-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
76 lines (58 loc) · 2.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from main_classifier import MainClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_auc_score
import coloredlogs
import logging
import numpy
logger = logging.getLogger('TestLog')
coloredlogs.install(logger=logger, level='DEBUG',
fmt='%(asctime)s - %(name)s - %(levelname)s'
' - %(message)s')
def one_hot(y):
m = y.shape[0]
if len(y.shape) == 1:
n = len(set(y.ravel()))
idxs = y.astype(int)
else:
idxs = y.argmax(axis=1)
n = y.shape[1]
y_oh = numpy.zeros((m, n))
y_oh[list(range(m)), idxs] = 1
return y_oh
def compute_roc_auc(classes, probs):
classes_arr = one_hot(numpy.array(classes))
prob_arr = numpy.array(probs)
return roc_auc_score(classes_arr, prob_arr, average='macro')
def test(text_ids, texts, classes, classifier):
classes_pred = []
probs = []
count_match = 0
for (i, text) in enumerate(texts):
(clazz, prob_score) = classifier.classify(text_ids[i], text, prob=True)
probs.append(prob_score)
classes_pred.append(clazz)
if clazz == classes[i]:
count_match += 1
if i > 0 and i % 100 == 0:
accuracy = (1.0 * count_match) / (i + 1)
logger.info('{} samples classified. Accuracy up till '
'now is {}'.format(i + 1, accuracy))
# Calculate metrics
accuracy = (1.0 * count_match) / len(classes)
report = classification_report(classes, classes_pred, digits=5)
conf_matrix = confusion_matrix(classes, classes_pred)
roc_auc = compute_roc_auc(classes, probs)
# Log results
logger.info('Total {} samples classified with accuracy '
'{}'.format(len(classes), accuracy))
logger.info('AUROC is {}'.format(roc_auc))
logger.info('Classification report:\n{}'.format(report))
logger.info('Confusion matrix:\n{}'.format(conf_matrix))
metrics = precision_recall_fscore_support(classes, classes_pred,
average='weighted')
metrics = [metrics[0], metrics[1], metrics[2],
accuracy_score(classes, classes_pred)]
return metrics