UuHHjVIcDAAAAoB7KDtgK2KaKwo7CMUd+21T3I4/QrHfeV9Ome6hxkyaJYw1JAdtSZsCifR4AAAAAAAAAVBGFUUAFdezYMdUhAAAAAKjnfJapRpmmXNdWcdRROOZq3333ledJhiGZhqGAbSrDZ8k066Z1NwAAAAAAAACkKwqjAAAAAACoY6ZpKCtgKyuQ6kgAAAAAAAAAIH2xHz8AAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtENhFAAAAAAAAAAAAAAAAIC0Q2EUAAAAAAAAAAAAAAAAgLRDYRQAAAAAAAAAAAAAAACAtGOnOgCgOsLhcNJ46dKlKYoEAAAgdTp06KBgMJjqMIC0Qq4BAABArgEAAACg/qMwCvXa6tWrk8ann356agIBAABIoW+++UadO3dOdRhAWiHXAAAAINcAAAAAUP/RSg8AAAAAAAAAAAAAAABA2qEwCgAAAAAAAAAAAAAAAEDaMTzP81IdBFBVW7Zs0YcffpgYt2nTRoFAIIURIdWWLl2a1Obk1VdfVceOHVMXEOoNXjuoCl43qKqafu106NBBwWCwBiIDUIpcA9viv/uoKl47qApeN6gqcg0AAAAASGanOgCgOho3bqy+ffumOgzsxjp27KjOnTunOgzUQ7x2UBW8blBVvHaA3Q+5BnaFezeqitcOqoLXDaqK1w4AAACAho5WegAAAAAAAAAAAAAAAADSDoVRAAAAAAAAAAAAAAAAANIOhVEAAAAAAAAAAAAAAAAA0g6FUQAAAAAAAAAAAAAAAADSDoVRAAAAAAAAAAAAAAAAANIOhVEAAAAAAAAAAAAAAAAA0g6FUQAAAAAAAAAAAAAAAADSDoVRAAAAAAAAAAAAAAAAANIOhVEAAAAAAAAAAAAAAAAA0g6FUQAAAAAAAAAAAAAAAADSDoVRAAAAAAAAAAAAAAAAANKOneoAAKAmNW/eXLfcckvSGKgIXjuoCl43qCpeOwBQ/3DvRlXx2kFV8LpBVfHaAQAAAIBkhud5XqqDAAAAAAAAAAAAAAAAAICaRCs9AAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABpx051AABQFZs2bdLixYv1ww8/aNOmTZKkxo0bq3379urWrZsaNWqU4ghRF5YsWaJFixbp559/lmVZysvL0xFHHKF27drVaRyu62revHlatmyZ1q1bp0aNGikvL0/HHXecmjRpUqexYOc8z9OyZcv0zTffaPXq1crPz1dmZqaaNm2qQw45RF26dJFlWakOE6iQSCSiuXPnasWKFdqwYYOaNm2qNm3aqGfPnsrMzEx1eABQr5FrQCLXQOWQayCdkGsAAAAASDcURgGoFzzP0yeffKIZM2bonXfe0TfffCPP83Z4rGmaOumkk3TVVVfpz3/+c63F1LZtW61cubLS51188cV65JFHaiGihuOll17S7bffrkWLFu3w58ccc4zuuOMO9erVq1bjiMViGjt2rMaPH6+ff/55u5/7/X6ddtpp+te//qW2bdvWaizYsa1bt+r111/XzJkz9d5772nDhg07PbZJkyYaPny4rrrqKu255541HssHH3xQ5XvS559/riOOOKKGI8KuGIZRpfPuvfdeXXXVVTUcTVxhYaFuvvlmTZo0KTFZX1Z2drb69++vsWPHqlmzZrUSAwCkG3INlEWugYoi10B1kGsAAAAAQN2hlR6AeuHcc89Vjx49dP/992vx4sU7naiQ4itqZ8+erf/7v//TiBEjFI1G6zBS1CbHcTR8+HCdffbZO52okKR58+bp+OOP180331xrsaxfv15HH320brrpph1OVEjxVZYzZszQIYccotdee63WYsGObd26