-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnaive_bayes.js
134 lines (101 loc) · 4.62 KB
/
naive_bayes.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
var assert = require('assert')
, fs = require('fs')
, path = require('path')
, bayes = require('../lib/naive_bayes')
describe('bayes() init', function () {
it('valid options (falsey or with an object) do not raise Errors', function () {
var validOptionsCases = [ undefined, {} ];
validOptionsCases.forEach(function (validOptions) {
var classifier = bayes(validOptions)
assert.deepEqual(classifier.options, {})
})
})
it('invalid options (truthy and not object) raise TypeError during init', function () {
var invalidOptionsCases = [ null, 0, 'a', [] ];
invalidOptionsCases.forEach(function (invalidOptions) {
assert.throws(function () { bayes(invalidOptions) }, Error)
// check that it's a TypeError
assert.throws(function () { bayes(invalidOptions) }, TypeError)
})
})
})
describe('bayes using custom tokenizer', function () {
it('uses custom tokenization function if one is provided in `options`.', function () {
var splitOnChar = function (text) {
return text.split('')
}
var classifier = bayes({ tokenizer: splitOnChar })
classifier.learn('abcd', 'happy')
// check classifier's state is as expected
assert.equal(classifier.totalDocuments, 1)
assert.equal(classifier.docCount.happy, 1)
assert.deepEqual(classifier.vocabulary, { a: 1, b: 1, c: 1, d: 1 })
assert.equal(classifier.vocabularySize, 4)
assert.equal(classifier.wordCount.happy, 4)
assert.equal(classifier.wordFrequencyCount.happy.a, 1)
assert.equal(classifier.wordFrequencyCount.happy.b, 1)
assert.equal(classifier.wordFrequencyCount.happy.c, 1)
assert.equal(classifier.wordFrequencyCount.happy.d, 1)
assert.deepEqual(classifier.categories, { happy: 1 })
})
})
describe('bayes serializing/deserializing its state', function () {
it('serializes/deserializes its state as JSON correctly.', function (done) {
var classifier = bayes()
classifier.learn('Fun times were had by all', 'positive')
classifier.learn('sad dark rainy day in the cave', 'negative')
var jsonRepr = classifier.toJson()
// check serialized values
var state = JSON.parse(jsonRepr)
// ensure classifier's state values are all in the json representation
bayes.STATE_KEYS.forEach(function (k) {
assert.deepEqual(state[k], classifier[k])
})
var revivedClassifier = bayes.fromJson(jsonRepr)
// ensure the revived classifier's state is same as original state
bayes.STATE_KEYS.forEach(function (k) {
assert.deepEqual(revivedClassifier[k], classifier[k])
})
done()
})
})
describe('bayes .learn() correctness', function () {
//sentiment analysis test
it('categorizes correctly for `positive` and `negative` categories', function (done) {
var classifier = bayes()
//teach it positive phrases
classifier.learn('amazing, awesome movie!! Yeah!!', 'positive')
classifier.learn('Sweet, this is incredibly, amazing, perfect, great!!', 'positive')
//teach it a negative phrase
classifier.learn('terrible, shitty thing. Damn. Sucks!!', 'negative')
//teach it a neutral phrase
classifier.learn('I dont really know what to make of this.', 'neutral')
//now test it to see that it correctly categorizes a new document
assert.equal(classifier.categorize('awesome, cool, amazing!! Yay.'), 'positive')
done()
})
//topic analysis test
it('categorizes correctly for `chinese` and `japanese` categories', function (done) {
var classifier = bayes()
//teach it how to identify the `chinese` category
classifier.learn('Chinese Beijing Chinese', 'chinese')
classifier.learn('Chinese Chinese Shanghai', 'chinese')
classifier.learn('Chinese Macao', 'chinese')
//teach it how to identify the `japanese` category
classifier.learn('Tokyo Japan Chinese', 'japanese')
//make sure it learned the `chinese` category correctly
var chineseFrequencyCount = classifier.wordFrequencyCount.chinese
assert.equal(chineseFrequencyCount['Chinese'], 5)
assert.equal(chineseFrequencyCount['Beijing'], 1)
assert.equal(chineseFrequencyCount['Shanghai'], 1)
assert.equal(chineseFrequencyCount['Macao'], 1)
//make sure it learned the `japanese` category correctly
var japaneseFrequencyCount = classifier.wordFrequencyCount.japanese
assert.equal(japaneseFrequencyCount['Tokyo'], 1)
assert.equal(japaneseFrequencyCount['Japan'], 1)
assert.equal(japaneseFrequencyCount['Chinese'], 1)
//now test it to see that it correctly categorizes a new document
assert.equal(classifier.categorize('Chinese Chinese Chinese Tokyo Japan'), 'chinese')
done()
})
})