-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_classifier.py
145 lines (116 loc) · 5.6 KB
/
main_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from featureExtractor.dnn_features import DNNFeatures
from featureExtractor.feature_extractor import FeatureExtractor
from featureExtractor.ngram_features import NGramFeatures
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
import coloredlogs
import copy
import datetime
import lightgbm
import logging
import numpy
import os
logger = logging.getLogger('TrainingLog')
coloredlogs.install(logger=logger, level='DEBUG',
fmt='%(asctime)s - %(name)s - %(levelname)s'
' - %(message)s')
class MainClassifier:
def __init__(self, CONFIG):
self.CONFIG = copy.deepcopy(CONFIG)
self.BASE = CONFIG['BASE']
self. featureExtract = None
self.classifier = None
if CONFIG['CLASSIFIER'] is not None:
self.classifier = joblib.load(os.path.join(self.BASE, 'Models',
CONFIG['CLASSIFIER']))
def train(self, text_ids, all_texts, classes):
logger = logging.getLogger('TrainingLog')
logger.info('Initiating training of main classifier')
# Prepare feature extractor
if self.CONFIG['EMB_MODEL'] is None and \
('ws' in self.CONFIG['METHOD'] or 'hs' in self.CONFIG['METHOD']):
self.CONFIG['EMB_MODEL'] = \
DNNFeatures(self.CONFIG).train(all_texts, classes)
if self.CONFIG['NGRAM_MODEL'] is None and 'n' in self.CONFIG['METHOD']:
self.CONFIG['NGRAM_MODEL'] = \
NGramFeatures(self.CONFIG).train(all_texts)
self.featureExtract = FeatureExtractor(self.CONFIG)
logger.info('Feature extractor ready')
# Prepare data
data = []
for (i, text) in enumerate(all_texts):
features = self.featureExtract.extract_features(text, text_ids[i])
data.append(features)
if i % 1000 == 0 and i > 0:
logger.info('{} of {} feature vectors prepared '
'for training'.format(i + 1, len(all_texts)))
train_X, train_Y = numpy.array(data), numpy.array(classes)
# Train classifier
train_data = lightgbm.Dataset(train_X, train_Y)
params = {
'learning_rate': self.CONFIG['GB_LEARN_RATE'],
'num_leaves': self.CONFIG['GB_LEAVES'],
'min_child_weight': self.CONFIG['GB_LEAF_WEIGHT'],
'min_child_samples': self.CONFIG['GB_LEAF_SAMPLES'],
'objective': 'multiclass',
'num_class': len(set(classes)),
'metric': {'multi_logloss'},
}
if 'l' not in self.CONFIG['METHOD']:
self.classifier = lightgbm.train(params, train_data,
self.CONFIG['GB_ITERATIONS'])
else:
self.classifier = LogisticRegression(C=self.CONFIG['LR_C'])
self.classifier.fit(train_X, train_Y)
# Save classifier
cur_time = str(datetime.datetime.now()).replace(':', '-') \
.replace(' ', '_')
self.CONFIG['CLASSIFIER'] = 'Classifier_' + cur_time + '.pkl'
joblib.dump(self.classifier, os.path.join(self.BASE, 'Models',
self.CONFIG['CLASSIFIER']))
logger = logging.getLogger('TrainingLog')
logger.info('Main classifier training finished')
return self.CONFIG['CLASSIFIER']
def classify(self, text_id, text, prob=False):
# Prepare classifier
if self.classifier is None:
logger = logging.getLogger('TrainingLog')
models = os.listdir(os.path.join(self.BASE, 'Models'))
models.sort(reverse=True)
for model in models:
if model.startswith('Classifier') and model.endswith('.pkl'):
self.CONFIG['CLASSIFIER'] = model
break
logger.info('Using Classifier Model {}'
.format(self.CONFIG['CLASSIFIER']))
self.classifier = joblib.load(os.path.join(self.BASE, 'Models',
self.CONFIG['CLASSIFIER']))
# Prepare feature extractor
if self.featureExtract is None:
logger = logging.getLogger('TrainingLog')
models = os.listdir(os.path.join(self.BASE, 'Models'))
models.sort(reverse=True)
if self.CONFIG['EMB_MODEL'] is None:
for model in models:
if model.startswith('Emb_') and model.endswith('.h5'):
self.CONFIG['EMB_MODEL'] = model
break
if self.CONFIG['NGRAM_MODEL'] is None:
for model in models:
if model.startswith('NGram') and model.endswith('.pkl'):
self.CONFIG['NGRAM_MODEL'] = model
break
logger.info('Using Embedding Model {} and N-gram Model {}'
.format(self.CONFIG['EMB_MODEL'],
self.CONFIG['NGRAM_MODEL']))
self.featureExtract = FeatureExtractor(self.CONFIG)
logger.info('Feature extractor ready')
# Classify
features = self.featureExtract.extract_features(text, text_id)
features = numpy.array([features])
if isinstance(self.classifier, LogisticRegression):
prediction = self.classifier.predict_proba(features)[0].tolist()
else: prediction = self.classifier.predict(features)[0].tolist()
if prob:
return (prediction.index(max(prediction)), prediction)
return prediction.index(max(prediction))