VS1atNCQIUP0/PPPlztRIUmbN2/W/fffr4MOOkivvPJKHUUJVNz333+vww47TPfff/8OJyokqaCgQE8//bS6dOmiTz75pI4jBID6iVwDErkGKodcA+mGXAMAAABAOmPHKAD1QkFBQdI4NzdXxxxzjLp166aWLVvK7/dr1apVmj17tr788svEcRMnTtSmTZv0wgsvVHk1XkU0adJETZs2rdCxzZs3r7U40t3o0aM1adKkxDgzM1NDhgzRoYceqkgkok8//VQzZsxQNBqV67q6/fbb1aRJE40ePbpG4yguLlbfvn31xRdfJB7Ly8vTOeecow4dOui3337Tm2++qY8++kiSlJ+fr4EDB+q9997T0UcfXaOxYOccx1EoFEp6rH379urZs6f2339/NWvWTKFQSIsXL9aMGTO0ceNGSfH2OWeffbZefPFFnXHGGbUW3z777CPbrthbsWAwWGtxoGJatGihnJycCh1bG21tNmzYoFNOOUU//fRT4rF9991XgwYNUps2bfTLL79oxowZWrBggSTpl19+0Wmnnab58+erY8eONR4PAKQTcg1I5BqoHHIN1CRyDQAAAACoZR4A1AN9+/b1JHknnXSS99JLL3nhcHinx7700kteTk6OJynx9eSTT9Z4TPvss0/i+rfcckuNXx/JZs2alfQ3PfDAA71Vq1Ztd9yCBQu81q1bJ44zTdNbtGhRjcZy1VVXJcVy1llneaFQaLvjnn32Wc/n8yWOa9OmjVdcXFyjsWDnNm/e7EnycnNzvVGjRnkLFy7c6bGFhYXeBRdckPR3bdKkibdhw4Yai+f9999Puv7y5ctr7NqoHWX/Xs8880xKYznrrLOS4rn88ss9x3G2O+6ee+7xDMNIHNetW7cURAsA9Qu5Bsg1UFnkGqgucg0AAAAAqDu00gNQL/Tq1UufffaZ3nzzTfXr109+v3+nx/br108vvfRS0mN33HFHbYeIWuS6rq6//vrEODMzU6+//rratGmz3bGHHHKIXnzxRZmmmTj3hhtuqLFY1qxZo0ceeSQxPvjggzVt2jQFAoHtjh08eLDGjBmTGK9evVqPPvpojcWC8tm2reuvv17Lly/XAw88oIMPPninx2ZmZmrixIkaPHhw4rHNmzdr/PjxdREqUK7PP/886b9rJ598sh588MHEfa6sq6++WhdeeGFi/Nlnn2nGjBl1EicA1FfkGg0buQaqglwD6YJcAwAAAEBDQGEUgHph1KhROvLIIyt8/F/+8hf95S9/SYyXL1+u//3vf7URGurAu+++q8WLFyfGl112mdq3b7/T44855hidffbZifGsWbO0dOnSGonlscceS2qZcM8998jn8+30+Kuuukp5eXmJ8UMPPVQjcWDXsrOzdeedd1a49Ywk3XvvvUmtcGbNmlUboQGV8uCDDyaN77///nKPv+uuu5SRkbHT8wEAycg1GjZyDVQFuQbSBbkGAAAAgIaAwigAaat3795J42XLlqUoElTXK6+8kjQ+//zzd3nOBRdckDR+9dVXazyWffbZJ2lSbEds29bw4cMT49WrV+uLL76okVhQ81q3bq1OnTolxtw3kGrRaFRvvPFGYnzcccfpgAMOKPecJk2aqF+/fonxvHnz9Ouvv9ZajADQEJFrpA9yDdQVcg3sbsg1AAAAADQUFEYBSFvZ2dlJ48LCwhRFguoq+0Fdhw4d1KFDh12ec9xxxykYDCbGNbEad/ny5fr2228T4969eyet+N2ZE044IWnMyuDdW9l7B/cNpNrHH3+s33//PTHe1QRpqbL3Hdd1NXv27BqPDQAaMnKN9EGugbpEroHdCbkGAAAAgIaCwigAaWv58uVJ41atWqUoElTHli1btGrVqsS4e/fuFTrP7/era9euifGiRYuqHcvChQuTxhWNpVu3brJtu0ZjQe1ZsWJF4nvuG0i1qt53jjnmmKQx9x0AqFnkGumBXAN1jVwDuxNyDQAAAAANBYVRANJW2TYEfr9fhx9+eK0911tvvaUTTjhBe+65pwKBgBo1aqT27durb9++uv/++9lWvBrKrpqWpI4dO1b43LKrvTdv3qxffvklJbEEg0G1bt06Mf7f//5XrThQez7++OOk/78effTRtfZcN9xwgw499FA1adJEfr9fLVq00MEHH6wRI0bo5ZdfluM4tfbcqLxnn31Wf/rTn9SiRQv5/X41bdpU++23nwYMGKDHH39c+fn5tfK8Vb3vtG3bVpZlJcbcdwCgZpFrpAdyDdQlcg3sDLkGAAAAANQuCqMApKWXX35ZS5cuTYxPOukk5ebm1trzzZ8/X3PmzNEvv/yiSCSi/Px8LV++XDNnztSVV16pffbZR1deeaXC4XCtxZCufvrpp6Tx3nvvXeFztz1222ulKpbqxoHac8899ySN+/fvX2vPNX36dC1cuFBbtmxRNBrVhg0btHjxYk2cOFH9+vXTfvvtp9dee63Wnh+VM2fOHM2dO1cbNmxQNBrV5s2b9eOPP+qFF17QRRddpL333lt33XWXXNet0ecte78wTVN77bVXhc6zbVt77rnnDq8DAKgeco30Qa6BukSugZ0h1wAAAACA2kVhFIC089tvv+mSSy5JjE3T1D/+8Y9af96MjAzl5eUpLy9PgUAg6WehUEj333+/jj76aG3YsKHWY0kn266MbNq0aYXPbdKkSdJ469atu0Us0WiUiavd0PTp0/X6668nxoceeqj69u1bq8/ZpEkT7bPPPmrWrJlMM/lt2U8//aTTTz9dN954Y63GgIrLyspSmzZt1KpVK/l8vqSf/f7777rhhht00kknqbi4uMaes+x9JycnJ6lVzq6Uve9U9/4HAIgj10gv5BqoK+Qa2BVyDQAAAACoPRRGAUgrsVhMgwYN0rp16xKPXXbZZTriiCNq/Lksy1KfPn305JNPaunSpSosLNSaNWu0Zs0aFRYW6osvvtDFF18sv9+fOOfrr79W3759+aC6EgoKCpLGwWCwwudmZGSUe636HAtq1pIlS3ThhRcmxrZt64knnthuAqG69thjD1166aX6z3/+o99++02bNm3SihUrtGHDBm3atEkvv/yyevTokXTOnXfeqXHjxtVoHKgYv9+v/v37a/r06Vq1apUKCgq0atUqrVu3TgUFBZo7d67OOeccGYaROOedd97ROeecI8/zaiSGsveKytxzpOT7DvccAKg+co30szu9v9+dYkHNItfAjpBrAAAAAEDdqfgyEACQ9N1339XatVu0aFGpVbE7cskll+idd95JjLt27aq77767uqHt0Pz589W8efMd/syyLHXt2lVdu3bVsGHD1KdPH/3666+SpE8++UTjxo3T1VdfXStxpZtQKJQ0Ljv5syvbrqav7srK3SkW1Jx169apT58+SR/m3n333TU+ydm1a1etWbNmpx84N2rUSGeccYZOP/103XHHHUm7T1xzzTU644wz1KZNmxqNCeVbs2bNTu/zfr9fxx57rI499lgNGTJE/fr1U1FRkaR4i6WXXnpJZ599drVjKHvfqcw9R0q+73DPAVAfkGv8gVyjbuxO7+93p1hQc8g1sDPkGgAAAABQdyiMAlApnTp1qrVr33XXXbruuuuqfP6NN96oCRMmJMZt27bVzJkzt/uQuKbs7AOsbR1xxBF69dVX1aNHj8SqvrvvvlujRo3abnt0bG/bD3YjkUiFz912tfy2K6lrIpaKrqqs6VhQMzZt2qQTTzxRK1euTDx24YUX6sorr6zx58rJyanQcYZh6KabbtLatWv1+OOPS4q/fu655x49/PDDNR4Xdq6i9/mTTjpJTz/9tAYOHJh4bMyYMTUyWVH2HlOZ+5+UfN/hngOgPiDX+AO5Rt0g10BtItdAecg1AAAAAKDu0EoPQFq46667dOeddybGeXl5evfdd9W6desURvWHo48+OulDq02bNum///1vCiOqP7Kzs5PG266kLs+2qxa3vVZ9jgXVl5+fr5NOOkmLFy9OPDZkyBA99thjKYzqD//85z+TPmB+/fXXUxgNdmXAgAHq1q1bYvzNN99oxYoV1b5u2XtFZe45UvJ9h3sOAFQduUb62p3e3+9OsaD6yDVQk8g1AAAAAKB6KIwCUO898MADuuGGGxLjli1b6t1331X79u1TGNX2zjzzzKTxJ598kqJI6pfc3Nyk8ebNmyt87pYtW5LGFV1FW9ux+Hy+WttdABVTUFCgk08+WZ9//nnisbPOOkuTJ0+Wae4eb4/22GMP9ezZMzFeuXKl1q1bl8KIsCu1cZ8ve98pKChQLBar8Lll7zvVvf8BQENFrpHeyDVQG8g1UBvINQAAAACg6naPbBxAveF5Xq19VaW1xSOPPKIrrrgiMW7WrJneffdd7b///jX5a9eIbWP69ddfUxRJ/dKuXbuk8apVqyp8btmWBZKqPYFVU7HsbhNpDU1RUZH69OmjefPmJR7761//qmnTpsmyrBRGtj3uG/VLbfy9yt53HMfR2rVrK3ReLBbTzz//nBhz3wFQH5BrVB3vGaqGXAM1jVwDtYVcAwAAAACqjsIoAPXWhAkTdOmllybGTZs21Zw5c9S5c+cURrVzZbepl+IfmGLXDjzwwKTx0qVLK3zusmXLEt83adJErVq1SkksoVAo6UPDba+DulNcXKzTTjtNH330UeKxk08+WS+++KJ8Pl8KI9sx7hv1S238vap631mxYoUcx9npdQAA5SPXaBjINVCTyDVQm8g1AAAAAKDqKIwCUC89/fTTuuiiixLjxo0b6+2339YhhxySwqjKt379+qRxs2bNUhRJ/dK4cWPtvffeiXFFt4uPRCL68ssvE+MuXbpUO5ZtX18VjeWzzz5L2pK+JmJB5YXDYZ1++ul67733Eo+dcMIJevnll+X3+1MY2c5x36hfauPvVdX7TtldCiTuOwBQGeQaDQe5BmoKuQZqG7kGAAAAAFQdhVEA6p2pU6fqggsukOd5kqTc3Fz95z//UdeuXVMcWfk+/vjjpPG2rRKwc6ecckri+2XLlumnn37a5Tlz585VKBRKjE899dRqx9GuXTsdcMABifGcOXMSr8PyvPPOO0njmogFlROJRNSvXz+9/fbbicf+/Oc/67XXXlMwGExhZOUre9/w+XzKy8tLYTTYldq4z/fo0UO5ubmJcdnXcHnK3ndM00y6jwIAdo5co+Eh10B1kWugLpBrAAAAAEDVURgFoF554YUXNGzYMLmuK0nKzs7Wm2++qaOOOirFkZUvEolowoQJSY+dcMIJKYqm/jnjjDOSxk888cQuz9n2mNNPP73GY1m5cuUuPziMxWJ65plnEuO99tpLRxxxRI3EgoqJxWIaOHCg3njjjcRjxx13nF5//fXt2hHsTv7zn//oxx9/TIx79OihzMzMFEaE8mzYsEHPPfdcYpyRkaFjjz222tf1+/3q06dPYjx37lx999135Z6zefNmzZgxIzE++uij1bJly2rHAgDpjlyjYSLXQHWQa6AukGsAAAAAQPVQGAWg3nj11Vc1ZMgQOY4jScrKytLs2bN1zDHH1Mj1e/XqJcMwEl8rVqzY6bHFxcWVuvYll1yiVatWJT3XPvvsU9VQG5zevXvroIMOSowffvhhLV++fKfHz5s3Ty+++GJi3KdPH+277747PHbFihVJf/devXqVG8tFF12kQCCQGF9zzTWKRqM7Pf5f//qX1q5dmxhffvnlMgyj3OdAzXEcR+ecc45eeeWVxGM9evTQ7NmzlZWVVa1rV+a1U9l7xrp16zRixIikx4YNG1aFKFEV0Wg0qSXNrsRiMQ0dOlRbt25NPDZgwICd7hDwwQcfJL12dvW3HTVqVNL4iiuuKPf466+/Puk1t+35AIDtkWs0XOQaqCpyDVQFuQYAAAAA1D0KowDUC2+++aYGDBiQ+PAoMzNTb7zxho477riUxNO+fXvde++9WrduXbnH/fzzzzrrrLOSVhRblqWxY8fWdohpxTRN3XnnnYlxYWGhTjvtNK1evXq7YxctWqT+/fsnVvqbpqk77rijxmJp06aNLr744qTnGzJkiMLh8HbHTp8+XbfccktinJeXp0suuaTGYkH5PM/T3/72Nz3//POJx7p3764333xT2dnZdRrL888/r549e2rmzJmKRCLlHjtnzhwdddRRSROchxxyiM4999zaDhMl1q5dqwMOOEATJkzQ5s2byz32xx9/1PHHH68333wz8VhmZqZuu+22GounW7duOvPMMxPjN998U6NHj07c58r617/+pYkTJybGXbt2Vb9+/WosFgBIR+QaDRu5BqqCXANVRa4BAAAAAHXP8DzPS3UQALArHTp00E8//ZQYZ2dnV3qr7ssuu0yXXXbZTn/eq1cvffjhh4nx8uXL1bZt2x0eW7oK1zRNHXnkkTrssMPUsWNHNW7cWJK0fv16zZ8/X2+99dZ2H0w+/vjj263ORMVcfPHFGj9+fGKclZWlIUOG6NBDD1U0GtX8+fP10ksvJa2qvvfee3XVVVft9JorVqxQu3btEuOePXvqgw8+KDeOoqIi9ezZU1988UXisby8PJ177rlq3769Nm/erNmzZye9ngKBgN5991316NGjMr8yqmHu3Ln605/+lPRY69atK93S4sMPP1ReXt52j1fmtTNp0iQNHz5cktSoUSMde+yxOvjgg7XnnnsqJydHRUVFWr58ud555x0tXLgw6dxWrVrpk08+2en9CDWv7N/W5/Pp6KOP1qGHHqp27dopNzdXsVhM69at08cff6z33nsvadLAtm29+uqrSS0ptvXBBx/oz3/+c2I8dOhQTZo0qdyYfv31Vx111FFJO4zst99+GjRokPbaay+tX79eM2bM0Ndff534edOmTfXJJ59ov/32q+T/AgDQsJBrQCLXQOWQa6CqyDUAAAAAoO7ZqQ4AACqitKVFqYKCAhUUFFTqGps2barJkCRJruvq008/1aeffrrLYxs1aqTx48dr8ODBNR5HQzFu3Dht3bpVU6ZMkRRfzV12tWJZhmHouuuuK3eioqoyMzP1+uuvq0+fPvrqq68kxVd93n333Ts8PicnR5MnT2aioo5te9+Q4jsrVFZ57Uuq4vfff9cbb7yhN954Y5fHdu/eXc8++ywTFSkUjUb10Ucf6aOPPtrlsa1bt9akSZN0wgkn1HgcLVq00OzZs3Xaaadp2bJlkqQffvhhp6vFW7ZsqRkzZjBRAQAVQK4BiVwDlUOugZpArgEAAAAAdYNWegBQBVdeeaW6du0q2951fWnr1q1144036ttvv2Wioposy9K///1vPf/88zrooIN2elz37t01Z86cpJYYNa1Vq1aaP3++xowZo1atWu3wGL/frzPPPFMLFy7UGWecUWuxYPfXtWtXDR48WG3atNnlsYZh6JhjjtHUqVP18ccfq3379nUQIcpq2rSpRo4cqc6dO8s0d/12uUOHDho7dqyWLFlSKxMVpTp16qSFCxdq9OjRatKkyQ6PycrK0rBhw7R48WImSAGgniLXSA1yDdRX5Br1C7kGAAAAANQ9WukBQDWEw2EtWbJEP/30k37++efEyvJGjRqpefPm6tq1qzp06JDiKNPXN998o0WLFunnn3+WZVlq3bq1jjzyyDr/cNdxHM2bN09Lly7V+vXrlZOTo7322kvHHXecmjZtWqexYPe3YcMGffPNN1q1apU2btyo4uJiBQIBNW7cWG3btlW3bt3UqFGjVIeJEoWFhVq8eLFWrFihX375RYWFhbIsS40aNVKrVq3UrVu3HbY/qW2RSEQfffSRVqxYoQ0bNqhJkybae++91bNnT2VlZdV5PACAmkeukVrkGqiPyDXqF3INAAAAAKgbFEYBAAAAAAAAAAAAAAAASDu00gMAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQdiiMAgAAAAAAAAAAAAAAAJB2KIwCAAAAAAAAAAAAAAAAkHYojAIAAAAAAAAAAAAAAACQduxUBwAAQEOwatUqLVy4UBs3btTGjRvluq4aN26sVq1a6fDDD1ebNm1SHSIAAACAeohcAwAAAAAAYOcojAKANLJixQq1a9eu1q7veV6tXTsdrV69Wvfff79mz56tH374odxj99xzT/Xv31/nnXeeDj/88Co9X58+fTR79uzEuGPHjvrxxx93evywYcM0efLkKj3Xrtxyyy269dZbE2PDMKp9zVdeeUWnn356ta8DAACAyiPX2L2Qa9yaGJNrAAAAAACA8tBKDwCAGlZYWKjLLrtM++67rx588MFdTlRI0rp16/TQQw+pa9eu6tu3r7799ttKPefatWv11ltvJT22dOlSffjhh5W6DgAAAIDdF7kGAAAAAABA5bBjFACkEZ/Ppw4dOuzyuE2bNmnz5s2JcevWrZWRkVGboTUYa9as0WmnnaYFCxYkPd64cWMdf/zx6tKli5o3by6/36/169dr1apVeuedd7R8+fLEsTNnzpRhGHr11Vcr/LyTJk2S4zjbPf7UU0+pZ8+eOzynZcuWFXq9LFu2LPF9MBhUXl7eLs9p2rTpTn9W0WtsKzs7u9LnAAAAoGaQa6QeuUYcuQYAAAAAAKgMw2OvcgBocG699VbddtttifH777+vXr16pS6gNPHLL7/oiCOO0Nq1axOPtWnTRmPGjNG5554ry7J2eu7ixYt1991367nnnpPruurbt2+FJys8z1PHjh31008/SZLatWuXmPzIyMjQunXr1KhRoyr/XmVbU/Ts2VMffPBBSq4BAACA3R+5Ru0g16jdawAAAAAAgPRFKz0AAGqA4zgaOHBg0kRFz549tXjxYg0bNqzciQpJ6tKli5599ll99dVX6tSpU6We+4MPPkhMVEjStGnTFAgEJEnFxcWaPn16pa4HAAAAYPdBrgEAAAAAAFB1tNIDAFTZkiVLtHjxYq1bt07hcFiHH364/vKXv6Q0poKCAs2dO1dr1qzRxo0blZOTo7y8PPXq1UtNmjSpted94IEH9OGHHybGXbt21VtvvZWYNKioQw45RJ999plmzJhR4XOeeuqpxPdHHnmkunfvrr59++qFF15I/Pzvf/97peIAAAAAUolc4w/kGgAAAAAAAFVHYRQAYKc++OAD/fnPf06Mly9frrZt22rGjBm67bbbtHjx4qTje/bsmTRZUbalwTPPPKNhw4ZV+Tl3ZeHChfrHP/6ht956S5FIZLuf27atU045Rffee6/222+/XV6vMsLhsO67777EOBAIaMqUKZWeqCiVnZ2toUOHVujYLVu2JE1slJ43dOjQxGTFF198ocWLF6tLly5VigcAAACoaeQaFUOuAQAAAAAAUD200gMAVMqll16qs846a7uJilS6+eabdfjhh+v111/f4USFJMViMc2cOVNdunRJfIhfU6ZOnapffvklMR44cGClW1RU1bRp0xQKhSRJfr9fAwcOlCSdeOKJatWqVeK4siu9AQAAgN0Rucb2yDUAAAAAAACqhx2jAAAV9uCDD+qRRx6RJLVv316nn366OnbsKMMwtHTpUv388891HtNFF12kxx9/PDG2bVsnn3yyevTooebNmys/P1///e9/9dprrykajSoSiWjw4MHKyMjQaaedViMxzJo1K2k8YsSIGrluRZSdhOjTp4/22GMPSZJlWRoyZEhidfnUqVN1zz33yO/311lsAAAAQEWRa+wYuQYAAAAAAED1UBgFAKiwhx56SJJ022236YYbbpBtp/Y/I5MnT06aqOjevbumTp2qDh06JB03atQoffvttzrttNO0bNkyOY6j888/X0uWLFGzZs2qFYPneZo7d25inJ2draOOOqpa16yoBQsW6KuvvkqMzzvvvKSfDx06NDFZ8dtvv+nVV19V//796yQ2AAAAoDLINbZHrgEAAAAAAFB9tNIDAFTKtddeq5tvvjnlExX5+fm6/PLLE+OuXbvq/fff326iolSnTp307rvvqlGjRpKkX3/9NTH5Uh3Lli3Tb7/9lhSHadbNf17LruBu1qyZ+vTpk/TzLl266LDDDtvh8QAAAMDuhlwjGbkGAAAAAABA9VEYBQCosJYtW+rWW29NdRiSpCeffFK///67JMk0Tf373/9WMBgs95x99tlH119/fWL8xBNPyHGcasWxfv36pHG7du2qdb2KCoVCevbZZxPjgQMHyufzbXfc0KFDE9/PmTNHq1evrpP4yvPhhx/KMIxKffXq1SvVYQMAAKAWkWtsj1yj8sg1AAAAAADAtiiMAgBU2MCBA3c5IVBXpk2blvj+pJNO0oEHHlih84YNG5b4fv369Vq0aFG14ii7gluSGjduXK3rVdQrr7yizZs3J8ZlJyXKGjx4cGISw3VdPfPMM3USHwAAAFAZ5BrbI9cAAAAAAACovtTuTQ4AqFeOOeaYVIcgSSooKNCCBQsS423bOpSnZcuW2meffbRy5UpJ0qeffprUAqKytm7dmjTOzs6u8rUqo2yrigMPPFBHHHHEDo9r3ry5Tj75ZM2cOVOS9Mwzz+gf//iHDMOokzh3JBgMKi8vr1LnVPZ4AAAA1C/kGtsj16g8cg0AAAAAALAtCqMAABXWsWPHVIcgSfrmm2+S2lJ07ty5Uue3bNkyMVmxZs2aasWSk5OTNC4oKKjW9Spi+fLleu+99xLj8847r9zjhw4dmpisWLFihd5991317t27VmMsz1FHHaUPPvggZc8PAACA3Q+5xvbINSqPXAMAAAAAAGyLVnoAgArLzc1NdQiStm8p0atXLxmGUeGvzz77LHFu2RYRVbHHHnskjbds2VKt61XEM888I8/zJEmmaeqcc84p9/hTTz1VTZs2TYzLrgAHAAAAdgfkGtsj1wAAAAAAAKg+CqMAABVm27vHRoM1OSFQVFRUrfNbtmyZNF6xYkW1rrcrrutq0qRJifH//d//7bL1g9/v16BBgxLjV155pdqTNAAAAEBNItfYHrkGAAAAAABA9e0enzoBAFAJmZmZSeM2bdrI7/dX6VotWrSoViwdOnTQHnvskVhZ/uWXX8p1XZlm7dQev/3221q9enViPGfOHBmGUalrhMNhPfvss7rkkktqOjwAAACgXiPXINcAAAAAAADphcIoAMBupSKrqps1a5Y0fvHFF3XUUUfVVkjlMgxDxx13nF599VVJ0tatW/XZZ5+pe/futfJ8NdWa4qmnnmKyAgAAAA0KuUb5yDUAAAAAAEA6ojAKAFBrMjMzE5MPFW0jsX79+l0es//++yeN16xZk7LJCkk69dRTE5MVkjRx4sRamazYuHGjZs6cmRg3b95cubm5FT4/FApp7dq1kqQFCxboq6++0uGHH17jcQIAAAC1jVyjZpFrAAAAAACAdFU7e28DACCpcePGie9LPyTflfnz5+/ymBYtWqhz586J8fvvv1/p2GrSOeeco1atWiXG06dP1/fff1/jzzNlyhRFIpHEeNasWVq6dGmFv5YsWaJgMJg4v6ZWhAMAAAB1jVyjZpFrAAAAAACAdEVhFACg1hxwwAGJ7ysyCVFYWKgXX3yxQtceOHBg4vspU6Zo06ZNlQ+whgQCAV155ZWJcSgU0rnnnps0sVAZBQUFmjx58naPl51c6NChg7p161ap6zZq1EinnHJKYjxt2jSFQqEqxQgAAACkErkGuQYAAAAAAEBFUBgFAKg1ZVtOfPjhh/rxxx/LPf7aa6/V5s2bK3TtSy65JNHaIT8/X+eee65isVil4qvJD+pHjx6tnj17Jsaff/65TjnlFG3durVS11m0aJGOOuoovfLKK0mPf/rpp1qyZEliPGjQoCrFWfa8LVu26OWXX67SdQAAAIBUItcg1wAAAAAAAKgICqMAALVm8ODBie8dx9HgwYN3uNo6HA7r6quv1qOPPirDMCp07caNG2vcuHGJ8ezZs9WrV6+kD/R3xPM8zZ8/XyNHjtSxxx5bwd9k1yzL0vTp05WXl5d47N1331WXLl00ZcoUOY5T7vnffPONzjnnHB122GH63//+t93Pt21FUfZ/28o49dRTE5M8O7ouAAAAUB+Qa5BrAAAAAAAAVISd6gAAAOnroIMOUr9+/TRjxgxJ0hdffKEDDjhA55xzjjp16qRYLKbvv/9eM2bM0Jo1a2Tbtm644QaNGTOmQtcfOnSolixZonvvvVeS9N///lcHHXSQjjnmGP3pT39SmzZtlJWVpa1bt2r9+vVavHix5s+fr/Xr10uS9t9//xr9fffcc0/Nnz9fp512mhYsWCBJWrlypc477zxdfvnl6t27tw466CA1b95cPp9Pv/76q1atWqV33nlHP/30006vW1hYqOeeey4xPvTQQ9WpU6cqxRgMBnXGGWck2me8//77Wr58udq1a1el61XFp59+qo4dO1b6vH79+mns2LG1EBEAAADqG3INco0dIdcAAAAAAADbojAKAFCrHn30US1ZskTfffedJGnDhg164IEHtjvO7/friSee0N57713hyQpJuueee9S2bVuNHj1akUhEkjRv3jzNmzdvl+dallXh56movfbaSx9//LGuv/56TZw4UeFwWJK0efNmvfjii3rxxRd3eY2zzjpLd911V2L84osvJrXJqGpri7Lnl05WeJ6np59+Wrfffnu1rlkZoVBIy5Ytq/R5pZNMAAAAgESuQa6xPXINAAAAAACwLVrpAQBqVcuWLTV37lwNHTpUprnj/+wce+yx+uSTT3TeeedV6TlGjhypZcuWaeTIkWrSpEm5x2ZkZKh379569NFHNXfu3Co9365kZWVp3Lhx+vHHHzVq1Cjtu+++uzwnLy9PV1xxhRYvXqwXX3wxaZVz2RYUhmFUe7Kid+/eatGiRWI8adIkua5brWsCAAAAdY1cg1wDAAAAAABgVwzP87xUBwEAaBg2btyo999/X6tXr1YsFtNee+2lI488skIf5leU67r66quv9O2332rjxo0qLCxUdna2WrZsqf3331+dO3dWIBCoseerqJUrV2rRokXasGGDNm7cKNd11aRJE+2555467LDD1KZNmzqPCQAAAEgX5BrkGgAAAAAAADtCYRQAAAAAAAAAAAAAAACAtEMrPQAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABph8IoAAAAAAAAAAAAAAAAAGmHwigAAAAAAAAAAAAAAAAAaYfCKAAAAAAAAAAAAAAAAABp5/8D8m1GRXK5GiUAAAAASUVORK5CYII=",
- "text/plain": [
- "